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In this paper, the cyclic scheduling problems in 2-machine robotic cells have been studied. We 
investigated the timed Petri network graph for modeling the part sequencing and the optimal robot 
moves sequence in robotic manufacturing cells. The robotic manufacturing cell considered in this 
study has two identical machines and one single gripper robot. Also, we have assumed that the 
manufacturing cell is capable of producing identical and different parts. The main objective of this 
study is to minimize the cycle time. To solve this problem, we have proposed two meta-heuristic 
algorithms called particle swarm optimization (PSO) and simulated annealing (SA) and compared the 
obtained results with the exact solutions by LINGO. Also the complexity of the proposed model has 
been analyzed. 
 
Key words: Cycle time, 2-machine robotic cell, Petri net, part sequencing, robot moves sequence, cyclic 
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INTRODUCTION 
 
In the present competitive world, time is an important and 
determining factor in industries. Along with technological 
progress in industries and organizations, managers' 
decision-making and their organizational activities, and 
strategies have become increasingly complex. One of 
these strategies is the development of automation in 
industries and manufacturing organizations, which 
involves the use of mechanical and programmable 
devices called robots for moving parts between the 
different stations. By establishing machines in cellular 
layout and using robots for automating the process, 
managers try to reduce the production time in order to 
increase the effectiveness of the production line, and to 
increase the productivity output in robotic manufacturing 
cells.  In   the   last   few  years,  researchers  have  been 
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concerned with optimizing the robot move sequence in 
order to reduce production time in robotic manufacturing 
cells and many studies have been done in this regard. 

The study of Sethi et al. (1989) is considered as the 
beginning point of the robotic cell scheduling literature. 
They discussed on minimizing the cycle time in the single 
machine robotic cell. Sethi et al. (1992) proved that in 
buffer-less single-gripper two-machine robotic cells 
producing single part-type and having identical robot 
travel times between adjacent machines and identical 
load/unload times, a 1-unit cycle provides the minimum 
per unit cycle time in the class of all solutions, cyclic or 
otherwise. For three machine case, Crama and van de 
Klundert (1999), and Brauner and Finke (1999) shown 
that the best 1-unit cycle is optimal solution for the class 
of all cyclic solutions. Hall et al. (1997) and Hall et al. 
(1998) considered the computational complexity of the 
multiple-type parts three-machine robotic cell problem 
under various robot movement policies. Kamalabadi et al. 



 

 

 
 
 
 
(2008) provided a new solution for the cyclic multiple 
parts three-machine robotic cell. They also considered 
the minimizing of cycle time in a blocking flow shop cell 
(Kamalabadi, 1996; Kamalabadi et al., 2000). This 
problem is studied for no-wait robotic cells too. For 
example, Agnetis (2000) found an optimal part schedule 
for no-wait robotic cells with three and two machines. 
Agnetis and pacciarelli (2000) studied part scheduling 
problem for no-wait robotic cells, and found the 
complexity of the problem. Crama et al. (1999) and 
Crama et al. (2000) studied flow-shop scheduling 
problems, models for such problems, and complexity of 
these problems. Dawande et al. (2005) reviewed the 
recent developments in robotic cells and, provided a 
classification scheme for robotic cells scheduling 
problem. Some other special cases have been studied 
such as: Drobouchevitch et al. (2006) provided a model 
for cyclic production in a dual-gripper robotic cell. 
Deineko et al. (2005) studied the special case of two 
machine flexible robotic cells that the first machine 
performs one operation, and the second machine 
processes K operations step by step. Akturk et al. (2000) 
studied robotic cell scheduling with operational flexibility. 
Gultekin et al. (2006) studied robotic cell scheduling 
problem with tooling constraints for a two-machine robotic 
cell where some operations can only be processed on the 
first machine and some others can only be processed on 
the second machine and the remaining can be processed 
on both machines. Gultekin et al. (2007) considered a 
flexible manufacturing robotic cell with identical parts in 
which machines are able to do different operations and 
the operation time is not system parameter and is 
variable. They proposed a lower bound for 1-unit cycles 
and 2-unit cycles. Sriskandarajah et al. (1998) classified 
the part sequence problems associated with different 
robot movement policies; in this paper, a robot movement 
policy is considered, which its part scheduling problem is 
NP-Hard, and Bagchi et al. (2006) proposed to solve this 
problem, by a heuristic or meta-heuristic. 

It is obvious that the two fundamental problems in 
robotic cell scheduling are part sequencing and 
optimizing the robot move sequence. If the cell is meant 
to produce identical parts, the scheduling problem will 
depend on finding the optimal robot move sequence. In 
this paper, we have defined a new cycle for robot move 
sequence in a 2-machine robotic manufacturing cell, 
which is development of existing robot motion cycles. Our 
purpose is to obtain the optimal cycle time by determining 
the optimal parts entry to the cell. For the modeling of this 
problem, timed Petri network was used. Subsequently in 
this paper, assumptions, concepts and the robot move 
sequence for the proposed new cycle are introduced and 
the cycle time is calculated. Thereafter, concepts and 
relations in a Petri network are described. Then, the 
proposed motion cycle is described in full detail according 
to Petri net model. At first, the mathematical model for the 

Fathian et al.         5457 
 
 
 
problem of producing identical parts in the production 
cycle is obtained, and then the model is generalized to 
the problem of producing different parts. Thereby, by 
determining the optimal part sequencing for the proposed 
cycle the minimum cycle time is obtained. Next, the 
particle swarm optimization and simulated annealing 
algorithms with related parameter setting are described. 
After that, the experimental results are analyzed and 
concluded. Finally, conclusion of the paper is presented. 
 
 
DEFINITION OF THE PROBLEM AND INTRODUCTION OF THE 
PROPOSED MOTION CYCLE 

 
In robotic manufacturing cell scheduling, the major problem is how 
to determine the sequence of robot moves and order the parts entry 
in a cell that produces different parts. In past studies about 2-

machine robotic cells, 122112 ,, SSSS  motion cycles have been 

introduced (Sethi et al., 1989), and the robot move sequence and 
the order of parts entry in 2-machine robotic cells have been 
studied (Sethi et al., 1992). In 3-Machine robotic cells, the 
sequence of robot moves and parts entry to the cell has been 
investigated for both the same parts and different parts 
manufacturing cells (Crama et al., 1997, 1999). In this paper, we 
have defined a new cycle for two-machine robotic cells and have 
considered the problem of different parts entry sequencing to obtain 
the optimum cycle time by a timed Petri net model. In most studies 
on scheduling 2-machine robotic cells, the problem of flow shop has 
been considered. Thereby, each part is processed on the first 
machine and then conveyed by the robot to the second machine to 
be processed on. Indeed, each part must be processed on both 
machines. It is also assumed that the two machines are identical, 
that is, the processing time of a same operation is the same on both 
machines. In addition, the robot’s movement time between any two 
consecutive locations is the same and it is additive between 
different locations. Also, the robot’s loading and unloading time in 
all conditions is the same and the robot has a linear movement in 
the cycle. 
 
 
Definition 1  
 

Activity ( ijA ) signifies the robot’s conveying a part from location i to 

location j. 
 
 
Definition 2  
 

A n-unit cycle means that the robot has entered n parts into the 
cycle and for doing all the required processes on n parts, each 
activity has been repeated n times. At the end of each cycle, n part 
should be taken out of the cell by robot. Also, the beginning and the 
end mode of the n-unit cycle should be same. 
 
 
Definition 3 

 
The n-unit cycle time is defined as the time needed to produce n 
parts in a cyclic process that a robot starts from the initial state and 
moves in a specific sequence, so that the necessary operations for 
producing n parts is performed and then the robot goes on the initial 
position. Also, if we assume that the machines are flexible; in other 
words, if each machine is capable of performing all operations on 
each part so that every part  is  processed  completely  by  a  single
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Figure 1. Layout of the new cycle. 

 
 
 
machine, then a new motion cycle can be defined with a sequence 
of moves as the following: 

 
At the beginning of the cycle, a part is being processed by the 
second machine and the robot is located opposite the input area. 
According to definition 1, the sequence of the robot movements 

is 13022301 AAAA , that is, the robot picks a part on the input buffer 

(the needed time is ε ) and takes the part to the first machine ( δ ). 

Then it loads the part on the first machine ( ε ) and moves towards 

the second machine ( δ ) and waits opposite this machine until it 

completes processing the part (w2), after the second machine has 
completed the process, the robot unloads the part from the second 
machine ( ε ) and takes it to the output buffer ( δ ), then it loads it on 

the output buffer ( ε ). Then the robot comes back to the input 

buffer (3 ε ), picks a part from the input buffer ( ε ), moves it to the 

second machine (2 δ ), and loads it on it ( ε ), then it turns back to 

the first machine ( δ ) and waits opposite the machine until it 

completes processing the part ( 1w ). When processing is finished, 

the robot unloads the part from the first machine ( ε ), takes it to the 

output (2 δ ) and then loads it on output area ( ε ). Then it comes 

back to the input buffer (3δ ). Thereby, the cycle is finished and the 

robot returns to the initial position. During this cycle, two parts are 
produced, so the cycle is called 2-unit cycle. In this cycle, it is 
assumed that the robot has no waiting time in the input and the 
output buffer. It should be noted that since each machine has the 
ability to perform all operations, in the process of producing n parts 
and in each sequence of cyclic moves, after one stage we have a 
repetitive sequences of robot movements which continues until n 
parts are produced. In this proposed cycle, the starting point of the 
mentioned repetitive process is the beginning of the cycle. 

In this case, the cycle time for producing two parts is calculated 
as follows, and its parameters are: 
 

ε : Loading or unloading time 

δ : The time in which the robot moves between two successive 

locations 
P: Processing time of each part on the machines 

iw : Waiting time in front of machine i 

Ct: Cycle time: 
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The layout of the proposed cycle and the initial position are shown 
in Figure 1. 
 
 
PETRI NETWORK MODEL 
 
Many systems can be modeled on Petri nets and it is possible to 
show their features using these networks (Maggot, 1984). Petri 
network is a suitable device for mathematical and graphical 
modeling. The graphical behavior of variables and the ability to 
convert them into flowchart and diagram is one of the important 
features of Petri nets (Kamalabadi, 1996). Petri networks were 
introduced for the first time by Adam Petri in 1962. Lee and Yung 
(1955) presented a new method for planning flexible process 
sequences using Petri networks (Maggot, 1984). Petri nets are 
directed split graphs which are divided into two groups of place and 
transition. The directed arcs link some places to some transitions or 
link some transitions to some places. Notation in a Petri network is 
a vector whose elements show the number of arcs. Each Petri 

network is shown as { }0,,,, MWATPPN = (Maggot, 1984) in which: 

 

P: a finite set of places  { }nPPPP ....,, 21=  

T: a finite set of transitions 
{ }mtttt ....,, 21=

 

A: a finite set of arcs { } { }PTTPA ×∪×⊂   

W: weight function associated with each location { },.....2,1=P   �   

AW :  

M0: Initial network markup  { },.....2,1,0=P   �  

PM :0  

 

Mark changes in a Petri network involving firing (transposition) is as 
the following: 
 

1. The firing is performed when the location Pi has at least W (Pi, t) 
token, whereby W (Pi, t) is the arc weight of Pi to t. 
2. An active transposition may lead to firing depending on whether 
its movement is performed or not. 
3. If the transition t is fired, W (Pi, t) of tokens is reduced from each 
Pi to t input place and W (P0, t) number of tokens is  added  to  each
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Figure 3. Petri network graph for same parts production cycle. 

 
 
 

P0 output location of transition t are added. W (t, P0) is the arc 
weight of t to P0 (Maggot, 1984). 

 
Theorem 1: In a marked graph, for each location that has iM  

tokens the following relationship tCiMASBS +≥ , whereby BS , AS  are 

the starting times of transitions of B and A, and tC  is the cycle time 

in timed Petri network. Figure 2 shows this marked graph. 

 
 
Timed Petri network model for producing identical parts in the 
new cycle 

 
At the beginning of the proposed cycle, it is assumed that a part on 
the second machine is being processed and the robot is located 
opposite the input buffer. For simplicity of calculation and drawing 
Petri networks, in modeling the problem and drawing its graph we 
assume that the starting point of the cycle moves to the moment 
when the robot loads the first machine and leaves for the second 
machine; at this moment, a part is being processed by both 
machines. At the end of the cycle the robot returns to this situation. 
Accordingly, the graph for the same parts production cycle is shown 
in Figure 3. 

The parameters needed for modeling this problem by Petri 
network are the following: 

 
R1: moving toward the second machine and waiting opposite the 

second machine ( 2w+δ ) 

R2: unloading the part from the second machine ( ε ) 

R3: moving towards the output buffer, loading the part on the output 
buffer, moving towards the input buffer, unloading the part from the 

input buffer and moving towards second machine ( εδ 26 + ) 

R4: loading the part on the second machine ( ε ) 

R5: moving toward the first machine and waiting opposite the first 

machine ( 1W+δ ) 

R6: the robot’s unloading the part on the first machine ( ε ) 

R7: moving towards the output buffer and loading the part on the 
output buffer, moving towards the input buffer, unload the part from 

the input buffer, and moving toward the first machine( εδ 26 + ) 

R8: loading the part on the first machine ( ε ) 

α ': starting moment of the first machine’s processing M1 

α : The moment that the first machine has finished its task and is 

waiting for the robot to unload the part from it 

β ′ : starting moment of the second machine’s processing (M2)  

β :  The moment that the second machine has finished its task 

and is waiting for the robot to unload the part from it 
P: operating time of the first or the second machine 
 

Mathematical model for production planning problem of 
producing same parts in the proposed cycle are the following: 
 

Min Ct                                               (6) 
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Subject to: 

 

ε=+− tCSSP 811 :                                     (7) 

 

2122 : wSSP +=− δ                                     (8) 

 

ε=− 233 : SSP                                            (9) 

 

εδ 26: 344 +=− SSP                                  (10) 

 

ε=− 455 : SSP                                           (11) 

 

1566 : wSSP +=− δ                                     (12) 

 

ε=− 677 : SSP                                           (13) 

 

εδ 26: 788 +=− SSP                                   (14) 

 

PCSS t +≥+− εα 86:                                 (15) 

 

εβ +≥+− PCSS t42:                                 (16) 

 

0,, 21 ≥wwSi                                               (17) 

 
 In this model, the objective function is to minimize the cycle time of 
producing same parts. The constraints are written according to the 
properties of timed Petri network and what were written in “Theorem 
1”. 
 
 
Mathematical model for production planning problem of 
producing different parts in the proposed cycle  
 
In the proposed new cycle, we assume that n different parts must 
be produced, and that the processing time for all parts is specified. 
Therefore, we can model the Petri network in a way that the optimal 
sequence of parts’ entering the cell is determined. According to this 
model, n parts are produced by this production cycle in the 
minimum possible time. 

Petri network graph related to the production of these n parts is 

obtained by repeating the same parts production cycle 
2

n
 times as 

described earlier. Due to the fact that in the proposed same parts 
production cycle 2 parts are produced, for producing n parts in the 

cycle, the mentioned sequence must be repeated
2

n
 times. For 

modeling the new proposed different parts production cycle, in 
addition to the parameters used for producing identical parts, the 
following parameters are needed: 
 
X1ij: if the part i, is the j

th
 part given to the first machine 

X2ij: if the part i, is the j
th
 part given to the second machine 

t: part counter t ≠ i  
 
Mathematical model for production planning problem with different 
parts are the following: 
 
Min Ct                                                                                    (18) 
 
Subject to: 

 
 
 
 

ε=+− tn CSSP ,81,11,1 :
                                                            

(19) 

 

njSSP jjj ,....,2: ,8,1,1 ==− ε
                                       

(20) 

 

njwSSP jjj ,....,1: 2,1,2,2 =+=− δ
             

(21) 

 

njSSP jjj ,....,1: ,2,3,3 ==− ε
                                     

(22)  
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Constraints added to this model are the following: 

Constraint (32) states that at any stage only one part must enter 
and it must be assigned only to one machine. 
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Figure 4. The general scheme of Particle Swarm Optimization algorithm. 

 
 
 

Constraint (33) states that part i must enter only in one stage of 
the cycle. 

Constraint (34) states that the part being processed on the 
second machine at the beginning of cycle is the n

th
 part in the 

previous cycle and represents the sequence in new cycle. 
Constraint (35) states that the part being processed by the first 

machine at the beginning of cycle is n+1
st
 part in the previous 

production cycle. 
Constraints (36) state that the sequence of parts entering the 

new cycle must be observed, i.e. if in a stage one part is given to 
one of the machines, in next stage the next part is given to the 
other machine. 

Constraints Pi,j are written according to “Theorem 1”. Also, the 
objective function of the problem is to minimize the cycle time to 
produce n various parts in the new proposed cycle. 
 
 

Analysis of the computational complexity of the problem 

 
In the new proposed cycle, the cycle time for producing n different 
parts depends on the sequence of parts entry. In the Petri network 
model presented for the production of different parts, waiting times 
on the first and second machines are as follows: 
 

{ })84().(,0 2111 wPXMaxW iji ++−= − δε                           (39) 

 

{ })42().(,0 122 δε +−= − iji PXMaxW                                               (40) 

 
Therefore, it is clear that the waiting times are not independent of 
the sequence of parts entry. In a specific sequence, cycle time can 
be calculated in a polynomial time. Accordingly, this problem is 
placed in NP problems class (Hall et al., 1998). The results show 

that the problem tCSKFRC 2,23 ≥  is an NP-Complete problem 

which has been studied in 3-machine robotic cells producing 
different   parts  (Hall  et  al.,  1998).  Thus,  the   problem  and   the 

mathematical model presented in the new proposed cycle resemble 
this problem and it is similarly an NP-complete problem. 
 
 
PARTICLE SWARM OPTIMIZATION (PSO) META-HEURISTIC 
 
Particle swarm optimization (PSO) is a population based stochastic 
optimization technique that was developed by Kennedy and 
Eberhart (1995). In PSO, each solution is a bird in the flock and is 
referred to as a particle (Shi et al., 1998). The PSO has been 
applied successfully to a wide variety of optimization problems to 
find optimal or near-optimal solutions. Due to the complexity of the 
proposed model, it is very difficult to obtain optimum solution for this 
kind of problems by means of traditional approaches. Therefore, in 
this paper, we apply the PSO for large size problems. The general 
scheme of the applied PSO is provided in Figure 4. In the PSO, the 

position, ix , of the ith particle is adjusted by a stochastic velocity, 

iV . At each iteration of the algorithm, ix  and iV  are calculated 

according following equations (Shi et al., 1998). 
 

)).((.)).((.. 21 idgdidididid xPbRandcxParandcVWV −+−+=   

     (41) 
 

idVidXidX +=           (42) 

 

maxmax VVV id ≤≤−           (43) 

 
Equation 41 calculates a new velocity for each particle based on its 
previous velocity, the particle's position at which the best fitness so 

far has been achieved ( idP , or pBest), and position of the best 

particle of population (
gd

P , or gBest). In this equation, Rand (a) and 

rand (b) are two random numbers that uniformly distribute  in  range
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Table 1. Continuous representation. 
 

Generated random numbers 0.36 1.21 2.45 0.59 1.75 

Sequence 5 3 1 4 2 

Continuous representation 2.45 1.21 0.36 1.75 0.59 

 
 
 

[0, 1]. 1c  
and 2c  are two learning factors, which control the 

influence of pBest and gBest on the search process and w is an 
inertia weight that balances global exploration and local exploitation 
and was proposed to decrease linearly with time from a value of 1.4 

to 0.5 (Kamalabadi et al., 1996). maxW  is an upper limit on the 

maximum change of particle velocity. 
A new solution for part sequencing and robot move sequences in 

a 2-machine robotic cell based on the particle swarm meta-
heuristic. 
 
 
Solution representation 
 
The solution representation should be so that we are able to 
decode it easily to reduce the cost of the algorithm. In this paper, a 
continuous representation is used (Kamalabadi et al., 2008). 

To construct the continuous representation, first we need to 
generate as many as the number of the jobs to be produced 

random numbers between [0, maxX  ], then the first smallest of 

them will be assigned to the position that contain the first job, the 
next smallest will be assigned to position that contain the second 
job, and so on as shown in Table 1. 
 
 

SIMULATED ANNEALING META-HEURISTIC ALGORITHM 
 
Simulated annealing algorithm (SA) is inspired by the process of 
metals annealing. In a real annealing process, metal’s temperature 
is increased to a point that all the molecules are scattered in a 
molten form, then temperature will slowly decrease. Temperature 
decrease in real annealing is like decreasing the value of objective 
function for minimization problems. As temperature decrease rate in 
real annealing is effective on the quality of the final material, 
temperature decrease rate in SA algorithm is also effective on the 
quality of the final solution. One characteristic of SA algorithm is 
that it accepts non-improving solutions; this causes the algorithm 
not to get captured at a local optimum. This algorithm begins with a 
primary random solution; then in each temperature some of primary 
solution neighborhoods are studied. If objective function’s value of 
the neighbor’s solution is better than objective function’s value of 
the primary solution, the neighbor’s solution will be accepted, 
otherwise, to escape the local optimum the neighbor’s solution with 

probability of )(
T

EXP
∆

−  will be accepted. This process will be 

repeated until a predefined number of neighborhoods are studied in 
each temperature. Afterwards, the temperature will decrease; the 
predefined number of neighborhood is also studied in this new 
temperature. The algorithm will stop when it reaches the stopping 
criterion. The pseudo-code of simulated annealing algorithm as 
used by (Xambre et al., 2003) is illustrated in Figure 5. The basic 
parameters of SA algorithm are as follows: 
 
 
Solution representation 
 
In this paper, the following chromosome structure  has  been  used. 

In this structure, n is the number of jobs; to  denote the number 

of a machine to which the related part is designated. Each one of 
these numbers is selected from one to two (the number of 
machines is two). After the structure of the chromosome was 
determined, the primary solution is randomly generated. To 
generate a chromosome for the problem the presented structure as 
shown in Figure 6 has been used. 
 
 
Initial temperature 
 

Initial temperature is one of the basic parameters of SA algorithm. 
The initial temperature should be selected in a way that most of 
non-improving solutions are accepted in the first repetition. In this 
article, the heuristic method based on (Safaei et al., 2008) as 
shown in Figure 7 has been used to determine the initial 
temperature. 
 
 
Temperature decrement rule 
 
SA algorithm begins with a relatively high temperature which 
decreases slowly in each repetition. There are various methods to 
reduce temperature in each repetition; in this paper, geometric 
scheduling criterion has been used: 
 

10         1 <<−= αα kTkT              (44) 

 

In the afore-stated relation, kT is system’s temperature in the k
th

 

repetition and α  is temperature reduction rate. Selecting a large 

value for α  results in slow temperature decrement and better 

solution space searching, on the other hand, it increases 

algorithm’s run time. Selecting a small value for α , results in fast 

temperature decrement and fast solution space searching. 

Therefore, α  value should be selected in a way that there will be 

a balance between algorithm’s run time and the quality of solutions. 

In this paper, α  value has been considered to be 0.9. 

 
 
Neighborhood structure 
 
Neighbor solutions are a set of feasible solutions which are 
obtained from the primary solution. Each neighbor solution can be 
obtained through one movement (a change in the present solution). 
In this paper, the following neighborhood structure has been used; 
in this structure one of the genes is randomly selected and then its 
value is changed in a way that the resulted solution will be feasible 

The neighborhood structure is shown in Figure 8. 
 
 

Number of repetitions in each temperature (L) 
 

This parameter controls the number of investigated neighborhoods 
in each temperature. L value should be selected large to the  extent 



 

 

 
 
 
 

Select an initial temperature 0T  

select an initial solution, 0S , and make it 

the current solution , S, and the current 

best solution *
S ; 

repeat 

         set repetition counter n=1 

            repeat  

               generates solution nS in the 

neighborhood  of S 

               calculates )()( sfsf n −=∆        

              if ( 0≤∆ ) then nss =     

             else   nss =    with probability of  p=

)(
T

EXP
∆

−  

             if ))()((
*

sfsf n <  then nss =*          

                 n=n+1   

            until n> number of  repetition 

allowed at each  temperature level (L)    

        reduce the temperature T 

Until stop criterion is true.   
 
Figure 5. Pseudo-code of SA algorithm for 
minimization problems (Xambre et al., 2003). 

 
 
 

    
 

 
Figure 6. Solution structure of SA algorithm. 

 
 
 

Sub Init Temp 

 Do   

        Generate two solution 1X , 2X  at 

random 

         Loop until )2()1( XfXf ≠  

         Set 
)9.0ln(

|)2()1(|
0

XfXf
T

−−
=  

End sub  
 
Figure 7. Pseudo-code of determining the initial 
temperature of SA algorithm (Safaei et al., 2008). 
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Figure 8. Neighborhood structure. 

 
 
 
that results in an effective neighborhood search. On the other hand, 
L value should not be so large that would result in ineffective search 
and increase run time. In this paper, number of repetitions in each 
temperature (L) has been considered to be 10. 
 
 
Stopping criterion 
 
In the presented algorithm, stopping criterion has been considered 
to be the final temperature. The final temperature should be 
selected in a way that the probability of accepting non-improving 
solutions in the final repetitions will be close to zero. 

 
 

EXPERIMENTAL RESULTS 
 

To validate the proposed model and the implemented 
algorithm, various test problems are examined. The 
algorithm is coded into the MATLAB 7.1 and run on the 
PC, processor at 2.4 GHz and Windows 7 using 4.00 GB 
of RAM. The experiments are implemented in two folds: 
first, for small-sized problems, the other for large-sized 
ones. For both of these experiments, we consider the following 
assumptions: 1. the values of ε and δ are equal to 1; 2. each 

experiment is repeated 15 times; 3. the processing time for 
all parts on the all machine are uniformly generated in 
range [10, 100]. 
 
 

Small-sized problem (number of parts is smaller than 
20 parts) 
 

The problem instances are randomly generated. The 
number of particle, termination criterion of PSO, Learning 

factors ( 1c and 2c ), and maxV  are fixed to 50, 50, 2, 2, 

and 3, respectively. For each instance, the results 
obtained are compared with the Lingo 8.0. By comparing 
the computational results of this algorithm and the 
optimum solutions of these problems which are solved by 
lingo 8.0, it can be concluded that this algorithm is able to 
find optimum solutions for all of these problems. The 
results of solving the problems by LINGO 8.0 are 
illustrated in Table 4. 
 
 

Large-sized problem (number of parts is more than 
20 parts) 
 

The problem instances are randomly generated. The 
number of particle, termination criterion of  PSO,  learning
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Table 2. Computational results of PSO. 
 

Problem no. 
Number of 

parts 
Worst solution 

value 
Average 

solution value 
Best solution 

value 
Average performance 

time (s) 

1 5 116 115 113.5 0.39624 

2 10 183 183 183 0.49608 

3 15 358.5 355.8 352.5 0.48672 

4 20 572.5 572.5 572.5 0.54288 

5 25 549.5 543 535.5 0.62712 

6 30 662.5 662.5 662.5 0.6708 

7 35 681.5 680.25 679 0.7215 

8 40 851.5 851.5 851.5 0.7761 

9 45 1128.5 1128.8 1127 2.45232 

10 50 989.5 989.5 989.5 2.60832 

11 55 1213 1216.5 1230.5 2.8392 

12 75 1550 1549.5 1548.5 3.8376 

13 100 2516 2516 2516 5.11368 

14 120 2777.50 2777.50 2777.50 6.38976 

 
 
 

Table 3. Computational results of SA. 

 

Problem no. 
Number of 

parts 
Worst solution 

value 
Average solution 

value 
Best solution 

value 
Average performance 

time (s) 

1 5 118.5 118.5 118.5 0.2496 

2 10 206 206 206 0.4407 

3 15 387.5 387.5 387.5 0.1716 

4 20 580.5 580.5 580.5 0.1783 

5 25 600.5 600.5 600.5 0.1840 

6 30 690.5 690.5 690.5 0.1872 

7 35 776.5 763.3 715.5 0.1872 

8 40 964.5 964.5 964.5 0.2028 

9 45 1253.5 1252.7 1252 0.2145 

10 50 1132.5 1132.5 1132.5 0.1872 

11 55 1372 1368.8 1368 0.1840 

12 75 1775.5 1767.5 1763.5 0.1778 

13 100 2809 2809 2809 0.1497 

14 120 3130.5 3130.5 3130.5 0.156 

 
 
 

Table 4. Computational results of Lingo 8.0. 
 

Problem no. 
Number 
of parts 

Best OFVa BOUND 
Run time 
(second) 

1 5 113.5 113.5 <1 

2 10 183 183 <1 

3 15 352.5 352.5 <1 

4 20 572.5 572.5 1800 

5 25 535.5 535.5 2700 

6 30 662.5 662.5 7200 

7 35 679 679 14400 

8 40 1254.5 0 18000 
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Table 4. cont’d 
 

9 45 1487 0 18000 

10 50 1623.5 0 18000 

11 55 1931 0 18000 

12 75 2122 0 18000 

13 100 3459.5 0 18000 

14 120 4634.5 0 18000 
 

a. Objective function value. 
 
 
 

factors ( 1c and 2c ), and maxV  are fixed to 100, 100, 2, 

2, and 3, respectively. Because of complexity of the 
problem, the Lingo software cannot produce any results 
for most of the large-sized problems. However according 
to the computational results shown in Tables 2 and 3, 
algorithm PSO and SA can achieve proper solutions in 
acceptable time. 

As aforementioned, each one of these problems have 
been solved by LINGO 8.0 software at first. LINGO 8.0 is 
able to produce global optimal solutions for problems. 
But, when dimensions of the problem increase, this 
software cannot obtain optimal solutions in a reasonable 
time. In this article, the maximum running time of LINGO 
8.0 has been considered to be five hours. That is, if 
LINGO 8.0 cannot obtain the global optimal solution in 
less than five hours, the solution algorithm will stop and 
the best solution obtained by the software will be 
considered as its output. Therefore, meta-heuristic 
algorithms should be used for solving high dimension 
problems. 

 
 
Conclusion 

 
In this paper, after a discussion of the possible existing 
robot moves cycles in a 2-machine robotic cells, a new 
cycle with the assumption that the machines are the 
same and flexible with the ability to perform all the 
necessary operations for producing the same and 
different parts was considered. The main problem in this 
research is to minimize the cycle time in producing same 
and different parts by optimizing part sequencing and 
robot moves sequence in the robotic cell. Accordingly, we 
provided a mathematical programming model based on 
timed Petri network. Then the computational complexity 
of the model was analyzed and it was shown to be an 
NP-Complete problem. Also to solve this model, we 
proposed two meta-heuristic algorithms named PSO and 
SA algorithms.  

Then the obtained solutions by these algorithms were 
compared to exact solutions by LINGO software. The 
results indicated that PSO algorithm can obtain better 
solutions in acceptable running time compared to other 
algorithms. Among the issues that can  be  considered  in 

future researches are: i) to test the performance of the 
existing robot move sequences in the form of new 
proposed cycle; ii) to extend these problems to 3-
machine robotic cells. 
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