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This paper utilized the proposed historical simulation, where the effect of GARCH (1,1) model on price 
path were considered, and the Monte Carlo approach were also used to examine the difference in 
option payoff values between these simulation approaches and the original path. Furthermore, we 
showed which simulation model would have smaller root mean squared pricing error by examining the 
difference of root mean squared pricing error between these approaches. We applied these approaches 
to simulate option payoff values on the Shenzhen composite index series in China during the period 
2005 to 2009, and the common back-testing approach was used. The results showed that the estimated 
option values were significant and differ from the actual Shenzhen composite index option payoff 
values for the observed period. Finally, we found that the root mean squared pricing error of the 
adjusted historical simulation is less than the other two simulation approaches. 
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INTRODUCTION 
 

Simulation methods were extensively used in assets 
pricing, such as covariance matrix based approaches, 
historical simulation approaches and the scenario based 
approaches (Deutsche, 2002) were usually mentioned. 
However, one assumption of the covariance matrix based 
approaches is portfolio value changes in a linear manner 
with changes in the risk factor. But Glasserman et al. 
(2002) showed that the relationship between risk factors 
and portfolio values should include at least quadratic 
terms. Rouvinez (1997) and Wilson (1999) described 
delta-gamma approximations relied on the value of a 
portfolio changes not only linearly with changes in market 
risk factors. Britten et al. (1999) explored the relationship 
between asset values and the risk factor methods whicw 
were not just only linear but is likely to be adapted better 
than the assumption of linear method. Therefore, this 
assumption limited its accuracy. 

Using historical simulations requires relatively fewer 
assumptions, and its main advantage is that it is non-
parametric. Beside original path, alternative outcomes 
are projected by sampling with replacement from the 
original set, and it is likely to introduce sampling error.  
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Tompkins and D’Ecclesia (2006) developed a non-para-
metric approach using unconditional return disturbances 
and alternative outcomes were projected by sampling 
without replacement from the original set. The results 
showed that the simulated options payoff values were 
insignificantly different from the actual S&P 500 option 
payoff values for the observed period.  

The principal disadvantage of the traditional historical 
simulation method is that, it assigns an equal weighted of 
1/N probability to compute the empirical conditional 
density function of each return. This assumption is incon-
sistent with the well-known fact shown by Bollerslev 
(1986), who indicated that the volatility of asset returns 
was time varying and displayed clustering. Boudoukh et 
al. (1998) assumed that returns represented the current 
risk and from the recent past was better than returns from 
the distant past. Eberlein et al. (2003) had shown that 
volatility was stochastic. To overcome the problem arising 
with the usual assumption of constant volatility, Barone-
Adesi, Giannopoulos and Vosper (1999, 2001) allowed 
the volatilities of historical returns to change, as it 
involved the calibration of the appropriate GARCH model.  

Akgiray (1989) utilized data obtained from the center 
for research in security prices (CRSP) which contained 
6,030 daily returns from January 1963 to December 1986 
to examine whether the GARCH model were  better  than  



 
 
 
 
other models in forecasting and the result showed that 
out-of-sample forecasts of return variances of stock 
indices based on a GARCH model, are superior predic-
tors to others. Chu and Freund (1996) selected the raw 
data to calculate daily returns for the S&P 500 and the 
S&P 100 indices which were obtained from the CRSP 
and the S&P 100 reporter respectively, and the samples 
contained 1,263 daily returns from March 3, 1981 through 
February 28, 1986 for each index. The result showed that 
the use of GARCH models will significantly reduce model 
mispricing while forecasting option values using only 
historical returns data. 

Also, Hull and White (1998) proposed a procedure for 
using a GARCH model in conjunction with historical 
simulation when computing value at risk. Daily data were 
chosen on five stocks indices including the S&P 500, 
CAC-40, FT-SE 100, Nikkei 225, and Toronto stock 
exchange 300 from July 11, 1988 to February 10, 1998. 
They found out that results were mixed for the invest-
ments in stock indices. Tompkins and D’Ecclesia (2006) 
pointed out that while utilizing GARCH (1,1) model, the 
simulated options payoff values were insignificant 
different from actual options payoff values within one year 
expiration. 

In addition to the aforementioned simulation methods, 
alternative parametric scenario approach have been pro-
posed, which preserves the statistical artifacts that exist 
in financial data. To generate scenarios, Monte Carlo 
methods are commonly used, which are only a tool for 
determining the distributional properties of values 
associated with a given model. Boyle (1977) introduced 
Monte Carlo simulation as a numerical method and 
assumed that the price process followed the usual geo-
metric Brownian motion. Papageorgiou and Traub (1996) 
referred to a deterministic method and compared this 
method with Monte Carlo on the valuation of underlying 
assets in their study. They found that the Monte Carlo 
method was sensitive to the initial seed and the random 
point samples were wasted due to clustering. Okten and 
Eastman (2004) presented a survey of comparison of 
simulation methods in pricing certain securities such as 
European call options, the result showed that Monte 
Carlo methods offered losses in error reduction. But 
Tompkins and D’Ecclesia (2006) showed that option 
payoffs estimated with Monte Carlo method were not 
significantly different from the actual payoffs values.  

Therefore, according to these studies, it is still an issue 
that is worth discussing, whether the historical simu-
lations or the adjusted one with time varying asset returns 
volatility and Monte Carlo method are appropriate to use 
in simulations. The study proposes a simple and general 
simulation approach which minimizes model assumptions 
and parameter input. Specifically, this study differs from 
previous historical simulations in that it selects the 
disturbances for the procedure, and fixes the mean   and    
standard deviation while varying the disturbances. We 
compared the simulation methods with the actual pay off 
values  in  our  study,  and  finally  used   the   root   mean  
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squared pricing error (RMSE) as suggested by Figlewski 
(2002) to show which simulation model would have 
smaller RMSE by examining the differences of the RMSE 
between these approaches. 
 
 
DATA AND SIMULATIONS DESIGN   
 
This research is conducted using the basis of Shenzhen 
composite index series in China, which is collected from 
the Taiwan economic journal (TEJ) database. Data 
sample period is from January 4, 2005 to December 31, 
2009, for a total of 1215 daily settlement price, Stj are 
obtained.  
 
 
The pseudo random disturbances approach: (PRD 
model) 
 
Given a historical daily price series Stj, returns are 
computed using continuously compound interest rate: 
 

 
 
The unconditional mean, μ, and standard deviation, σ, 
are estimated during the time period. Then normalizing 
the sequence of returns by these two moments yielded: 
 

                                                          (1) 
 
Where {dztj} is the series of standardized “disturbances” 
from t1 to T, and by design, the resulting disturbances 
have a mean 0 and standard deviation of 1. The 

simulated prices 
 
for each time tj >0 are obtained 

according to the following formulation by using the 
standardized disturbances, dztj: 
 

                 (2) 
 
 
Introducing GARCH (1,1) volatility: The adjusted PRD 
model 
 
We assume the volatility term as the form of a GARCH 
(1,1) model in this case according to the Bollerslev (1986) 
formulation: 
  

                             (3) 
 
Following the Tompkins and D’Ecclesia (2006), to present 
the  effect  of  GARCH   (1,1)   model,   the   standardized 
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Table 1. Unconditional moments of the Shenzhen composite index returns, 2005-2009. 
 

Henzhen 
composite index 

Daily unconditional 
returns 

Daily standardized 
disturbances 

Adjusted daily standardized 
disturbances 

μ 0.00111 0.000067 0.01036 

σ 0.02184 1.00014 1.06753 

Skewness -0.61275 -0.61275 -0.58363 

Kurtosis 4.97229 4.97229 5.27835 

 
 
 

 
 

Figure 1. Price paths of original, PRD model and adjusted PRD model.  

 
 
 

disturbances, { }, should be obtained using the 
volatility model of equation (3) with the following 
expression to generate alternative price paths.  
 

   (4)               
 

Where  is the estimated volatility path of GARCH (1,1) 
model for the entire period using equation (3). There are 
1215 daily settlement prices and 1214 unconditional 
returns during this period. For the original path of daily 
returns and disturbances, the statistical properties are 
shown in Table 1. Figure 1 presents the price paths of 
original, PRD model and adjusted PRD model.  

 
Mixing the pseudo random disturbances (the MPRD-
model) 

 
A non-parametric simulation approach which provides a 
tool to generate financial assets price paths was pro-
posed. We use this approach to “re-write” historic 
financial assets prices paths, and it required neither any 
parameter estimation nor distributional assumption. 

Given the pseudo random disturbances, dztj, which was 
estimated using equation (1), the unconditional mean, μ, 
and stand deviation, σ, of the original price series, we 
randomly mix the dztj and drew the sample without 
replacement until all the disturbances, dztj(εi), j=1,…,N 
are selected, where the εi denotes a random  permutation  
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Figure 2. Price paths of mixing pseudo random disturbances model (200 paths). 

 
 

of the original sequence of the disturbances for 
i=1,…,200 times. New price paths with these new 
sequences of disturbances can be estimated, extending 
from equation (2). 
 

 

MPRD1: non-adjusted disturbances 
 

The entire time series disturbances, dztj, are randomly 
mixed 200 times, and generating different sequences of 
dztj(εi), new price paths are determined according to the 
following expression: 

      (5) 
 

According to the definition, the disturbance moments of 
the entire time series would not change in the mixing 
process. However, the sequence of the disturbances has 
changed, therefore, the price paths changed. Figure 2 
shows the price paths of MPRD model (200 paths). 
 
 

MPRD2: adjusted disturbances by GARCH(1,1) 
volatility 
 

Assuming the process of the volatility is measured as a 

GARCH (1,1) process, and we mix the set of { } of the 
GARCH (1,1) to devolatilize the disturbances using the 
following expression: 
 

(6)
  

We get a dispersion of final terminal prices as it is shown 
in Figure 3, and the average moments of the 200 
simulated paths of the MPRD model and the adjusted 
MPRD model are reported in Table 2. 

Monte Carlo simulation method (MC model) 
 
Monte Carlo method is a tool for determining the values 
of distributional properties associated with a given model. 
It is commonly argued that this method should be 
supported because alternative distributions can also be 
used. In the usual Monte Carlo simulation, specific 
assumptions on the distribution of the variables have to 
be made and correlations are often assumed to be zero, 
this implies that the processes are all independent. Boyle 
(1977) pointed out that, in general, such simulations 
assumed that the price process followed the usual 
geometric Brownian motion, and the process of asset 
returns followed a standard normal distribution (dB). In 
this study, we utilize implied volatility for each 
moneyness/maturity combinations as different 
parameters input and to generate the price paths using 
the following form:  
 

  (7) 
 
 

The back-tested option payoff values of Shenzhen 
composite index 
 

The focus of this research is to examine the estimation 
ability of simulation approaches relative to the benchmark 
results instead of developing a new option pricing theory. 
Therefore, option payoff values are estimated using the 
original spot price path. We determine the option payoffs 
by setting a variety of fixed striking prices and terms to 
expiration, and the simple average of the option payoffs 
for the entire period are computed to provide benchmarks 
of the option payoff values on the Shenzhen composite 
index. The main advantage of this, is the fact that we 
need fewer assumptions, and we do not have to estimate 
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Figure 3. Price paths of adjusted mix pseudo random disturbances model (200 paths. 

 
 
 

Table 2. Statistical feature of the original price returns and the simulated ones. 

 

Variable Average Standard deviation Skewness Kurtosis 

Original price series 0.00111 0.02184 -0.61275 4.97229 
     

MPRD price series 
(average on 200 paths) 

0.00086 0.02198 -0.72921 5.11595 
     

Adjusted MPRD price series 

(average on 200 paths) 
0.00103 0.02347 -0.72144 5.53542 

 
 
 
the discounted value of the terminal payoffs. A similar 
approach has been proposed previously by Stutzer 
(1996), he transforms his estimated objective density to a 
“risk neutral” equivalent density. Using this approach he 
can price derivative products by taking the conditional 
expectations relative to discount the expectation into 
present value using the risk-free rate. Tompkins and 
D’Ecclesia (2006) further simplified this approach, by 
solely defining option values as, their expected terminal 
payoffs. Therefore, we do not need to introduce a 
discounting factor.  

To establish our benchmark on the Shenzhen com-
posite index option values, we consider the real payout 
that would have occurred from buying a European call 
option by using the given historical price series with a 
strike price, Xtj, and compare this to the price of the 
underlying asset, ST, on the expiration date T, and the 
moneyness, Km, is expressed in standard deviation 
terms: 

 (8) 
 
Where Xtj is the original strike price; Stj is the underlying 
spot price; σ is the unconditional stand deviation 

observed during the entire period;  reflects the 
square root of percentage in a year for the time to 
expiration of the option. This expression in standard de-
viation terms allows us observe the relative moneyness 
for different maturity options directly. In this study, we 
assume that the relevant time is trading days and 
express time to expiration as a percentage of the total 
trading time in a year (is assumed to be 252 days). For 
each fixed Km, it is possible to determine the 
correspondent Xtj, and it could be expressed as a 
percentage of the underlying spot price such that: 
Xtj=βmhStj. In this application  -3.5≤Km≤3.5,  the  expiration  
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dates, τh, are set equal to 5, 10, 15, 20, 25, 30, 35, 40, 
45, 50, 55, 60, 80, 100, 120, 140, 160, 190, 220 and 250 
days,  where  h=1,…,20.  However,  the  average  payoffs  

Lo and Lin         10215 
 
 
 
would simply be the percentage return of option prices 
relative to the initial spot prices: 

 

              (9)

 
 
for each chosen moneyness Km and maturity τh. (9) 

For example, consider a call option with a strike price 
which corresponds to a percentage βmh=0.84 of the spot 
price and τ1=5 trading days to expiration. It is a simple to 
estimate the actual payoffs from the observed underlying 
historical price series. In the example, we would examine 
price from St1 to St6 and from St2 to St7 and so on until 
St1210 to S1215. The terminal call price would simply be 

, for t=0,…,T-τh. Therefore, in 
this case of τ1=5, we would have T-τ1=1210 instances of 
call option prices. This models a situation where an 
investor had purchased option with a strike price equal to 
βmh=0.84 and one week to expiration of the current spot 
price every single day. 

On the other hand, we will estimate option prices using 
the parametric Monte Carlo approach to compare the 
results with the MPRDs models, and the model has been 
set up and parameters to be estimated. We  assume  that  
 

 
 
the price process follows the usual geometric Brownian 
motion as mentioned in Boyle (1977) and simulate the 
prices. We choose a random draws from a normal 
distribution and project the terminal prices of the 
underlying asset where the same strike prices and terms 
to expiration described in previously are used, with the 
only remaining parameter will be the volatility have to 
input. 

By means of choosing the moneyness, Km, m=1,…,15, 
and terms to expiration, τh, h=1,…,20, it leads to a 15 × 
20 matrix including 300 option payoff values, and these 
option payoff values will transfer to call prices and 
express them as implied volatilities using the Black-
Scholes model. To yield the implied volatilities, the input 

variables were  as the underlying 
price, βmhStj as the strike price, the zero interest rate, the 
time to expiration of τh, and the usual Newton Raphson 
iterative approach was used in the following expression:

 

(10) 
 
 
Where 
 

   

 
 

 was the initial value we give,  was computed by 

 and substituted as  until the absolute value of 

 converge toward to zero, and
 

were 

defined as , then these volatilities were 
standardized to the level of the at-the-money volatility as 
follows: 

 

             (11) 
 
There are two motivations for the decision to express the 
strike prices in standard deviation terms and the volatility 
relative to the at-the-money volatility. One is that, it can 
show the implied volatilities level relative to the at-the-
money implied volatilities. Another reason is that, 
expressing strike prices and implied volatilities in this way 
allows us have comparisons to earlier study worked by 
Tompkins and D’Ecclesia (2006), which examined implied 
volatility surfaces for options on S&P 500 index and 
standardized them in the similar way. Other previous 
works studied by Tompkins (2001) and Goncalves and 
Guidolin (2006), they also express the strike prices and 
volatilities like this way, and they find out that the shape 
of volatility surfaces display regularity and stability over 
time.  Figure  4  presents  the   relative   implied   volatility 
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Figure 4. Implied volatility surfaces on Shenzhen composite index. 

 
 

 

surface for options on the Shenzhen composite index. It 
is interesting that this implied volatility curve is similar to 
that which have appeared in numerous previous 
empirical studies.  
    Finally, we compare the average option payoffs 
obtained by these approaches with original option 
payoffs. We use the root mean squared pricing error 
(RMSE) which is suggested by Figlewski (2002) to show 
which simulation model would have smaller RMSE relied 
on examining the difference of RMSE between the  
MPRD, adjusted MPRD and Monte Carlo approaches.  
 
 
OPTION VALUATION OF THE MPRDS AND MONTE 
CARLO APPROACH  
 
The proposed approaches will generate alternative price 
paths that retain the same statistics and time series 
properties as the original price path. In order to have a 
comparison with Mixing the Pseudo Random Distur-
bances (MPRDs) and the common Monte Carlo method, 
we estimate the payoff values of options from an obvious 
benchmark, which would be observed on the Shenzhen 
composite index for the period from 2005 to 2009.  
    Firstly, we generated 200 paths and estimated T-τh 
option payoffs for each path using the MPRDs approach. 
Take for example, for a single of the moneyness/maturity 
combinations, we estimated 243,000 stock prices (1215 
prices for 200 times simulations) and determined up to 
242,000 different option payoffs in 5 trading days 
expiration, and we computed the average payoffs and 
standard deviation over the 200 paths. Therefore, there 
exist 22,650 option payoffs and as a complete data 
67,950,000 simulated option payoffs using MPRDs 
approaches in a moneyness. Then we compared the 
average payoffs obtained from using the MPRDs 
approaches with the original option payoffs by utilizing 
equation (5) and equation (6). 
    Furthermore, we compared the average payoffs 
obtained from using the Monte Carlo approach with the 
original option payoffs by utilizing equation (7). We 
assumed  that  the  price  process  follows  the  geometric  

Brownian motion and choose a random draws from a 
normal distribution to project the terminal price of the 
underlying asset. We substituted volatilities as the implied 
volatilities estimated by Black (1976) for every 
moneyness/maturity (15x20) combination (data defined in 
Figure. 4) from each individual option contracts into the 
specific model. To be consistent with the mixing 
approaches we ran in parallel, for each of the 300 
moneyness/maturity combinations, 1215 prices were 
simulated using Monte Carlo approach for 200 times.  
    For showing the trend of these results, we summarised 
our table by only selecting the results from original and 
simulation paths for several moneyness, Km=-3.5 (Deep 
In The Money), -2 (In The Money), 0 (At The Money), 2 
(Out of The Money), 3.5 (Deep Out of The Money), and 
expiration dates, τh=5, 20, 40, 60, 120, 250 trading days, 
such as average payoff values, standard deviation, p-
value and RMSE is as shown in Table 3.  

Table 3 reports the results of the estimators for the 
average option payoffs over the 200 paths from the 
MPRDs and Monte Carlo approaches. The table also 
shows the actual payoffs, p value and RMSE for several 
moneyness, Km, and expiration dates, τh. In Table 3, 
estimated option payoff values compare with the actual 
option payoff values. Most of the p values tend to be 
zero. These results are inconsistent with the results of 
Tompkins and D’Ecclesia (2006). This study regarded the 
RMSE of the MPRD and the adjusted MPRD approaches 
as valid measures because their results are more close 
to the actual option payoff values. Though,  the MC uses 
the ex-post implied volatility as parameters, the way of 
random drawing from a normal distribution does not 
provide estimators close to the benchmark of the option 
payoff values. The RMSE of the Monte Carlo simulation 
option payoff values tend to be higher than those of the 
other two MPRD approach.  

The RMSE trend of the MPRD simulations option 
payoff values tends to be consistent with the adjusted 
one within different moneyness and time to expirations. 
Figures 5 and 6 showed the RMSE of different money-
ness relative to ATM on different time to expiration in the 
MPRDs respectively. The  figures  show  a  similar  trend. 
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Table 3. Statistics of estimated option payoff values, p-value and the RMSE. 

 

 Moneyness (in standard deviation terms) 

Trading days to expiration DITM ITM ATM OTM DOTM  DITM ITM ATM OTM DOTM 

 5 days  20 days 

Original path (%) 16.395 10.092 2.412 0.055 0.000  31.883 20.886 6.331 0.183 0.000 

            

Average mixed paths (%) 16.253 9.914 2.233 0.041 0.000  31.165 20.011 5.122 0.117 0.000 

Std dev mixed paths 1.82E-04 2.89E-04 6.35E-04 1.29E-04 7.57E-06  1.45E-03 1.62E-03 3.00E-03 7.34E-04 2.74E-05 

p-value of difference  <0.001 <0.001 <0.001 <0.001 <0.001  <0.001 <0.001 <0.001 <0.001 0.0018 

RMSE 0.00143 0.00180 0.00191 0.00019 0.00001  0.00733 0.00890 0.01245 0.00099 0.00003 

            

Average mixed/adjusted paths (%) 16.359 10.038 2.414 0.065 0.001  31.581 20.447 5.624 0.198 0.002 

Std dev mixed/adjusted paths 2.02E-04 3.47E-04 6.81E-04 1.80E-04 2.56E-05  1.51E-03 1.77E-03 3.23E-03 1.02E-03 1.14E-04 

p-value of difference  <0.001 <0.001 0.3397 <0.001 <0.001  <0.001 <0.001 <0.001 0.1075 0.393 

RMSE 0.00042 0.00064 0.00068 0.00020 0.00003  0.00338 0.00473 0.00777 0.00103 0.00012 

Average MC paths (%) 16.290 9.974 0.901 0.168 0.062  20.491 14.298 3.608 3.882 3.865 

            

Std dev MC paths 5.17E-03 4.21E-03 6.57E-04 4.60E-04 3.17E-04  2.64E-02 2.06E-02 5.11E-03 1.02E-02 1.23E-02 

p-value of difference  0.0022 <0.001 <0.001 <0.001 <0.001  <0.001 <0.001 <0.001 <0.001 <0.001 

RMSE 0.00526 0.00436 0.01513 0.00121 0.00070  0.11693 0.06901 0.02770 0.03837 0.04055 

            

 40 days  60 days 

Original path (%) 44.492 30.534 10.935 0.646 0.000  54.465 38.924 15.521 1.491 0.001 

            

Average mixed paths (%) 42.764 28.627 8.069 0.240 0.000  51.357 35.436 10.682 0.352 0.001 

Std dev mixed paths 4.21E-03 4.33E-03 6.47E-03 1.94E-03 2.58E-05  8.06E-03 8.14E-03 1.07E-02 3.39E-03 7.33E-05 

p-value of difference  <0.001 <0.001 <0.001 <0.001 0.0038  <0.001 <0.001 <0.001 <0.001 0.2709 

RMSE 0.01778 0.01954 0.02937 0.00450 0.00003  0.03210 0.03581 0.04956 0.01188 0.00007 

            

Average mixed/ adjusted paths (%) 43.611 29.489 8.961 0.395 0.004  52.650 36.740 11.972 0.586 0.010 

Std dev mixed/ adjusted paths 4.43E-03 4.62E-03 7.25E-03 2.70E-03 1.87E-04  8.72E-03 8.90E-03 1.20E-02 4.84E-03 5.69E-04 

p-value of difference  <0.001 <0.001 <0.001 <0.001 0.0042  <0.001 <0.001 <0.001 <0.001 0.0181 

RMSE 0.00986 0.01142 0.02102 0.00368 0.00019  0.02013 0.02357 0.03745 0.01026 0.00057 

Average MC paths (%) 27.722 20.418 7.437 9.139 10.522  33.035 26.365 10.964 13.187 16.460 

Std dev MC paths 7.00E-02 5.05E-02 1.64E-02 3.26E-02 3.87E-02  1.17E-01 7.97E-02 3.32E-02 5.37E-02 7.83E-02 

p-value of difference  <0.001 <0.001 <0.001 <0.001 <0.001  <0.001 <0.001 <0.001 <0.001 <0.001 

RMSE 0.18167 0.11302 0.03860 0.09093 0.11208  0.24387 0.14866 0.05634 0.12865 0.18218 
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Table 3. Contd. 
 

 120 days  250 days 

Original path (%) 81.182 63.460 32.856 6.630 0.563  133.423 114.238 74.624 24.362 0.834 

            

Average mixed paths (%) 70.348 51.691 18.079 0.756 0.002  99.727 79.464 33.722 1.826 0.005 

Std dev mixed paths 2.47E-02 2.48E-02 2.84E-02 1.03E-02 1.24E-04  8.58E-02 8.57E-02 8.51E-02 3.03E-02 5.80E-04 

p-value of difference  <0.001 <0.001 <0.001 <0.001 <0.001  <0.001 <0.001 <0.001 <0.001 <0.001 

RMSE 0.11111 0.12026 0.15046 0.05963 0.00561  0.34765 0.35809 0.41774 0.22738 0.00831 
            

Average mixed/ adjusted paths (%) 73.071 54.419 20.616 1.264 0.024  106.108 85.850 39.632 3.142 0.039 

Std dev mixed/ adjusted paths 2.73E-02 2.74E-02 3.12E-02 1.43E-02 1.36E-03  9.38E-02 9.37E-02 9.21E-02 4.05E-02 2.27E-03 

p-value of difference  <0.001 <0.001 <0.001 <0.001 <0.001  <0.001 <0.001 <0.001 <0.001 <0.001 

RMSE 0.08556 0.09446 0.12630 0.05553 0.00556  0.28874 0.29887 0.36177 0.21601 0.00826 

            

Average MC paths (%) 58.713 42.099 23.003 27.603 39.119  93.926 87.289 51.439 56.194 55.976 

Std dev MC paths 3.97E-01 2.61E-01 9.82E-02 1.61E-01 2.83E-01  1.99E+00 1.18E+00 4.09E-01 5.78E-01 8.11E-01 

p-value of difference  <0.001 <0.001 <0.001 <0.001 <0.001  0.0027 <0.001 <0.001 <0.001 <0.001 

RMSE 0.45509 0.33639 0.13894 0.26411 0.47787  2.02753 1.20934 0.46929 0.65870 0.97939 

 
 
 

 
 
Figure 5. The RMSE of different moneyness relative to ATM on different time 

of expiration in the MPRD. 
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Figure 6. The RMSE of different moneyness relative to ATM on 

different time to expiration in the adjusted MPRD.  

 
 
 

 
 

Figure 7. The RMSE of different moneyness relative to ATM on 

different time to expiration in the MC. 
 

 
 

In addition, The effects of MPRD model is similar to the 
adjusted MPRD model for the pricing option payoff values 
at the moneyness of deep out of the money within 60 
trading days to expiration.  

The RMSE of Monte Carlo simulation option payoff 
values show inconsistence trend on different time to 
expirations with the MPRDs. Figure 7 shows the RMSE 
of different moneyness relative to ATM on different time to 
expiration of the MC. The results show that the RMSE of 
simulated option payoffs using MPRDs would be lower for 
the out of the money than in the money and at the money. 
In addition, this study found that while the time to 
expiration is longer, the RMSE of simulated option payoff 
is higher.  
    Finally, the study uses the root mean squared pricing 
error (RMSE) suggested by Figlewski (2002) to show 
which simulation model would have smaller RMSE by 
examining the RMSE differences between the approa-
ches of the  MPRD,  adjusted  MPRD  and  Monte  Carlo.  

Table 4 reports the t -Test results of RMSE differences 
between the MPRDs and Monte Carlo approaches. It 
shows that the RMSE difference of MPRD1 minus MC 
presents a significantly negative result. The RMSE 
difference of MPRD1 minus MC is significantly less than 
zero, therefore, the RMSE of MPRD1 tends to be less 
than the RMSE of MC. This study also found similar 
results while testing the RMSE difference of MPRD2 
minus MC and MPRD2 minus MPRD1. The RMSE 
difference of MPRD2 minus MC and MPRD2 minus 
MPRD1 also presents a significantly negative result. In 
other words, the RMSE of MPRD2 tends to be less than 
the RMSE of MC and MPRD1. 
 
 
Conclusion 
 
This study discussed whether the historical simulations or 
the GARCH  effect  in  historical  simulations  and   Monte  
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Table 4. t-Test of RMSE differences between the MPRDs and Monte Carlo approaches. 
 

Null hypothesis (H0)(N=30) 
RMSE of 
MPRD1 

RMSE of 
MPRD2 

RMSE of 
MC 

Difference of 
RMSE 

RMSE difference of MPRD1-MC 0 0.06806 ─ 0.28773 -0.21967 *** 

RMSE difference of MPRD2-MC 0 ─ 0.05661 0.28773 -0.23112 *** 

RMSE difference of MPRD2- MPRD1 0 0.06806 0. 05661 ─ -0.01146 *** 
 

 ***, ** and * denote significance at the 1, 5 and 10% levels, respectively. 
 

 
 

Carlo methods are appropriate to use in simulations. This 
study proposes an approach to non-parametric and 
depends on a historical return process. The results of this 
study differ from the results of the research of Tompkins 
and D’Ecclesia (2006). The estimated option payoff 
values using the two MPRDs and Monte Carlo approa-
ches compared with the actual option payoff values. 
Though the results show that the estimated option payoff 
values differ significantly from the actual option payoff 
values, the RMSE of the MPRD and adjusted MPRD 
approaches are available measures. By contrast, the 
RMSE of Monte Carlo simulation option payoff values 
tend to be higher than those of the two MPRDs 
approaches are. 

The study used the MPRDs simulation methods to 
observe option payoff values more accurately at the 
moneyness of out of the money, especially for deep out of 
the money. The RMSE of the simulated option payoffs  
would be lower for the out of the money (OTM) than in 
the money (ITM) and at the money (ATM). The study 
found that the estimated option payoff values lose their 
accuracy over a long period. The effects of MPRD model 
is similar to the adjusted MPRD model for the pricing 
option payoff values at the moneyness of deep out of the 
money within 60 trading days to expiration.  

The study results show that the RMSE of the two 
MPRD approaches tend to be less than the Monte Carlo 
simulation on the valuation of option payoffs. The result is 
consistent with the research of Okten and Eastman 
(2004). The RMSE of the adjusted MPRD approach tends 
to be less than the MPRD on the valuation of option 
payoff values. This result is consistent with Akiray (1989) 
and Chu and Freund (1996). The reason of MPRD and 
the adjusted MPRD are better than Monte Carlo 
simulations in this study may be the statistical features of 
the disturbances. 

For the future lines of this research, these approaches 
could provide some exotic options valuation from both the 
original price path and mixture price paths, such as 
barrier options, look back and Asian options. Also, the 
MPRDs model could be used for the analysis of the 
derivatives where mostly parametric models are used 
and are back-tested on historical data. These approaches 
could be extended to the simulation of portfolio perfor-
mance. The single asset case could be considered and 
the original price paths for multitude assets could be 
examined in a similar way.     
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