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Recently, in the Preservation technology investment for deteriorating inventory, by the International 
Journal of Production Economics, Hsu et al. (2010) in a press proposed a deteriorating inventory with 
time-dependent partial backlogging rate. In addition, the retailer is allowed to invest on the preservation 
technology to reduce the rate of product deterioration. However, the property of the retailer's unit time 
profit of Hsu et al. (2010) has remained unexplored. In this comment, we complement the shortcomings of 
this paper. 
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INTRODUCTION 
 
In practice, the deterioration rate of products can be 
controlled and reduced through various efforts such as 
procedural changes and specialized equipment acqui-
sition. The results of the sensitivity analysis in numerous 
studies (Taso and Sheen (2008), Yang et. al. (2009), 
Geetha and Uthayakumar (2010)) also showed that lower 
deterioration rate is beneficial for an economic viewpoint. 
In a recent article, Hsu et al. (2010) developed a 
deterministic inventory model for deteriorating items with 
time-dependent partial backlogging rate. In addition, the 
retailer is allowed to invest on the preservation 
technology to reduce the rate of product deterioration. 
The main objective in their paper is to find the retailer’s 
replenishment and preservation technology investment 
policy which maximizes the retailer’s unit time profit. The 
graphical analysis approach is used to show the con-
cavity of the objective function. However, the uniqueness 
of the optimal solution in their model has remained for 
future research. Furthermore, the property of the retailer’s 
unit time profit has remained unexplored. In this paper, 
we complement the shortcomings of Hsu et al. (2010). 
First, we prove that the optimal replenishment schedule 
not only exists but is unique, for any given invested 
capital. Next, we show that the retailer’s unit time profit is 
a   concave   function   of   invested   capital    when    the  
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replenishment schedule is given. We then provide a 
simple algorithm to find the optimal preservation 
technology cost and replenishment schedule for the 
proposed model. Finally, a couple of numerical examples 
are discussed to illustrate the algorithm. 
 
 
MODEL FORMULATION 
 
For easy tractability with Hsu et al. (2010), we use the 
same notations and assumptions as they did except 
assuming T is a continuous variable. The retailer’s unit 
time profit constructed by Hsu et al. (2010) is reviewed as 
follows: 
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Now, the problem is to determine T, v and � such that F 
(T, v, �) is maximized. To maximize the retailer’s unit time 
profit, it is necessary to solve the following equations 
simultaneously: 
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After some algebraic manipulation, equations (2) and (3) 
reduce to: 
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Equation (5) gives, after simplification, 
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Because, by assumption, 
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The region of v* can be represented as follows: 
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where 
 

�@�AB � �5 � 6��� FG+
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(8) 

and 
 

�@�DE � �5 � 6��� FG+�
  � � ���5 � 6����4  ��5 � 6����  �- 
(9) 

Hence, �@�AB and �@�DE are the lower and upper bounds 
for the optimal �C, respectively. 

Next, in order to prove the uniqueness of the solution 
for problem, by taking implicit differentiation on equation 
(5) with respect to v, we obtain: 

 �
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Obviously, the previous equation holds if and only if, 
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Furthermore, from equation (6), we let: 
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Due to the relations shown in equation (5) and using the 
fact that � � �� ���� I 1, so that, 
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As a result, ���� is a strictly decreasing function of v. 
From the above arguments and the structural induction, 
we have the following results: 
 
 
Proposition 1 
 
For any given �, we have: 
(a) If ���@
�� M � and ���@
�� I �, then the optimal value 
(�C, �C) can be found by solving (5) and (6) 
simultaneously, and it not only exists but is unique. 
(b) If ���@
�� I �, then the model reduces to the model 
without shortages. 
(c) If ���@
��� M �, then the optimal value of T is � N �. 
 
 
Proof 
 
(a) Because ���� is a strictly decreasing function of v, 
the intermediate value theorem implies that there exists a 
unique value �C such that ���C� = 0 if ���@
�� M � and 
���@
��� I �. Consequently, the point (�C,�C) satisfying 
(2) and (3) simultaneously not only exists but is unique. 
Let (�C,�C) be the solution of equations (2) and (3). To 
establish sufficiency, substituting this result into Hessian 
matrix yields: 
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After some algebraic manipulation, the determinant of the 
Hessian matrix at the stationary point (�C, �C) becomes: 
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As a result, for any given �, ���C� �C� �C�must be concave 
and the resulting stationary point yields a global 
maximum. 
(b) If ���@
�� I �, then we have )� ����� �� V )� �
����V�� I ��@
��V�� I �, which implies the maximum 
value of ������ �� occurs at � �  �. Thus the model 
reduces to the model without shortages. 
(c) If ���@
��� M �, then we have )� ����� �� V )� �
����V �� M ��@
�� �V ��, which implies that a larger value 
of T causes a higher value of ������ ��. Hence, the 
maximum value of ������ �� occurs at the point � N �. 

For any given positive �, Proposition 1(a) provides that 
if ���@
�� M � and ���@
�� � I �, then we can find a 
unique point ��C��C�, where �C W ��@
�� �@
���, such that 
the retailer’s unit time profit ������ �� is maximum. On the 
other hand, Proposition 1(b) reveals that if ���@
�� I �, 
then the model reduces to the model without shortages, 
that is T = �. Under this situation, equation (1) can be 
rewritten as: 
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After taking the second derivative of ���� �� with 
respective v, we obtain: 
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Because � � ��	 � 
���� M � by assumption, it follows 
that: 
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Therefore, ���� �� is a concave function of v and there 
exists a unique �C which maximizes ���� ��. Once this 
case occurs, the retailer should raise the preservation 
technology cost to improve the unit time profit. 

Finally, Proposition 1(c) reveals that, if ���@
�� � M �, 
then �C N �. Under this situation, from equation (1), the 
retailer’s unit time profit becomes: 
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Since r represents the penalty cost per unit of a lost sale 
inclusive of profit, it implies that r > p - c. And thus, 
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That is, at this given preservation technology cost �, the 
inventory system should not be operated. Once this case 
occurs, the retailer should decrease the preservation 
technology cost to improve the unit time profit. 

From the analysis carried out so far, we have obtained 
that,  for    any    given   �,    the    point    ��C��C�    which  
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maximizes the retailer’s unit time profit not only exists but 
is unique. Continuing, we study the conditions under 
which the optimal preservation technology cost also 
exists and is unique. 

For any given feasible v and T, taking the second 
partial derivative of equation (1) with respect to � yields” 
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where 
 
  ����� � �� ��� � ����  ����, ����� � �� �� �
���, ����� � � ��� ����  ���� � ���� and 
����� � � �� ���  ���. From (14), we have the 
following proposition. 
 
 
Proposition 2 
 
For any given feasible (v, T), if the productivity of 
invested capital, m(�), is a strictly concave function of 
�(that is, m�� (�) < 0 or diminishing marginal productivity of 
capital), then there exists a unique optimal preservation 
technology cost �* that maximizes ������ ��. 
 
 
Proof 
 
By employing the Taylor series expansion, f4 (x) can be 
rewritten as: 
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Because x = v [k - m(�)] > 0 by assumption, it follows that 
f4(x) > 0. Moreover, since, 
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Figure 1. The retailer’s unit time profit, F(T, v, 263�3434)� 
 
 
 
it is clear that, 
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Using these results, we have �2F (T, v, �)/ ��2< 0 for any 
feasible (v, T). 

Consequently, F(T, v, �) is a strictly concave function of 
� and there exists a unique optimal preservation 
technology cost �* that maximizes F(T, v, �). The optimal 
�

* should be selected to satisfy; 
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Summarize above results, we can now establish the 
following algorithm to obtain the optimal solution of the 
problem. 

Algorithm 
 
Step 1: Start with j = 0 and the initial trial value of � j, 
where m (�) = 0.5k. 
Step 2: Find the optimal replenishment schedule, v* and 
T*, for a given preservation technology cost � j. 
Step 3: Use the result in Step 2, and then determine the 
optimal � j+1. 
Step 4: If the difference between � j and � j+1 is sufficiently 
small, set �*= � j+1, then (T*; v*, �*) is the optimal solution 
and stop. Otherwise, set j = j+1 and go back to step 2. 
 
 
NUMERICAL EXAMPLE 
 
To illustrate the results, let us apply the proposed 
algorithm to solve the following numerical examples. 
 
 
Example 1 
 
We first redo the same example of Hsu (2010) to see the 
optimal replenishment policy: d = 1, � = 0.8, k = 0.02, h = 
0.05, p = 30, c = 10, co = 120, r = 3 and m(�) = 
k(1−e−0.01�). Then, applying the algorithm, the optimal 
values of �, v and T are �*= 263.3434, v* = 103.8139 and 
T* = 106.4338, respectively. The retailer’s unit time profit 
obtained here is F* = 12.8087, respectively. The three-
dimensional retailer’s unit time profit graph and contour 
plot as �*= 263.3434 are respectively shown in Figures 1 
and 2. Note that we run the numerical results with distinct 
starting values of � = 150, 160, 170,… , 350. The 
numerical results indicate that F is strictly concave in �, 
as shown in Figure 3. 

Consequently, we are sure that the local maximum 
obtained here is indeed the global maximum solution. 

�
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Figure 2. Contour of F(T, v, 263�3434)��
 
 
 

 
 
Figure 3. Graphical representation of F(T*, v*, �*) in example 1� 

 
 
 
Example 2 
 
In this example, the same data in example 1 are used 
except putting limited capital w = 200. From example 1, 
we know that F(T, v, �) reaches its maximum at �= 
263.3434. Because F(T, v, �) is a strictly concave function 
of �, it follows that �*= w = 200. Then, by proposition 1, we 
get v* = 84.3875 and T*= 86.69858. The retailer’s unit 
time profit obtained here is F*=12.7112. The three-
dimensional retailer’s unit time profit graph and contour 
plot as �*= 200 are respectively shown in Figures 4 and 5. 

Conclusion 
 
In this paper, we provide some properties of the retailer’s 
unit time profit that appears in Hsu et al. (2010) and 
prove that the optimal solution not only exists but is 
unique. The proposed model can be extended in several 
ways. Firstly, we can easily extend the backlogging rate 
of unsatisfied demand to any decreasing function �(x), 
where x is the waiting time up to the next replenishment, 
and 0 � �(x) � 1 with �(0) = 1. Secondly, we can also in-
corporate the quantity discount, and variable deterioration  
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Figure 4. The retailer’s unit time profit, F(T, v, 200). 

 
 
 

 
 
Figure 5. Contour of F(T, v, 200). 

 
 
 
rates (for example, Weibull deterioration rate) into the 
model. 
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