

African Journal of Business Management Vol. 6(15), pp. 5456-5466, 18 April, 2012
Available online at http://www.academicjournals.org/AJBM
DOI: 10.5897/AJBM11.2715
ISSN 1993-8233 ©2012 Academic Journals

Full Length Research Paper

Developing petri net model and meta-heuristic
algorithms for cyclic scheduling in 2-machine robotic

cells

Mohammad Fathian1, Isa Nakhai Kamalabadi2, Mehdi Heydari1, Hiwa Farughi1* and Foruzan
Naseri3

1
Industrial Engineering Department, Iran University of Science and Technology, Tehran, Iran.

2
Industrial Engineering Department, Tarbiat Modares University, Tehran, Iran.
3
Industrial Engineering Department, University of Kurdistan, Sanandaj, Iran.

Accepted 14 December, 2011

In this paper, the cyclic scheduling problems in 2-machine robotic cells have been studied. We
investigated the timed Petri network graph for modeling the part sequencing and the optimal robot
moves sequence in robotic manufacturing cells. The robotic manufacturing cell considered in this
study has two identical machines and one single gripper robot. Also, we have assumed that the
manufacturing cell is capable of producing identical and different parts. The main objective of this
study is to minimize the cycle time. To solve this problem, we have proposed two meta-heuristic
algorithms called particle swarm optimization (PSO) and simulated annealing (SA) and compared the
obtained results with the exact solutions by LINGO. Also the complexity of the proposed model has
been analyzed.

Key words: Cycle time, 2-machine robotic cell, Petri net, part sequencing, robot moves sequence, cyclic
scheduling, meta-heuristic algorithms.

INTRODUCTION

In the present competitive world, time is an important and
determining factor in industries. Along with technological
progress in industries and organizations, managers'
decision-making and their organizational activities, and
strategies have become increasingly complex. One of
these strategies is the development of automation in
industries and manufacturing organizations, which
involves the use of mechanical and programmable
devices called robots for moving parts between the
different stations. By establishing machines in cellular
layout and using robots for automating the process,
managers try to reduce the production time in order to
increase the effectiveness of the production line, and to
increase the productivity output in robotic manufacturing
cells. In the last few years, researchers have been

*Corresponding author. Email: h_farughi@iust.ac.ir .

concerned with optimizing the robot move sequence in
order to reduce production time in robotic manufacturing
cells and many studies have been done in this regard.

The study of Sethi et al. (1989) is considered as the
beginning point of the robotic cell scheduling literature.
They discussed on minimizing the cycle time in the single
machine robotic cell. Sethi et al. (1992) proved that in
buffer-less single-gripper two-machine robotic cells
producing single part-type and having identical robot
travel times between adjacent machines and identical
load/unload times, a 1-unit cycle provides the minimum
per unit cycle time in the class of all solutions, cyclic or
otherwise. For three machine case, Crama and van de
Klundert (1999), and Brauner and Finke (1999) shown
that the best 1-unit cycle is optimal solution for the class
of all cyclic solutions. Hall et al. (1997) and Hall et al.
(1998) considered the computational complexity of the
multiple-type parts three-machine robotic cell problem
under various robot movement policies. Kamalabadi et al.

(2008) provided a new solution for the cyclic multiple
parts three-machine robotic cell. They also considered
the minimizing of cycle time in a blocking flow shop cell
(Kamalabadi, 1996; Kamalabadi et al., 2000). This
problem is studied for no-wait robotic cells too. For
example, Agnetis (2000) found an optimal part schedule
for no-wait robotic cells with three and two machines.
Agnetis and pacciarelli (2000) studied part scheduling
problem for no-wait robotic cells, and found the
complexity of the problem. Crama et al. (1999) and
Crama et al. (2000) studied flow-shop scheduling
problems, models for such problems, and complexity of
these problems. Dawande et al. (2005) reviewed the
recent developments in robotic cells and, provided a
classification scheme for robotic cells scheduling
problem. Some other special cases have been studied
such as: Drobouchevitch et al. (2006) provided a model
for cyclic production in a dual-gripper robotic cell.
Deineko et al. (2005) studied the special case of two
machine flexible robotic cells that the first machine
performs one operation, and the second machine
processes K operations step by step. Akturk et al. (2000)
studied robotic cell scheduling with operational flexibility.
Gultekin et al. (2006) studied robotic cell scheduling
problem with tooling constraints for a two-machine robotic
cell where some operations can only be processed on the
first machine and some others can only be processed on
the second machine and the remaining can be processed
on both machines. Gultekin et al. (2007) considered a
flexible manufacturing robotic cell with identical parts in
which machines are able to do different operations and
the operation time is not system parameter and is
variable. They proposed a lower bound for 1-unit cycles
and 2-unit cycles. Sriskandarajah et al. (1998) classified
the part sequence problems associated with different
robot movement policies; in this paper, a robot movement
policy is considered, which its part scheduling problem is
NP-Hard, and Bagchi et al. (2006) proposed to solve this
problem, by a heuristic or meta-heuristic.

It is obvious that the two fundamental problems in
robotic cell scheduling are part sequencing and
optimizing the robot move sequence. If the cell is meant
to produce identical parts, the scheduling problem will
depend on finding the optimal robot move sequence. In
this paper, we have defined a new cycle for robot move
sequence in a 2-machine robotic manufacturing cell,
which is development of existing robot motion cycles. Our
purpose is to obtain the optimal cycle time by determining
the optimal parts entry to the cell. For the modeling of this
problem, timed Petri network was used. Subsequently in
this paper, assumptions, concepts and the robot move
sequence for the proposed new cycle are introduced and
the cycle time is calculated. Thereafter, concepts and
relations in a Petri network are described. Then, the
proposed motion cycle is described in full detail according
to Petri net model. At first, the mathematical model for the

Fathian et al. 5457

problem of producing identical parts in the production
cycle is obtained, and then the model is generalized to
the problem of producing different parts. Thereby, by
determining the optimal part sequencing for the proposed
cycle the minimum cycle time is obtained. Next, the
particle swarm optimization and simulated annealing
algorithms with related parameter setting are described.
After that, the experimental results are analyzed and
concluded. Finally, conclusion of the paper is presented.

DEFINITION OF THE PROBLEM AND INTRODUCTION OF THE
PROPOSED MOTION CYCLE

In robotic manufacturing cell scheduling, the major problem is how
to determine the sequence of robot moves and order the parts entry
in a cell that produces different parts. In past studies about 2-

machine robotic cells, 122112 ,, SSSS motion cycles have been

introduced (Sethi et al., 1989), and the robot move sequence and
the order of parts entry in 2-machine robotic cells have been
studied (Sethi et al., 1992). In 3-Machine robotic cells, the
sequence of robot moves and parts entry to the cell has been
investigated for both the same parts and different parts
manufacturing cells (Crama et al., 1997, 1999). In this paper, we
have defined a new cycle for two-machine robotic cells and have
considered the problem of different parts entry sequencing to obtain
the optimum cycle time by a timed Petri net model. In most studies
on scheduling 2-machine robotic cells, the problem of flow shop has
been considered. Thereby, each part is processed on the first
machine and then conveyed by the robot to the second machine to
be processed on. Indeed, each part must be processed on both
machines. It is also assumed that the two machines are identical,
that is, the processing time of a same operation is the same on both
machines. In addition, the robot’s movement time between any two
consecutive locations is the same and it is additive between
different locations. Also, the robot’s loading and unloading time in
all conditions is the same and the robot has a linear movement in
the cycle.

Definition 1

Activity (ijA) signifies the robot’s conveying a part from location i to

location j.

Definition 2

A n-unit cycle means that the robot has entered n parts into the
cycle and for doing all the required processes on n parts, each
activity has been repeated n times. At the end of each cycle, n part
should be taken out of the cell by robot. Also, the beginning and the
end mode of the n-unit cycle should be same.

Definition 3

The n-unit cycle time is defined as the time needed to produce n
parts in a cyclic process that a robot starts from the initial state and
moves in a specific sequence, so that the necessary operations for
producing n parts is performed and then the robot goes on the initial
position. Also, if we assume that the machines are flexible; in other
words, if each machine is capable of performing all operations on
each part so that every part is processed completely by a single

5458 Afr. J. Bus. Manage.

Input
Buffer

Machine 1 Machine 2 Output
Buffer

Linear

Tracks

Robot Part

Figure 1. Layout of the new cycle.

machine, then a new motion cycle can be defined with a sequence
of moves as the following:

At the beginning of the cycle, a part is being processed by the
second machine and the robot is located opposite the input area.
According to definition 1, the sequence of the robot movements

is 13022301 AAAA , that is, the robot picks a part on the input buffer

(the needed time is ε) and takes the part to the first machine (δ).

Then it loads the part on the first machine (ε) and moves towards

the second machine (δ) and waits opposite this machine until it

completes processing the part (w2), after the second machine has
completed the process, the robot unloads the part from the second
machine (ε) and takes it to the output buffer (δ), then it loads it on

the output buffer (ε). Then the robot comes back to the input

buffer (3 ε), picks a part from the input buffer (ε), moves it to the

second machine (2 δ), and loads it on it (ε), then it turns back to

the first machine (δ) and waits opposite the machine until it

completes processing the part (1w). When processing is finished,

the robot unloads the part from the first machine (ε), takes it to the

output (2 δ) and then loads it on output area (ε). Then it comes

back to the input buffer (3δ). Thereby, the cycle is finished and the

robot returns to the initial position. During this cycle, two parts are
produced, so the cycle is called 2-unit cycle. In this cycle, it is
assumed that the robot has no waiting time in the input and the
output buffer. It should be noted that since each machine has the
ability to perform all operations, in the process of producing n parts
and in each sequence of cyclic moves, after one stage we have a
repetitive sequences of robot movements which continues until n
parts are produced. In this proposed cycle, the starting point of the
mentioned repetitive process is the beginning of the cycle.

In this case, the cycle time for producing two parts is calculated
as follows, and its parameters are:

ε : Loading or unloading time

δ : The time in which the robot moves between two successive

locations
P: Processing time of each part on the machines

iw : Waiting time in front of machine i

Ct: Cycle time:

211

2

14832

232

www

wCunit t

+++=+++++++

++++++++++=−

δεδεδεδε

δεδεδεδεδε
 (1)

{ })248(,01 wPMaxw ++−= δε (2)

{ })42(,02 δε +−= PMaxw (3)

Therefore, the time needed to produce a part in this cycle is:

2

148
1 21 ww

Cunit t
+++

=−
δε

 (4)

{ } { })84(,0
2

1
)42(,0

2

1
741 2wPMaxPMaxCunit t ++−++−++=− δεδεδδ (5)

The layout of the proposed cycle and the initial position are shown
in Figure 1.

PETRI NETWORK MODEL

Many systems can be modeled on Petri nets and it is possible to
show their features using these networks (Maggot, 1984). Petri
network is a suitable device for mathematical and graphical
modeling. The graphical behavior of variables and the ability to
convert them into flowchart and diagram is one of the important
features of Petri nets (Kamalabadi, 1996). Petri networks were
introduced for the first time by Adam Petri in 1962. Lee and Yung
(1955) presented a new method for planning flexible process
sequences using Petri networks (Maggot, 1984). Petri nets are
directed split graphs which are divided into two groups of place and
transition. The directed arcs link some places to some transitions or
link some transitions to some places. Notation in a Petri network is
a vector whose elements show the number of arcs. Each Petri

network is shown as { }0,,,, MWATPPN = (Maggot, 1984) in which:

P: a finite set of places { }nPPPP,, 21=

T: a finite set of transitions
{ }mtttt,, 21=

A: a finite set of arcs { } { }PTTPA ×∪×⊂

W: weight function associated with each location { },.....2,1=P �

AW :

M0: Initial network markup { },.....2,1,0=P �

PM :0

Mark changes in a Petri network involving firing (transposition) is as
the following:

1. The firing is performed when the location Pi has at least W (Pi, t)
token, whereby W (Pi, t) is the arc weight of Pi to t.
2. An active transposition may lead to firing depending on whether
its movement is performed or not.
3. If the transition t is fired, W (Pi, t) of tokens is reduced from each
Pi to t input place and W (P0, t) number of tokens is added to each

Fathian et al. 5459

BA

Figure 2. Marked graph related to

theorem 1.

 (figure 3 completely is modified)

1P
1R

2P

8R

8P

7R

εδ 26 +

7P 6R 5P 6P 5R

4R

3R

4P

3P

εδ 26 + α ′

P

α

ε

2w+δ

ε

ε

1w+δ

P

β

β ′

2R

ε

Figure 3. Petri network graph for same parts production cycle.

P0 output location of transition t are added. W (t, P0) is the arc
weight of t to P0 (Maggot, 1984).

Theorem 1: In a marked graph, for each location that has iM

tokens the following relationship tCiMASBS +≥ , whereby BS , AS are

the starting times of transitions of B and A, and tC is the cycle time

in timed Petri network. Figure 2 shows this marked graph.

Timed Petri network model for producing identical parts in the
new cycle

At the beginning of the proposed cycle, it is assumed that a part on
the second machine is being processed and the robot is located
opposite the input buffer. For simplicity of calculation and drawing
Petri networks, in modeling the problem and drawing its graph we
assume that the starting point of the cycle moves to the moment
when the robot loads the first machine and leaves for the second
machine; at this moment, a part is being processed by both
machines. At the end of the cycle the robot returns to this situation.
Accordingly, the graph for the same parts production cycle is shown
in Figure 3.

The parameters needed for modeling this problem by Petri
network are the following:

R1: moving toward the second machine and waiting opposite the

second machine (2w+δ)

R2: unloading the part from the second machine (ε)

R3: moving towards the output buffer, loading the part on the output
buffer, moving towards the input buffer, unloading the part from the

input buffer and moving towards second machine (εδ 26 +)

R4: loading the part on the second machine (ε)

R5: moving toward the first machine and waiting opposite the first

machine (1W+δ)

R6: the robot’s unloading the part on the first machine (ε)

R7: moving towards the output buffer and loading the part on the
output buffer, moving towards the input buffer, unload the part from

the input buffer, and moving toward the first machine(εδ 26 +)

R8: loading the part on the first machine (ε)

α ': starting moment of the first machine’s processing M1

α : The moment that the first machine has finished its task and is

waiting for the robot to unload the part from it

β ′ : starting moment of the second machine’s processing (M2)

β : The moment that the second machine has finished its task

and is waiting for the robot to unload the part from it
P: operating time of the first or the second machine

Mathematical model for production planning problem of
producing same parts in the proposed cycle are the following:

Min Ct (6)

5460 Afr. J. Bus. Manage.

Subject to:

ε=+− tCSSP 811 : (7)

2122 : wSSP +=− δ (8)

ε=− 233 : SSP (9)

εδ 26: 344 +=− SSP (10)

ε=− 455 : SSP (11)

1566 : wSSP +=− δ (12)

ε=− 677 : SSP (13)

εδ 26: 788 +=− SSP (14)

PCSS t +≥+− εα 86: (15)

εβ +≥+− PCSS t42: (16)

0,, 21 ≥wwSi (17)

 In this model, the objective function is to minimize the cycle time of
producing same parts. The constraints are written according to the
properties of timed Petri network and what were written in “Theorem
1”.

Mathematical model for production planning problem of
producing different parts in the proposed cycle

In the proposed new cycle, we assume that n different parts must
be produced, and that the processing time for all parts is specified.
Therefore, we can model the Petri network in a way that the optimal
sequence of parts’ entering the cell is determined. According to this
model, n parts are produced by this production cycle in the
minimum possible time.

Petri network graph related to the production of these n parts is

obtained by repeating the same parts production cycle
2

n
 times as

described earlier. Due to the fact that in the proposed same parts
production cycle 2 parts are produced, for producing n parts in the

cycle, the mentioned sequence must be repeated
2

n
 times. For

modeling the new proposed different parts production cycle, in
addition to the parameters used for producing identical parts, the
following parameters are needed:

X1ij: if the part i, is the j

th
 part given to the first machine

X2ij: if the part i, is the j
th
 part given to the second machine

t: part counter t ≠ i

Mathematical model for production planning problem with different
parts are the following:

Min Ct (18)

Subject to:

ε=+− tn CSSP ,81,11,1 :

(19)

njSSP jjj ,....,2: ,8,1,1 ==− ε

(20)

njwSSP jjj ,....,1: 2,1,2,2 =+=− δ

(21)

njSSP jjj ,....,1: ,2,3,3 ==− ε

(22)

njSSP jjj ,....,126: ,3,4,4 =+=− εδ (23)

njSSP jjj ,....,1 : ,4,5,5 ==− ε (24)

njwSSP jjj ,....,1 : 1,5,6,6 =+=− δ (25)

njSSP jjj ,....,1: ,6,7,7 ==− ε
 (26)

njSSP jjj ,....,126: ,7,8,8 =+=− εδ (27)

∑
=

+≥+−

n

i

iint axCSS

1

118161 .,,: εα (28)

njaxSS

n

i

ijijjj ,....,2.,,:

1

186 =+≥− ∑
=

εα (29)

εβ +≥+− ∑
=

biXCSS

n

i

nitnn

1

2,4,21 .: (30)

1,....,1.:

1

2,4,2 −=+≥− ∑
=

njbiXSS

n

i

jijjj εβ (31)

njXX

n

i

ji

n

i

ji ,......,11

1

2

1

1 =∀=+∑∑
==

 (32)

niXX

n

j

ji

n

j

ji
,......,11

1

2

1

1 ==+∑∑
==

 (33)

niXX ini ,......,11022 === (34)

niXX ini ,......,111111 ===+ (35)

jtiXXXX

it

jtji

it

jtji ,,1)1(2)2(1 ,1,,1. ∀=+ ∑∑
≠

−

≠

− (36)

0,, 21 ≥wwS ji (37)

{ }1,0, 21 =jjji XX (38)

Constraints added to this model are the following:

Constraint (32) states that at any stage only one part must enter
and it must be assigned only to one machine.

Fathian et al. 5461

Termination?

The particle

fitness value

is better than

p Best?

Start
Generating initial

random solutions

(Particles)

Evaluation?

P Best Updating

gBest Updating

Determine Particle’s

Velocity

Determine Particle’s

Position

End

Yes

No

Yes No

Figure 4. The general scheme of Particle Swarm Optimization algorithm.

Constraint (33) states that part i must enter only in one stage of
the cycle.

Constraint (34) states that the part being processed on the
second machine at the beginning of cycle is the n

th
 part in the

previous cycle and represents the sequence in new cycle.
Constraint (35) states that the part being processed by the first

machine at the beginning of cycle is n+1
st
 part in the previous

production cycle.
Constraints (36) state that the sequence of parts entering the

new cycle must be observed, i.e. if in a stage one part is given to
one of the machines, in next stage the next part is given to the
other machine.

Constraints Pi,j are written according to “Theorem 1”. Also, the
objective function of the problem is to minimize the cycle time to
produce n various parts in the new proposed cycle.

Analysis of the computational complexity of the problem

In the new proposed cycle, the cycle time for producing n different
parts depends on the sequence of parts entry. In the Petri network
model presented for the production of different parts, waiting times
on the first and second machines are as follows:

{ })84().(,0 2111 wPXMaxW iji ++−= − δε (39)

{ })42().(,0 122 δε +−= − iji PXMaxW (40)

Therefore, it is clear that the waiting times are not independent of
the sequence of parts entry. In a specific sequence, cycle time can
be calculated in a polynomial time. Accordingly, this problem is
placed in NP problems class (Hall et al., 1998). The results show

that the problem tCSKFRC 2,23 ≥ is an NP-Complete problem

which has been studied in 3-machine robotic cells producing
different parts (Hall et al., 1998). Thus, the problem and the

mathematical model presented in the new proposed cycle resemble
this problem and it is similarly an NP-complete problem.

PARTICLE SWARM OPTIMIZATION (PSO) META-HEURISTIC

Particle swarm optimization (PSO) is a population based stochastic
optimization technique that was developed by Kennedy and
Eberhart (1995). In PSO, each solution is a bird in the flock and is
referred to as a particle (Shi et al., 1998). The PSO has been
applied successfully to a wide variety of optimization problems to
find optimal or near-optimal solutions. Due to the complexity of the
proposed model, it is very difficult to obtain optimum solution for this
kind of problems by means of traditional approaches. Therefore, in
this paper, we apply the PSO for large size problems. The general
scheme of the applied PSO is provided in Figure 4. In the PSO, the

position, ix , of the ith particle is adjusted by a stochastic velocity,

iV . At each iteration of the algorithm, ix and iV are calculated

according following equations (Shi et al., 1998).

)).((.)).((.. 21 idgdidididid xPbRandcxParandcVWV −+−+=

 (41)

idVidXidX += (42)

maxmax VVV id ≤≤− (43)

Equation 41 calculates a new velocity for each particle based on its
previous velocity, the particle's position at which the best fitness so

far has been achieved (idP , or pBest), and position of the best

particle of population (
gd

P , or gBest). In this equation, Rand (a) and

rand (b) are two random numbers that uniformly distribute in range

5462 Afr. J. Bus. Manage.

Table 1. Continuous representation.

Generated random numbers 0.36 1.21 2.45 0.59 1.75

Sequence 5 3 1 4 2

Continuous representation 2.45 1.21 0.36 1.75 0.59

[0, 1]. 1c
and 2c are two learning factors, which control the

influence of pBest and gBest on the search process and w is an
inertia weight that balances global exploration and local exploitation
and was proposed to decrease linearly with time from a value of 1.4

to 0.5 (Kamalabadi et al., 1996). maxW is an upper limit on the

maximum change of particle velocity.
A new solution for part sequencing and robot move sequences in

a 2-machine robotic cell based on the particle swarm meta-
heuristic.

Solution representation

The solution representation should be so that we are able to
decode it easily to reduce the cost of the algorithm. In this paper, a
continuous representation is used (Kamalabadi et al., 2008).

To construct the continuous representation, first we need to
generate as many as the number of the jobs to be produced

random numbers between [0, maxX], then the first smallest of

them will be assigned to the position that contain the first job, the
next smallest will be assigned to position that contain the second
job, and so on as shown in Table 1.

SIMULATED ANNEALING META-HEURISTIC ALGORITHM

Simulated annealing algorithm (SA) is inspired by the process of
metals annealing. In a real annealing process, metal’s temperature
is increased to a point that all the molecules are scattered in a
molten form, then temperature will slowly decrease. Temperature
decrease in real annealing is like decreasing the value of objective
function for minimization problems. As temperature decrease rate in
real annealing is effective on the quality of the final material,
temperature decrease rate in SA algorithm is also effective on the
quality of the final solution. One characteristic of SA algorithm is
that it accepts non-improving solutions; this causes the algorithm
not to get captured at a local optimum. This algorithm begins with a
primary random solution; then in each temperature some of primary
solution neighborhoods are studied. If objective function’s value of
the neighbor’s solution is better than objective function’s value of
the primary solution, the neighbor’s solution will be accepted,
otherwise, to escape the local optimum the neighbor’s solution with

probability of)(
T

EXP
∆

− will be accepted. This process will be

repeated until a predefined number of neighborhoods are studied in
each temperature. Afterwards, the temperature will decrease; the
predefined number of neighborhood is also studied in this new
temperature. The algorithm will stop when it reaches the stopping
criterion. The pseudo-code of simulated annealing algorithm as
used by (Xambre et al., 2003) is illustrated in Figure 5. The basic
parameters of SA algorithm are as follows:

Solution representation

In this paper, the following chromosome structure has been used.

In this structure, n is the number of jobs; to denote the number

of a machine to which the related part is designated. Each one of
these numbers is selected from one to two (the number of
machines is two). After the structure of the chromosome was
determined, the primary solution is randomly generated. To
generate a chromosome for the problem the presented structure as
shown in Figure 6 has been used.

Initial temperature

Initial temperature is one of the basic parameters of SA algorithm.
The initial temperature should be selected in a way that most of
non-improving solutions are accepted in the first repetition. In this
article, the heuristic method based on (Safaei et al., 2008) as
shown in Figure 7 has been used to determine the initial
temperature.

Temperature decrement rule

SA algorithm begins with a relatively high temperature which
decreases slowly in each repetition. There are various methods to
reduce temperature in each repetition; in this paper, geometric
scheduling criterion has been used:

10 1 <<−= αα kTkT (44)

In the afore-stated relation, kT is system’s temperature in the k
th

repetition and α is temperature reduction rate. Selecting a large

value for α results in slow temperature decrement and better

solution space searching, on the other hand, it increases

algorithm’s run time. Selecting a small value for α , results in fast

temperature decrement and fast solution space searching.

Therefore, α value should be selected in a way that there will be

a balance between algorithm’s run time and the quality of solutions.

In this paper, α value has been considered to be 0.9.

Neighborhood structure

Neighbor solutions are a set of feasible solutions which are
obtained from the primary solution. Each neighbor solution can be
obtained through one movement (a change in the present solution).
In this paper, the following neighborhood structure has been used;
in this structure one of the genes is randomly selected and then its
value is changed in a way that the resulted solution will be feasible

The neighborhood structure is shown in Figure 8.

Number of repetitions in each temperature (L)

This parameter controls the number of investigated neighborhoods
in each temperature. L value should be selected large to the extent

Select an initial temperature 0T

select an initial solution, 0S , and make it

the current solution , S, and the current

best solution *
S ;

repeat

 set repetition counter n=1

 repeat

 generates solution nS in the

neighborhood of S

 calculates)()(sfsf n −=∆

 if (0≤∆) then nss =

 else nss = with probability of p=

)(
T

EXP
∆

−

 if))()((
*

sfsf n < then nss =*

 n=n+1

 until n> number of repetition

allowed at each temperature level (L)

 reduce the temperature T

Until stop criterion is true.

Figure 5. Pseudo-code of SA algorithm for
minimization problems (Xambre et al., 2003).

Figure 6. Solution structure of SA algorithm.

Sub Init Temp

 Do

 Generate two solution 1X , 2X at

random

 Loop until)2()1(XfXf ≠

 Set
)9.0ln(

|)2()1(|
0

XfXf
T

−−
=

End sub

Figure 7. Pseudo-code of determining the initial
temperature of SA algorithm (Safaei et al., 2008).

Fathian et al. 5463

4 2 5 3
4 3 5 2

Figure 8. Neighborhood structure.

that results in an effective neighborhood search. On the other hand,
L value should not be so large that would result in ineffective search
and increase run time. In this paper, number of repetitions in each
temperature (L) has been considered to be 10.

Stopping criterion

In the presented algorithm, stopping criterion has been considered
to be the final temperature. The final temperature should be
selected in a way that the probability of accepting non-improving
solutions in the final repetitions will be close to zero.

EXPERIMENTAL RESULTS

To validate the proposed model and the implemented
algorithm, various test problems are examined. The
algorithm is coded into the MATLAB 7.1 and run on the
PC, processor at 2.4 GHz and Windows 7 using 4.00 GB
of RAM. The experiments are implemented in two folds:
first, for small-sized problems, the other for large-sized
ones. For both of these experiments, we consider the following
assumptions: 1. the values of ε and δ are equal to 1; 2. each

experiment is repeated 15 times; 3. the processing time for
all parts on the all machine are uniformly generated in
range [10, 100].

Small-sized problem (number of parts is smaller than
20 parts)

The problem instances are randomly generated. The
number of particle, termination criterion of PSO, Learning

factors (1c and 2c), and maxV are fixed to 50, 50, 2, 2,

and 3, respectively. For each instance, the results
obtained are compared with the Lingo 8.0. By comparing
the computational results of this algorithm and the
optimum solutions of these problems which are solved by
lingo 8.0, it can be concluded that this algorithm is able to
find optimum solutions for all of these problems. The
results of solving the problems by LINGO 8.0 are
illustrated in Table 4.

Large-sized problem (number of parts is more than
20 parts)

The problem instances are randomly generated. The
number of particle, termination criterion of PSO, learning

5464 Afr. J. Bus. Manage.

Table 2. Computational results of PSO.

Problem no.
Number of

parts
Worst solution

value
Average

solution value
Best solution

value
Average performance

time (s)

1 5 116 115 113.5 0.39624

2 10 183 183 183 0.49608

3 15 358.5 355.8 352.5 0.48672

4 20 572.5 572.5 572.5 0.54288

5 25 549.5 543 535.5 0.62712

6 30 662.5 662.5 662.5 0.6708

7 35 681.5 680.25 679 0.7215

8 40 851.5 851.5 851.5 0.7761

9 45 1128.5 1128.8 1127 2.45232

10 50 989.5 989.5 989.5 2.60832

11 55 1213 1216.5 1230.5 2.8392

12 75 1550 1549.5 1548.5 3.8376

13 100 2516 2516 2516 5.11368

14 120 2777.50 2777.50 2777.50 6.38976

Table 3. Computational results of SA.

Problem no.
Number of

parts
Worst solution

value
Average solution

value
Best solution

value
Average performance

time (s)

1 5 118.5 118.5 118.5 0.2496

2 10 206 206 206 0.4407

3 15 387.5 387.5 387.5 0.1716

4 20 580.5 580.5 580.5 0.1783

5 25 600.5 600.5 600.5 0.1840

6 30 690.5 690.5 690.5 0.1872

7 35 776.5 763.3 715.5 0.1872

8 40 964.5 964.5 964.5 0.2028

9 45 1253.5 1252.7 1252 0.2145

10 50 1132.5 1132.5 1132.5 0.1872

11 55 1372 1368.8 1368 0.1840

12 75 1775.5 1767.5 1763.5 0.1778

13 100 2809 2809 2809 0.1497

14 120 3130.5 3130.5 3130.5 0.156

Table 4. Computational results of Lingo 8.0.

Problem no.
Number
of parts

Best OFVa BOUND
Run time
(second)

1 5 113.5 113.5 <1

2 10 183 183 <1

3 15 352.5 352.5 <1

4 20 572.5 572.5 1800

5 25 535.5 535.5 2700

6 30 662.5 662.5 7200

7 35 679 679 14400

8 40 1254.5 0 18000

Fathian et al. 5465

Table 4. cont’d

9 45 1487 0 18000

10 50 1623.5 0 18000

11 55 1931 0 18000

12 75 2122 0 18000

13 100 3459.5 0 18000

14 120 4634.5 0 18000

a. Objective function value.

factors (1c and 2c), and maxV are fixed to 100, 100, 2,

2, and 3, respectively. Because of complexity of the
problem, the Lingo software cannot produce any results
for most of the large-sized problems. However according
to the computational results shown in Tables 2 and 3,
algorithm PSO and SA can achieve proper solutions in
acceptable time.

As aforementioned, each one of these problems have
been solved by LINGO 8.0 software at first. LINGO 8.0 is
able to produce global optimal solutions for problems.
But, when dimensions of the problem increase, this
software cannot obtain optimal solutions in a reasonable
time. In this article, the maximum running time of LINGO
8.0 has been considered to be five hours. That is, if
LINGO 8.0 cannot obtain the global optimal solution in
less than five hours, the solution algorithm will stop and
the best solution obtained by the software will be
considered as its output. Therefore, meta-heuristic
algorithms should be used for solving high dimension
problems.

Conclusion

In this paper, after a discussion of the possible existing
robot moves cycles in a 2-machine robotic cells, a new
cycle with the assumption that the machines are the
same and flexible with the ability to perform all the
necessary operations for producing the same and
different parts was considered. The main problem in this
research is to minimize the cycle time in producing same
and different parts by optimizing part sequencing and
robot moves sequence in the robotic cell. Accordingly, we
provided a mathematical programming model based on
timed Petri network. Then the computational complexity
of the model was analyzed and it was shown to be an
NP-Complete problem. Also to solve this model, we
proposed two meta-heuristic algorithms named PSO and
SA algorithms.

Then the obtained solutions by these algorithms were
compared to exact solutions by LINGO software. The
results indicated that PSO algorithm can obtain better
solutions in acceptable running time compared to other
algorithms. Among the issues that can be considered in

future researches are: i) to test the performance of the
existing robot move sequences in the form of new
proposed cycle; ii) to extend these problems to 3-
machine robotic cells.

REFERENCES

Agnetis A (2000). Scheduling no-wait robotic cells with two and three

machines. Eur. J. Oper. Res., 123: 303-314.
Agnetis A, Pacciarelli D (2000). Part sequencing in three-machine no-

wait robotic cells. Oper. Res. Lett., 27: 185-192.
Akturk MS, Gultekin H, Karasan OE (2006). Robotic cell scheduling with

operational flexibility. Discrete Appl. Math., 145: 334–348.
Bagchi TP, Gupta JND, Sriskandarajah C (2006). A Review of TSP

Based Approaches for Flow shop Scheduling. Eur. J. Oper. Res.,
169: 816-854.

Brauner N, Finke G (1999). On a conjecture about robotic cells: New
simplified proof for the three machine case. Inform., 37(1): 20-36.

Crama Y (1997). Combinatorial optimization models for production
scheduling in automated manufacturing systems. Eur. J. Oper. Res.,
99: 136–153.

Crama Y, Kats V, Klundert VD (2000). Cyclic scheduling in robotic flow
shops. Ann. Oper. Res., 96: 97-124.

Crama Y, Klundert VD (1999). Cyclic scheduling in 3-machine robotic
flow shops. J. Schedul., 2: 35-54.

Dawande M, Geismar HN, Sethi SP, Sriskandarajah C (2005).
Sequencing and scheduling in robotic cells: Recent developments. J.
Schedul., 8: 387-426.

Deineko VG, Steiner G (2005). Robotic-Cell Scheduling: Special
Polynomially Solvable Cases of the Traveling Salesman Problem on
Permuted Monge Matrices. J. Comb. Optim., 9(4): 381-399.

Drobouchevitch IG, Sethi SP, Sriskandarajah C (2006). Scheduling dual
gripper robotic cell one unit cycles. Eur. J. Oper. Res., 171: 598-631.

Gultekin H, Akturk M S, Karasan OE (2006). Cyclic scheduling of a 2-
machine robotic cell with tooling constraints. Eur. J. Oper. Res., 174:
777–796.

Gultekin H, Akturk MS, Karasan OE (2007). Scheduling in a three-
machine robotic flexible manufacturing cell . Comput. Oper. Res., 34:
2463–2477.

Hall NG, Kamoun H, Sriskandarajah C (1997). Scheduling in robotic
cells: Classification, two and three machine cells. Oper. Res., 45:
421-439.

Hall NG, Kamoun H, Sriskandarajah C (1998). Scheduling in robotic
cells: Complexity and steady state analysis. Eur. J. Oper. Res., 109:
43-65.

Kamalabadi IN (1996). A New Formulation for Scheduling Problems
Through Petri-nets. Iranian Mathematical Conference.

Kamalabadi IN, Gholami S, Mirzaei AH (2008) . A New Solution for the
Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based
on the Particle Swarm Meta-heuristic. J. Ind. Syst. Eng., 1(4): 304-
317.

Kamalabadi IN, Hall NG, Sriskandarajah C (2000). Minimizing cycle
time in a blocking flow shop. Oper. Res., 48: 177-180.

5466 Afr. J. Bus. Manage.

Kennedy JE (1995).Particle swarm optimization. Proc. IEEE Int. Conf.

Neural Netw. Australia, 1942–1948.
Maggot J (1984). Performance Evaluation of Concurrent Systems Using

Petri Nets. Inform. Process. Lett., 8(1): 7-13.
Safaei N, Saidi-Mehrabad M, Jabal-Ameli MS (2008). A hybrid

simulated annealing for solving an extended model of dynamic
cellular manufacturing system. Eur. J. Oper. Res., 185: 563-592.

Sethi SP,d. Groupe d'études et de recherche en analyse des(1989).
Sequencing of robot moves and multiple parts in a robotic cell.
Montréal, Groupe d'études et de recherche en analyse des decisions.

Sethi SP, Sriskandarajah C, Sorger G, Blazewicz J, Kubiak W (1992).

Sequencing of parts and robot moves in a robotic cell. Int. J. Flex.
Manuf. Syst., 4: 331-358.

Sriskandarajah C, Hall NG, Kamoun H, Wan H (1998). Scheduling large
robotic cells without buffers. Ann. Oper. Res., 76: 287–321.

Shi Y, Eberhart R (1998). A modified particle swarm optimizer. Proc.
IEEE Int. Conf. Evol. Comput., pp. 69–73 .

Xambre AR, Vilarinho PM (2003). A simulated annealing approach for
manufacturing cell formation with multiple identical machines. Eur. J.
Oper. Res., 151: 434-446.

