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In the field of financial economics, many researche rs have developed optimal portfolio selection 
models. Unfortunately, those models cannot be imple mented directly by investors since the coefficient 
of risk aversion is an exogenous variable. However,  even if investors have no idea about their attitud es 
toward risk, investors might specify a maximum prob ability of failing to reach a specific portfolio 
threshold. According to this argument, we regard st op-loss level as portfolio threshold and penetrate 
the attitude towards risk through the stop-loss lev el. Then, we can achieve investor’s optimal life-ti me 
portfolio selection model. 
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INTRODUCTION 
 
Merton (1969, 1971) was the pioneer of using 
continuous-time modeling in financial economics by 
formulating the intertemporal consumption and portfolio 
choice problem of an investor in a stochastic dynamic 
programming setting. After the development of simple 
relation between consumption and asset returns by 
Lucas (1978) and Breeden (1979), consumption-based 
asset pricing theory became one of the major advances 
in financial economics over the past decades. Many 
researchers Bodie et al. (1992), Hindy et al. (1993), Kim 
and Omberg (1996), Brennan et al. (1997), Sorensen 
(1999), Lioui and Poncet (2001), Viceira (2001), Xia 
(2001), Wachter (2002), Yen and HsuKu (2003), Bajeux-
Besnainou et al. (2003), Chacko and Viceira (2005), Guo 
and Yen (2006,2008), Guo (2009), Benzoni et al. (2007), 
Garlappi et al. (2007), Kan and Zhou (2007), Liu (2007), 
and HsuKu (2007) have extended Merton’s dynamic 
asset allocation model over the past decades. 
Unfortunately, in those models, the risk aversion 
coefficient is an exogenous variable. Hence, those 
models cannot be implemented directly by investors. 
Given specified stop-loss level and value-at-risk, we can 
find out the risk aversion coefficient through investor’s 
specified threshold and probability of failing to reach the 
portfolio threshold. 

The St. Petersburg Paradox offers some clues about 
investors’ attitude toward risk. The game is played by 
flipping a coin until it comes up tails, and the total number 
of flips, n, determines the prize, which equals $2n. Thus, if 
the coin comes up tails the first time, the prize is $21 = $2, 

and the game ends. If the coin comes up heads the first 
time, it is flipped again. If it comes up tails the second 
time, the prize is $22 = $4, and the game ends. If it comes 
up heads the second time, it is flipped again, and so on. 
The game consists of an infinite number of possible 
consequences (runs of heads followed by one tail). Since 
the expected payoff of each possible consequence is $1, 
and there are an infinite number of them, the expected 
value of the game is an infinite number of dollars. The 
classical resolution of the paradox involves an explicit 
introduction of a utility function. Although, investors 
typically cannot make sure of their attitudes toward risk, 
they can always evaluate the value of the game. If the 
utility function of investors is given by 

( ) 0  , >−= − γγWWU
, the expected utility of the St. 

Petersburg game is: 
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We can indirectly uncover γ by the evaluated value. For 
example, the evaluation of $ 3 indicates γ equals 1 

(
( ) ( )( ) 13212 11 =⇒−=−− −+−+− γγγγ

). Hence, 
investor’s attitude toward risk can be uncovered by 
specified stop-loss level and value-at-risk. Once the risk 
tolerance is discovered, we can determine investor’s 
optimal life-time portfolio selection model. 



 
 
 
 
THE ECONOMIC SETTING 
 
In the market, N risky assets and one risk-free asset are 
assumed and all of these securities may be infinitely 
divided with the returns accrued only in the form of capital  
gains (no dividend payout). Taxes, transaction costs, and 
short-sell constraints are all inapplicable.  

Assuming the price of the jth asset at time t, Sjt, follows 
the Ito process with the following differential equation: 
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Where zj is a Wiener process; µj is the expected 
instantaneous rate of return of the jth risky asset at time t; 
σj is the standard deviation of expected instantaneous 
rate of return of the jth risky asset at time t. 

Let Bt be the total amount of the risk-free asset that the 
investor holds at time t and the dynamics for Bt is given 
by: 
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where rf is the expected instantaneous rate of return of 
the risk-free asset. 

Let Wt be the total wealth held by an investor at time t, 
comprising the formula: 
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where njt is the number of shares of the jth risky asset 
held by the investor at time t. 

By Equations 1, 2, and 3, we have the dynamic 
stochastic process of the total wealth: 
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where Ct is the consumption of the investor at time t; wjt is 
the proportion of the total wealth that the investor invests 
in the jth risky asset at time t, j = 1,…, N . 

The first moment and second moment of Equation 4 
are as: 
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where tw
is the N ×1 vector with representative elements 
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wjt; 
'w t  is the transpose of w t; tµ  is the N ×1 vector of 

expected instantaneous rate of excess return of risky 

assets at time t; tΣ  is the N ×N variance-covariance 
matrix of the expected instantaneous rate of return of 
risky assets at time t. 
 
 
THE MODEL 
 
To determine an individual investor’s optimal asset 
allocation strategy in a stochastic dynamic programming 
setting, we must apply a utility function in advance. In this 
paper, we adopt the power utility function and take the 
utility function of investors as: 
 

( ) ( )[ ] 0   , >−=−= −− βββ
ttt WCCCU                     (7) 

 
This is a well-known strictly concave power utility 
function, that is, U'(Ct) > 0 and U"(Ct) < 0, and 1+β is the 
coefficient of relative risk aversion. 

Assume that the investor desires to solve the following 
dynamic portfolio choice problem: 
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substituting Equations 4, 5, 6 and 7: 
 
Ct > 0, Wt > 0 
 

where ( )TWB T ,  is the bequest function. Let 
( )tWJJ t ,=

 be the well-behaved function such that: 
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The Hamilton-Jacobi-Bellman (HJB) equation is: 
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where JW denotes the derivative of J with respect to Wt , 
with a similar notation used for higher derivatives; Jt 
denotes the derivative of J with respect to t. 

The first order conditions to Equation 9 are: 
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Figure 1.  The relationship between stop-loss level and VaR. 

 
 
 
Then, we can yield the optimal dynamic asset allocation 
strategy for the investor as: 
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SHARPE RATIO 
 
Sharpe (1966, 1975, 1994) introduced a measure for the 
performance of mutual funds and proposed the term 
reward-to-variability ratio to measure risk-adjusted 
performance. The Sharpe ratio is calculated by 
subtracting the risk free rate from the return of the 
portfolio and then dividing by the portfolio’s standard 
deviation. In Equation 10, the rate of excess return and 

variance are tt µ'w
 and ttt wΣ'w

, respectively. Let 

ptSR
 be the Sharpe ratio of our model at time t, we have: 
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It is obvious that the Sharpe ratio of our model is 
uncorrelated with investor’s attitude towards risk. 
 
 
RISK AVERSION COEFFICIENT 
 
Since the coefficient of relative risk aversion has puzzled 
investors, we introduce the stop-loss level and the 
maximum probability of failing to reach the threshold to 
solve the risk aversion coefficient. In Shefrin and Statman 
(2000) and Das et al. (2010), investors maximize expe-
cted returns subject to a constraint that the probability of 
failing to reach a threshold level not exceeds a specified 
maximum probability. It is the same as expected wealth 
optimization with a value-at-risk constraint. 

Value-at-risk (VaR, hereafter) has emerged as the 
standard    tool   for   measuring  and  managing  financial  

 
 
 
 
market risk. The concept of VaR as a single risk measure 
summarizing all sources of downside risk was first 
developed by Morgan and made available through its 
Risk-Metrics software in October 1994. For a given 
portfolio, probability and time horizon, VaR is defined as a 
threshold value such that the probability that the loss on 
the portfolio over the given time horizon exceeds this 
value is the given probability. For example, if a portfolio 
has a daily 95% VaR of $1 million with 95% confidence 
level, it means that over the next 24-h period, there is a 
5% probability that the portfolio will fall in value by more 
than $ 1 million. By Equation 1, we have: 
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                                          (12) 
 
The existing literature suggests capturing the uncertainty 
in VaR estimates in the form of VaR confidence intervals. 
Jorion (1996) suggests normal distributed returns. Hence, 
the instantaneous rate of excess return of investor’s 
optimal life-time portfolio follows a normal distribution. Its 

mean and variance are tt µ'w
 and ttt wΣ'w

, 
respectively. Therefore, at time t, VaR of the investor’s 
optimal life-time portfolio is: 
 

( ) tWz 21
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                                   (13) 

where αz
 is the standard normal variable with cumulative 

probability of α . 
Stop-loss strategies are widely used trading strategies 

among financial practitioners. It can prevent investors 
from holding their losing investments too long by 
automatically prompting the sales of losing investments. 
Brown et al. (2010) show that trailing stop-loss orders 
produce positive abnormal returns with respect to the 
Standard and Poor's 500 market index as a benchmark 
and protect investors as a mean-variance efficient 
strategy. The simplest stop-loss strategy involves setting 
a sell level at a fixed percentage below the purchase 
price at the time of entry. 

Let tδ
 be the tolerable loss ratio of the investor at time 

t. If the investor specify the return on the portfolio should 

not fall below tδ−
 with more than α  probability. As 

shown in Figure 1, we have: 
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By Equations 10, 11 and 14, the coefficient of relative risk 
aversion is: 
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OPTIMAL LIFE-TIME PORTFOLIO SELECTION 
MODEL 
 
After substituting Equation 15 into Equation 10, we have 
the optimal portfolio selection model as: 
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Equation 16 shows that the optimal tailor-made life-time 
portfolio selection model is composed of the tolerable 
loss ratio, the probability of failing to reach the tolerable  
loss ratio, the rate of expected return of the risk-free 
asset, and the rate of expected excess return and risk of 
risky securities. Moreover, all of those elements can be 
determined before you make an investment decision. 
 
 
Conclusion 
 
Over the past decades, many researchers have 
developed optimal portfolio selection models. However, 
those models cannot be implemented directly by inves-
tors since the attitude toward risk has puzzled investors. 
In this paper, we demonstrate that all of the elements in 
our model can be determined before making an 
investment decision. Therefore, investors can make good 
use of our optimal life-time portfolio selection model. 
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