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In this paper, we developed a new robust model of multi-period portfolio problem. One of the key 
concerns in any asset allocation problem is how to cope with uncertainty about future returns. 
There are some approaches in the literature for this purpose including stochastic programming and 
robust optimization. Applying these techniques to multi-period portfolio problem may increase the 
problem size in a way that the resulting model is intractable. In this paper, we proposed a novel 
approach to formulate multi-period portfolio problem as an uncertain linear program assuming that 
asset return follows the single-index factor model. We also used robust optimization technique to 
solve the resulted problem. In order to evaluate the performance of the proposed model, we applied 
a numerical example using simulated data. 
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INTRODUCTION 
 
The capital asset pricing model (CAPM) plays an 
important role in finance theory. The idea of CAPM was 
introduced by three researchers who worked inde-
pendently based on Markowitz’s portfolio optimization 
model (Sharpe, 1964; Lintner, 1965; Mossin, 1966). As 
reported by Graham and Harvey (2001), the CAPM is 
the most popular model to estimate the cost of equity 
capital. The uncertainty about future reward from 
investing in stock market is considered as risk that one 
has to bear. As the risk increases in a portfolio, 
obviously, there is higher potential return on asset. The 
CAPM considers the risk and the rates of the return and 
compares them to the overall stock market.  

There are two important types of risk in stock market 
(Markowitz, 1959). First, the risk which is the conse-
quence of market related factors also known as 
systematic risk. Second, the risk which is firm-specific 
and only embraces the company factors called unsyste-
matic risk. This kind of risk can be easily removed from 
the overall portfolio through diversification and the 
market normally awards those who bear the systematic 
risk. The final goal of portfolio theory is to help the 
investors allocating their wealth among different 
financial securities in an optimal way. 

In  the  classical  Markowitz  model,  the  selection   is 
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assigned by a quantitative criterion which considers a 
balance between the return of an investment and its 
corresponding risk (Markowitz, 1952). He formulates the 
portfolio problem as a decision of the mean and 
variance of a portfolio. He proves the basic theorem of 
mean variance portfolio theory, namely holding con-
stant variance will maximize the expected portfolio 
return, and on the other hand, holding constant expec-
ted return will minimize the portfolio variance. These 
two principles lead to the formulation of an efficient 
frontier from which the investor could choose her 
preferred portfolio, depending on individual risk return 
preferences namely risk aversion. 

Specifically, in the Markowitz approach, each asset is 
described by means of its return over a fixed period of 
time and the vector of asset returns is assumed to be 
normally distributed, with known mean vector µ and 
covariance matrix . Keeping in mind the Markowitz 
assumptions, an optimal portfolio weights of assets are 
hence determined by minimizing the portfolio variance 

w  w, subject to a given lower bound on the expected 
return. This leads to a quadratic programming problem 
which may be efficiently solved using a traditional 
solution procedures such as active set method (Best et 
al., 1985). However, a major issue on the Markowitz 
method is that it only considers the asset allocation for 
a single period investment.  

One of the key issues facing any given investor is 
how to allocate her wealth among different alternative 
assets.   Almost   all   financial   institutions   have    the  
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identical problem with the growing complication that 
they have to include the characteristics of their liabilities 
in the analysis explicitly. Despite the fact that the 
arrangement of these problems varies, they are similar 
enough in such a way that they could be classified both 
as portfolio theory. Portfolio theory is a well-developed 
paradigm among practitioners in finance. There are 
good reviews in more advanced level (Ingersoll, 1987; 
Huang and Litzenberger, 1988; Constantinides and 
Malliaris, 1995). There are also some meticulous 
mathematical treatments (Szego, 1980).  

The important aspect of the theory is that assets 
could not be selected only on the basis ofa single 
security. The investor might as well consider how each 
security co-move with all the other securities. Further-
more, taking these co-movements into account resulted 
in an ability to construct a portfolio that had the same 
expected return and less risk than a portfolio 
constructed by ignoring the interactions among various 
securities. So far, we have been concerned with how to 
construct an optimal portfolio. The final payoff from 
portfolio models is mainly a function of the quality of the 
data used. Portfolio evaluation is an important task of 
the portfolio managers. Evaluation models follow in a 
natural manner from the theories of portfolio manage-
ment, the subject include when and how the investor 
should rebalance her portfolio (Elton and Gruber, 
1997). 

Merton (1971, 1973) is believed to be the first who 
introduced the concept of multi-stage portfolio optimi-
zation; where an approach based on continuous 
dynamic programming (DP) is proposed and it is still in 
use (Brennan et al., 1997; Lynch and Balduzzi, 2000; 
Ait-Sahalia et al., 2001). However, the dynamic 
programming formulation is impractical for actual 
numerical implementation, due to the curse of dimen-
sionality.  DP often becomes a complicated problem as 
we consider more stages in the problem formulation 
(Brandt, 1999; Brennan et al., 1997). On the other 
hand, a mean-variance discrete-time problem is 
reduced to a control problem with only one state 
variable in Infanger(2006), under the hypotheses of no 
transaction costs, no composition constraints and 
independent returns. It should be noted that the 
introduction of constraints on portfolio composition 
makes the problem harder from the computational point 
of view.  

Dantzig and Infanger (1993) formulate multi-stage 
portfolio allocation as a linear programming problem 
and propose a classical stochastic programming 
method based on Bender’s decomposition. Many of 
these models which include recursive decision pro-
blems in the presence of uncertainty are solved by 
multi-stage stochastic programming (Birge et al., 1997; 
Gulpinar et al., 2002; Ruszczynski et al., 2003). 
Although stochastic programming provides a sound 
conceptual framework for posing multi-stage decision 
problems, its results is computationally impervious to 
exact and efficient  numerical  solution  (Shapiro  et  al.,  
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2005). The main issue in the stochastic programming 
formulation is the fact that the stage decisions are 
actually conditional rules defining the action which 
should be taken in response to past outcomes. To 
model the conditional nature of the problem in a 
tractable manner, a discretization of the decision space 
is typically introduced by constructing a scenario tree. 
This scenario tree and its corresponding computational 
time may grow exponentially if an accurate 
discretization is needed (Ermoliev et al., 1988). On the 
other hand, if branching is kept low the resulting 
discretization cannot be guaranteed to be a valid 
representation of real world conditions. Portfolio 
optimization normally requires good estimates of 
returns for risky assets as input. The quality of resulting 
optimal solution depends heavily on the quality of the 
estimated parameters. However, any estimation 
procedure for the return is based on some assumptions 
which may or may not hold. In other words, we live in 
an uncertain world where many parameters affecting 
the return of an asset are subject to uncertainty. 

Linear programming (LP) is a mathematical model to 
determine the optimal outcome for a given mathema-
tical model for some types of requirements represented 
as linear equations known as constraints. Actually, 
linear programming is a technique of the optimization of 

a linear function e.g. f(x)= c x with respect to linear 

equality and/or inequality constraints e.g. Ax b, where   
is the vector of variables to be decided,   and   are 
vectors of known coefficients and   is a deterministic 
matrix of constants which is also known as technical 
coefficients. The availability and certainty of technical 
coefficients is under question in many practical 
situations. 

During the past two decades, the idea of robust 
optimization has become an interesting area of 
research. Soyster (1973) is the first one who shed light 
on this subject, but his idea turns to be very pessimistic 
which makes it unfavorable among practitioners. Ben-
Tal et al., (1998) develop new robust methodology 
where the optimal solution is more optimistic. Their idea 
suggests solving a counterpart of the initial model to 
obtain the robust solution. They also apply their robust 
method on some portfolio optimization problems and 
show that the final optimal solution remains feasible 
against the uncertainty on different input parameters 
(Ben-Tal et al., 2000). The proposed parameter 
controls the probability of deviation from the nominal 
constraints. The implementation of the robust optima-
zation of Ben-Tal normally changed an ordinary linear 
programming problem into a convex nonlinear problem. 
This makes their method unpopular among many 
people who get used to using regular optimization 
techniques. Bertsimas et al. (2004) developed different 
robust optimization techniques in an attempt to keep 
the structure of the original problem. Although their 
method does not provide solutions which are as 
optimistic as the Ben-Tal’s method, the structure of the 
original problem remains the same and in many  cases,  
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this makes it more applicable. As a recently emerging 
modeling tool, robust optimization can incorporate the 
perturbations in the parameters of the problem into the 
decision making process. Generally speaking, robust 
optimization aims to find solutions to given optimization 
problems with uncertain problem parameters, that will 
achieve good objective values for all or most of 

realizations of the uncertain problem parameters 
(Gharakhani et al., 2010). Robust optimization 
approach has addressed portfolio selection problems in 
order to alleviate the sensitivity of optimal portfolios to 
statistical errors in the estimates of problem 
parameters. Goldfarb et al. (2003) consider a factor 
model for the random portfolio returns, and proposed 
some statistical procedures for constructing uncertainty 
sets for the model parameters. They propose a factor 
model for the asset return and demonstrate that, by 
using a robust optimization approach to deal with the 
parameter ambiguity, the mean–variance portfolio 
selection problem, the maximum Sharpe ratio portfolio 
selection problem and the Value-at-Risk (VaR) portfolio 
selection problem can be reformulated as Second 
Order Cone Programs (SOCP), provided that the 
parameter ambiguity sets are ellipsoidal. DeMiguel et 
al.,(2009) propose a generalized approach to portfolio 
optimization in the presence of estimation error. Their 
method relies on solving the traditional minimum-
variance problem but subject to the additional 
constraint that the norm of the portfolio-weight vector 
be smaller than a given threshold. 

Zhu et al. (2009) propose a robust portfolio optimization 
based on worst-case conditional Value-At-Risk. They 
consider the situation where only partial information on 
the underlying probability distribution is available. They 
investigate the minimization of the worst-case 
Conditional Value-At-Risk (CVaR) under different 
uncertainty structure including box and ellipsoidal type. 
Halldórsson et al. (2003) applied interior-point method 
for saddle-point problems to solve the robust mean-
variance portfolio selection considering uncertainty as 
box model in the elements of the mean vector and the 
covariance matrix. Alternatively, Tütüncü et al., (2004) 
propose a robust asset allocation model in which they 
discuss techniques for generating uncertainty sets from 
historical data. They further, consider a box-type 
uncertainty structure for the mean and covariance 
matrix of the assets returns. For this uncertainty type, 
the authors show that the robust portfolio selection 
problems can be formulated and solved as smooth 
saddle-point problems involving semi definite 
constraints. Bertsimas et al. (2008) study the viability of 
different robust optimization   approaches   for   multi-
period   portfolio selection. Robust models treat asset 
returns as uncertain coefficients in an optimization 
problem, and map the level of risk aversion of the 
investor to the level of tolerance of the total error in 
asset return forecasts. The resulting robust optimization 
formulations of the multi-period portfolio optimization 
problem are linear and computationally efficient. Since 
there are  many  available  stocks  for  investment  in  a  

 
 
 
 
market and the planning horizon is always long, the 
number of constraints embracing uncertain parameters 
in the model is high. Applying robust approach will 
introduce some new variables and constraints for each 
uncertain parameter.  Adding up these new variables 
and constraints to that of initial model, the resulting 
robust counterpart is a mathematical model where its 
dimension is increased almost threefold. 

In this paper, we propose a different way to address 
multi-stage portfolio allocation in order to obtain robust 
problem formulation of tractable size. We achieve this 
goal by using a simple factor model to formulate asset 
returns. In particular, we apply CAPM to estimate future 
returns, where the coefficients of the model is obtained 
through long historical data. Our proposed model has 
decisive advantages. First, we use a simple model for 
estimation purpose that reduces the need to estimate 
too many input parameters. Second, the resulted robust 
counterpart remains linear which can be solved using 
an ordinary optimization technique.  
 
 

Multi-period portfolio problem 
 

Dantzig et al. (1993) propose a standard framework for 
multi-period asset allocation problem in discrete time. 
They assume  risky assets in the market;  trading 
period, linear transaction costs for trading stock and 
one riskless asset e.g. cash account, with fixed and 
known minimum return. Naturally, in a multi-period 
investment problem the rational investor likes to gather 
her final wealth  at last planning period and her goal 
is to control the portfolio of these assets in a way to 
maximize some utility function of her final wealth 

. Based on above assumptions the multi-period 
portfolio problem with linear transaction costs can be 
formulated. The investor’s dollar holdings at the start of 
time period ,  in asset  is denoted by  , 

, in which  represents cash account 
and  stands for initial holding states. If she sells an 
amount   or buys an amount  of stock  at the 

beginning of time period , she incurs transaction costs 
of  and , respectively. The dynamics of the 

quantities  for non-cash assets are given as follows: 
 

 
 

where uncertain coefficient  denotes the return of  
risky asset over time period . The dynamic of 
cash account comprises adding cash return of previous 
period, adding proceeds from the sales of the risky 
assets, subtracting the expenses from the purchasing 
risky assets and subtracting all the transaction costs of 
the trading within the period which is as follows: 
 

 

 

Where  denotes the cash account return over time 
period . Note that assets are measured by their 
dollar  amounts,  so  in  the  case  of   costless   trading, 



 

 

 
 
 
 
selling amount  of asset  will be equal to cash 

amount  ; as a matter of fact the transactions are not 

costless in real world situation, and the transaction cost 
 is the percent we pay for the transaction at time 

period . Hence, the resulting cash from selling  of 

asset  is equal to . 

On the other hand,  is the cash amount we 

pay in order to buy amount of  of asset  and  is the 

corresponding transaction cost. When making decision 

at time period  we know all amounts , , 

. At time , the investor’s holdings are 
updated according to the realized returns over 

. The decision at the beginning of time period t is to 

determine quantities , , , which in turn 
needs to satisfy all bound constraints as follows: 
 

 

 

 
 

 
 

where , , , , and  are some given vectors of 

bounds. For the sake of simplicity and without lose of 
generality we focus on simple bounds i.e. all the lower 
bounds are zero and all the upper bounds are assumed 
to be infinity. 

In the classical literature on portfolio optimization, the 
utility function  is assumed to be concave to 
reflect aversion to risk. We consider a linear utility for 
objective function as follows: 
 

. 
 

If the investor could foresee the realizations of the 

uncertain returns , , , her 
optimal strategy would be given by the optimal solution 
to the following optimization problem: 
 

max  
 

s.t. 
 

 

 

 

 
 

 
 

 
Here we impose non-negativity constraints on the 
investor’s holdings at each time period. This can be 
interpreted as not allowing for borrowing or short 
selling. In fact, future returns are not known at time 0. In 
practice, the investor has to treat this portfolio optimi-
zation problem as a rolling horizon problem, that is, she 
has to  act  upon  information  available  at  time  period 
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, and rebalance her portfolio at time period  after 

obtaining additional information over time period 
. Actually in real world situations at each time 

period, the investor takes only the first step of the 
optimal allocation strategy computed with information 
up to that time period, that is, that she solves 
consecutive multi-period portfolio optimization problems 
with decreasing planning horizons. 
 
 
Modeling input parameters using CAPM 
 
The standard CAPM measures the risk of a security by 
it's covariance with the stock market return (Lintner, 
1965;Sharpe, 1964; Mossin, 1966) which is the so-
called market beta. The expected return of an individual 
security simply is equal to the risk-free rate plus the 
value of the market beta times the market risk premium. 
In other words, the expected equity premium also 
known as excess return is proportional to its 
corresponding market beta. It is believed that riskier 
assets are likely to earn a higher expected return to 
encourage the investors to hold them. The CAPM 
measures this relationship between risk and return. 
Because of simplicity of mathematical relationship 
between risk and return, the CAPM has been widely 
used in the financial industry. Based on the traditional 
static CAPM, it is well known that the expected return 
on an asset ,  is equal to 
 

   
 
where  is the risk-free interest rate,  is the market 

beta, a measure of the systematic risk of asset  which 
can be defined as below: 
 

  

 

In order to estimate , we can simply regress excess 
asset returns on the market risk premium with historical 
data which is as follows: 
 

 

 
Where  represent error parameter that is a firm 
specific random variable. By construction one can 
assume that mean of error is equal to zero ( ). 
Furthermore, we assume that market index is unrelated 

to a given unique return ( ) and 
securities are only related trough common response to 
market ( ) and they are not jointly related. 

We can define now variance of  as  and 

Variance of as . 
Based on afore assumptions we can derive the 

expected return, standard deviation and covariance 
when the single-index model is adopted to represent 
the joint movement of securities as the covariance of 

returns  between  stocks  and  with    On 
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the other hand, there is a simple relationship between 
variance of a single asset, market return and its 
corresponding residual which can be calculated as 
follows: 
 

                                                                                                                         
 
Based on this relationship, one can simply find the 
variance of residuals. Substituting for  with its nominal 
values based on Equation (6) yields the following 
optimization model based on CAPM. 
 
max  

 

s.t

  
 

− ,  = ,…, ,              
 

 
 

 
 
Assuming parameters beta as fixed and known 
parameters from long historical data, it can be observed 
from the model (10) that the number of uncertain 
parameters in proposed model decreases substantially 
respect to nominal model.  
 
 
PROPOSED ROBUST FORMULATION 
 

There are different approaches for handling uncertainty in mathe-
matical program including stochastic programming and robust 
methodology. The stochastic programming methodology uses 
decision tree and considers all possible scenarios and this makes 
the approach hard to solve because the dimension of the 
resulting problem increases exponentially as size of the main 
problem increases. Robust optimization is not a very new method 
but recent advances in this methodology shed light on the issue 
of addressing uncertainty in optimization problems. As we know, 
the optimal solution of a linear programming problem is located 
on some extreme point that is, it is usually on the edge of an area 
of intersection of all constraint known as feasible region. 
Imposing a little change in the data would make previously 
optimal solution completely infeasible. The early work done by 

Soyster (1973) was too conservative to be applicable for real-
world applications in the sense that the method protects against 
the worst-case scenario. He considered the worst possible 
conditions for the data which is not a case in practice. We cannot 
find any other work following Soyster until 1990s. In the last 
decade a number of researchers including Ben-Tal and 
Bertsimas proposed new approaches. These works address the 
issue of conservativeness by letting the data uncertainty in 
special forms such as ellipsoidal and convex that results the 

models that was computationally tractable. Ben-Tal et al. (1998) 
considered ellipsoidal uncertainty which transforms the main 
linear programming to conic quadratic program called robust 
counterpart. Bertsimas et al. (2008) propose a robust approach 
for multi-period portfolio problem which uses a change in 
variables similar to that in Ben-Tal et al. (2000) which allows to 
reduce the number of constraints with uncertain coefficients to n. 
The trick is to work with cumulative returns instead of the simple  

 
 
 
 
return which is defined as follows: 
 

 
 

 
 

 

 

Based on the change in variables, the multi-period portfolio 
problem could be re-written as: 
 
maxw 

 

s.t  
 

 
 

 

 

 
 

 
 

If data on the covariance matrices of future cumulative returns 
are available, then it can impose restrictions on the movement of 
returns across assets using the uncertainty set as follows: 
 

 

 
where ∆t are constants decided by the user in advance. Low 

values for ∆t can be interpreted as a low aversion to risk. When 
∆t= 0, the investor decides solely based on expected values, and 
her strategy is equivalent to the nominal strategy produced by 
solving the nominal problem. The norm in the formulation of 
uncertainty set can be any norm. If we use the L2 norm, it results 
in Ben-Tal et al.’s (2000) formulation. When the norm in the 
uncertainty sets is the D-norm, the robust counterpart of the 
problem is as follows (Bertsimas et al., 2008): 

 
 

 

 

 
 

 

 

  

 

   

 
It can be observed from the model (14) that too many new 
constraints are imposed to the original linear programming 
problem. Bertsimas et al. (2004) propose another robust 
approach for linear programming that its robust counterpart is 
also linear. Consider a given linear programming problem in the 
following form: 
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Table 1. Comparison the proposed model (17) with Bertsimas’ with respect to the number of 

variables and constraints. 

 

Number of Bertsimas’s model Proposed model 

Constraints 8mn - 2m + 2n + 1 3mn + n 

Variables  5mn - 2m + n 5mn - 2m + n 
 
 
 

max  

 

s.t.   
                                                                                                                                    

 
 
Based on Bertsimas’ work assume that data uncertainty only 
affects the elements in matrix . suppose that there are there are 

only  coefficient subject to uncertainty in a particular row  and 
each entry , is modeled as a symmetric random variable 

 that only takes value in interval ; in which 

 and  is the nominal value and maximum deviation of ele-

ment  , respectively. Bertsimas et al. (2004) show that under 

these assumptions, the constraints of robust counterpart of model 
(10) can be rewritten as follows: 
 

max  
 

s.t.  
 

       

        
                                                                                                                            

 
 

 
 

 
in which new set of variables including pij,zi and yj and new 
parameter Γi that is correspond to robust modeling, is imposed to 
the original linear programming problem. Based on Bertsimas’ 
approach the robust counterpart of multi-period portfolio problem 
can be rewritten as follows: 
 

max  

 

s.t. 
 

 

 

 

   
 

 

 

 
 

 
 

 
 

in which  and  are new variables that applied robust 

modeling approach imposes to the nominal portfolio problem; 

furthermore, parameter   is some control parameter known as 

price of robustness that adjust the robustness of the proposed 
method over the level of conservatism of its final solution. In this  

formulation if  changes  by  time  its nominal value  then  

the robust solution will be feasible, deterministically. Furthermore,  

if it changes even more, then the resulted robust solution is 

feasible with a high probability; that is at least . 

In Table 1, we compare the number of variables and 
constraints in proposed model with the model (14) proposed by 
Bertsimas. It can be observed from the proposed robust 
counterpart that both the number of variables and constraints are 
reduced, considerably. This makes the proposed model 
interesting when the number of asset available increases sub-
stantially. For instance, consider a market with 500 assets where 
there are 12 period of investment strategy. The robust optimi-
zation model proposed by Bertsimas has 47,025 constraints with 
29,012 variables. On the other hand, considering proposed model 
the investor only has to solve a linear programming problem with 
18,012 constraints and the same number of variables. In order to 
examine the performance of proposed model in the following 
section we solve a numerical example. 
 
 

RESULTS 
 

In this section, we use some sample simulated data to 
examine the performance of the proposed model of this 
paper and consider two types of the problems as 
follows;  
 

1. Nominal multi-period portfolio optimization (hence-
forth abbreviated NPO)  
2. Robust multi-period portfolio optimization (henceforth 
abbreviated RPO) 
 

Since it is obvious that any multi-period modeling 
approach outperforms single-period mean-variance 
method in long term planning horizon, we do not study 
single period for our experiment. The NPO is the 
standard multi-period portfolio optimization technique in 
which the optimal solution is calculated based on 
estimation of all future returns of the assets. The RPO 
is proposed robust multi-period portfolio optimization 
approach in which its future assets’ returns are subject 
to perturbation. In both cases the required future return 
are estimated based on CAPM while in the NPO we 
use the expected values. However, in the latter case 
we consider an interval for asset returns. In order to 
compare the results of two approaches we use 
simulated market data. Consider a market embracing a 
risk free asset and six risky assets ( ) where the 
covariance matrix is given in Table 2. 

The portfolio manager has to handle her initial 

portfolio for next  periods. Her initial wealth is evenly 
allocated in all assets in a way that the portfolio 
consists of all seven assets and the initial value of each 
asset is 100 dollars. We assume that transaction costs 
are  of the amount traded in all  time  periods.  Since  
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Table 2. The covariance matrix of six available stocks in the market. 
 

 Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6 

Stock 1 0.044 0.027 0.031 0.013 0.025 0.038 

Stock 2 0.027 0.058 0.040 0.017 0.025 0.062 

Stock 3 0.031 0.040 0.058 0.009 0.032 0.048 

Stock 4 0.013 0.017 0.009 0.063 0.034 0.030 

Stock 5 0.025 0.025 0.032 0.034 0.084 0.034 

Stock 6 0.038 0.062 0.048 0.030 0.034 0.096 
 
 

 
Table 3. The expected returns of available assets in different time periods. 
 

Trading period 
Expected returns 

Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6 

1 0.07 0.07 0.07 0.07 0.08 0.07 

2 0.03 0.03 0.03 0.03 0.03 0.03 

3 0.10 0.10 0.09 0.11 0.12 0.10 

4 0.15 0.17 0.14 0.18 0.19 0.16 

 
 
 

Table 4. The final solution of nominal model. 

 

Trading period 
Dollar holding 

Cash Stock  1 Stock  2 Stock  3 Stock  4 Stock  5 Stock  6 

1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2 0.00 109.65 110.35 109.16 110.84 218.18 109.79 

3 0.00 120.23 121.77 119.16 122.86 243.81 120.54 

4 0.00 131.83 134.37 130.07 136.17 272.46 132.34 

5 0.00 144.56 148.28 141.99 150.93 304.48 145.30 

 
 
 

we adopt single-index mode in order to estimate  future 
returns, consider there is an index in the market where 

its expected return vector and volatility is = [0.07 
0.03 0.1 0.16 0.09] and 0.1732, respectively. The fixed 
riskless return is 0.03 for all periods. Furthermore, we 
assume a fixed beta for each assets in planning horizon 

which is = [0.95 1.05 0.88 1.12 1.25 0.97]. The 
variance of error of each risky asset is calculated based 
on Equation (9) as: 
 

.  
 
The expected return of all assets which are estimated 
based on CAPM in four planning periods is summarized 
in Table 3. 

Table 4 summarizes the details of the implementation 
of NPO with nominal information given in Table 3. The 
first row of Table 4 represents the initial wealth which is 
distributed equally among a risk free asset and six 
other risky assets in the first period. Row 2 to row 5 
show the details disposition among all assets. As we 
can observe from the table, in the second period, we do 
not consider any cash investment. The last row of the 
portfolio demonstrates the  outcome  of  the  investment  

on all five risky assets based on the predicted returns 
given on Table 3. Note that there is no perturbation on 
the input data given on Table 3 so Table 4 represents 
only the nominal optimal solution. Next, we consider the 
optimal solution of the proposed method using different 
perturbations. 

In order to solve RPO, we consider 50% perturba-
tions in market return and we set the parameter  so 

that all constraints hold at least 95% of all possible 
cases. The optimal solutions of RPO are summarized in 
Table 5. As we can see from Table 5, in the first period 
all assets start with equal amount of money, 100.00. 
The asset holdings change from the second period to 
the fifth period ending with the optimal returns given in 
the last row of the table. When we compare the results 
of the nominal and robust solutions, we find out that the 
changes on robust solution are smooth. 

Since we have used expected return to solve these 
two optimization problems, we cannot add up final 
holdings in each asset to locate the final wealth. In 
order to evaluate the performance of RPO and NPO we 
simulate the market based on the assumptions we have 
already stated. Table 6 summarizes the simulated re-
turns  of  different  assets  for  period  one  to  five.   For  
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Table 5. The final solution of robust model. 
 

Trading period 
Dollar holding 

Cash Stock  1 Stock  2 Stock  3 Stock  4 Stock  5 Stock  6 

1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2 6.24 119.64 120.44 119.07 121.01 121.01 119.80 

3 0.94 125.85 126.70 125.26 127.29 128.40 126.02 

4 0.00 131.81 132.70 131.19 133.32 134.47 131.99 

5 0.00 138.09 139.02 136.42 139.67 140.88 138.28 

 
 
 

Table 6. The actual return based on simulating the market using CAPM 
 

Trading period 
Simulated returns 

Cash Stock  1 Stock  2 Stock  3 Stock  4 Stock  5 Stock  6 

1 0.03 0.04 -0.16 0.11 0.15 -0.10 0.41 

2 0.03 0.25 0.10 0.15 0.14 0.08 0.29 

3 0.03 0.02 0.45 0.07 0.13 0.32 0.11 

4 0.03 0.08 -0.03 0.15 -0.10 0.26 0.52 

 
 
 

Table 7.The actual holdings of NPO based on simulated returns. 
 

Trading period 
Actual dollar holding 

Cash Stock 1 Stock 2 Stock 3 Stock  4 Stock  5 Stock  6 

Initial holdings 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

1 0.10 104.01 84.27 111.48 115.38 89.63 140.82 

2 0.10 130.19 92.49 128.46 131.06 194.93 181.24 

3 0.11 132.75 133.69 136.98 147.63 257.96 201.77 

4 0.11 143.91 130.10 157.00 132.52 323.81 306.87 

5 0.11 144.80 161.05 207.88 113.59 271.84 382.58 

 
 
 

Table 8. The actual holdings of RPO based on simulated returns. 
 

Trading period 
Actual Dollar holding 

Cash Stock  1 Stock  2 Stock  3 Stock  4 Stock  5 Stock  6 

        
Initial holdings 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

1 103.00 104.01 84.27 111.48 115.38 89.63 140.82 

2 8.32 145.87 108.17 144.13 146.74 111.66 196.91 

3 3.19 150.12 156.92 155.65 165.28 147.76 220.44 

4 6.87 164.33 152.70 179.43 147.26 182.31 336.55 

5 7.08 165.35 189.03 237.58 126.22 153.05 419.57 

 
 
 
instance, the first row represents the returns gained 
during the first period. 

Tables 7 and 8 summarize the required adjustment to 
the investor's wealth based on the input information 
given in Table 6 for each period in both NPO and RPO 
models, respectively. Since these two adjustments are 
made based on the realization of the future returns, the 
last rows of the tables represent the final wealth  of  the  

investor. The final wealth of the investor can be 
calculated through adding the last row elements. It can 
be observed that the final wealth in RPO (1297.86) is 
higher than that of NPO (1281.84). It can be seen that 
incorporating market information using single factor 
model (CAPM) to robust portfolio problem (RPO) could 
increase the investor wealth compared to nominal 
formulation (NPO). 
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Conclusion 
 
We have developed a novel model of multi-period 
portfolio problem when asset returns are subject to 
uncertainty. One of the most important shortcomings of 
different approaches to handle uncertainty is the com-
putational costs. Robust modeling approaches naturally 
incorporate uncertainty in by introducing several 
variables and constraints. Therefore the resulted 
problem formulation becomes more complicated when 
there are several assets at the market and the planning 
horizon is long. In order to overcome this issue, we 
have modeled the uncertain asset returns using CAPM 
which is a popular tool to model asset return. It is 
obvious that the proposed modeling approach reduces 
the size of the resulted problem, significantly. The 
resulted uncertain problem has been solved using 
numerical examples. We have also evaluated the 
performance of proposed model through comparing the 
results obtained from the robust model (RPO) with its 
corresponding nominal model (NPO). Numerical exam-
ple with simulated data shows the proposed robust 
model outperforms the nominal one both in dimension 
and in final results. 
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