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Although, many papers have appeared in the literature of hub location problem, most of them deal with 
the problem in a crisp environment. In this paper, the single-allocation hierarchical hub median problem 
(SA-H-MP) with fuzzy demands is addressed. The structure of the model is derived from Yaman (2009) 
and consists of a three-level network of demand nodes, non-central hubs, and central hubs. It has been 
assumed that the demands are not known precisely and are estimated using fuzzy variables. In order to 
solve the problem, a simulation-embedded variable neighborhood search (VNS) is applied. The results 
of running the proposed approach on the well-known CAB dataset verify that it is able to solve test 
problems with less than one percent of error. 
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INTRODUCTION 
 
Hubs are special facilities that serve as switching, 
transshipment and sorting points in many-to-many 
distribution systems (Alumur and Kara, 2008). Due to 
their significance in reality, the study of hub location 
problem (HLP) has been a focal area of interest among 
scholars since its very beginning in the late 1960s and 
various extensions to the classical models have been 
presented so far. During the last two decades, hub-and-
spoke network design problems have received increasing 
attention in a wide range of application areas such as 
transportation, telecommunications, computer networks, 
postal delivery, less-than-truck loading (LTL) and supply 
chain management (Gelareh et al., 2010). One distinctive 
feature of HLP is that direct flows between demand 
nodes are not allowed in a hub network. In other words, 
to reach a destination, a flow is satisfied through the 
shortest possible path which should pass through one or 
more hub nodes. In a nutshell, HLP deals with two 
different tasks: hub selection, where some nodes are 
selected to be hubs, and spoke allocation, where an 
assignment of spoke nodes to  hubs  is  made  (Meyer  et  
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al., 2009). Hub networks bring about two major benefits 
in design of a network: (a) the number of links in the 
network can be dramatically less than a complete 
network, where direct flows are possible; (b) since the 
flow between hub nodes is discounted by a discount 
factor (normally shown as α), hub networks can be more 
economical for a large variety of applications. Basically, 
two types of allocation schemes are possible in a HLP as 
single-allocation and multiple-allocation. While in a 
single-allocation scheme, a demand node is allocated to 
one and only one hub node, a multiple-allocation network 
can be established by allocation of demand nodes to 
more than a single hub node.  

Hierarchical facility location (HFL) problems are one of 
the facility location variants which have been studied in 
the literature. Sahin and Süral (2007) identified some 
applications of HFL problems in waste management, 
production-distribution, telecommunication, health-care, 
emergency medical services, etc. One of the special 
types of HFL problems is the hierarchical hub location 
problem which is a variant of the classical HLP. Figure 1 
illustrates a sample hierarchical hub network which is 
comprised of three node types. In this figure, nodes 1 to 6 
represent demand nodes, nodes 7 to 10 depict hub 
nodes, and nodes 11 to 14 are central hubs. While the 
network between central hubs is a complete network,  the  
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Figure 1. A sample hierarchical network of 14 nodes. 

 
 
 

other layers of the network are incomplete graphs. 
Moreover, each demand node can be allocated to a 
central hub directly or via a hub node.  

Similar to many real-world problems, a location 
problem may encounter vagueness. For instance, the 
travel time between two cities can be stated as “between 
10 and 11 h”, or the demand of a new product is 
estimated to be “more than 20000 per year”. Although 
uncertainty is ubiquitous in location problems, it has 
received relatively little attention in the literature. There 
are a number of theories to model and solve problems 
under uncertainty of which probabilistic and possibilistic 
approaches are more dominant. Using probabilistic 
approaches can be beneficial in myriad of applications. 
However, when there is not enough data, or when there 
is a need to invest an exorbitant amount of money to 
garner reliable data, using the possibilistic approach is 
more reasonable. The possibilistic approach of uncer-
tainty is to a large extent less expressive than probability, 
but also less demanding in information (Bubois et al., 
2004). Hence, using fuzzy logic and possibility theory 
deserves to be considered as a valuable approach in 
modeling and solution of many uncertain problems. Perez 
et al. (2004) introduced four distinct categories of a fuzzy 
location problem as: location problems with fuzzy 
vertices, location problems with fuzzy edges, location 
problems with fuzzy weights, and location problems with 
fuzzy lengths. The problem in this paper is of the third 
type, since we assumed that there is some uncertainty in 
estimation of demands between the network nodes which 
is handled using fuzzy variables and the knowledge of 
expert(s). It should be noted that the method to elicit the 
expert knowledge is beyond the scope of this paper. 

The  contributions  of  our  paper  to  the  literature   are  

twofold. We put forward an efficient and rigorous 
methodology to solve SA-H-MP and also present a fuzzy 
version of the proposed solution procedure to solve SA-
H-MP under uncertainty. 

The outline of this paper is as follows: The paper 
proceeds with a review of the literature of the HLP, with a 
focus on some recent advances. Additionally, here we 
present a brief overview of using credibility theory in 
solving some mathematical programming problems. 
Then, the mathematical formulation of the problem is 
given hereafter. Next, some basic issues regarding fuzzy 
variables are discussed. The proposed solution approach 
is elaborated. Moreover, numerical experiments are 
presented. Finally, conclusions and some outlooks for 
future research are presented. 
 
 
LITERATURE REVIEW 
 
Since the main goal of this paper is not to review all the 
pertinent publications to HLP, we will focus on some 
recent publications in this area, some of the most 
influential contributions in the history of HLP, and an 
overview of using credibility theory to solve combinatorial 
optimization problems. Interested readers can refer to 
valuable reviews for a wealthier background of HLP, such 
as Aykin (1995) for continuous HLPs, and Alumur and 
Kara (2008) for network HLPs. 

The first attempts to model a HLP dates back to 1980s 
when O'Kelly (1987) presented his well-known mathe-
matical formulation for p-hub median location problem. 
Later, Campbell (1994) presented the first linear model 
for the p-hub median location problem. This model has 
been   modified  by   many   scholars,   such   as   Skorin-  
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Table 1. Some major extensions to the classical hub location problem in the last decade. 
 

Subject Year Author(s) 

Latest arrival HLP 2001 (Kara and Tansel (2001) 

Hub arc location problem 2005 Campbell et al. (2005a, b) 

HLP considering congestion at hubs 2005 Elhedhli and Hu (2005) 

Latest arrival HLP with stopovers 2007 Yaman et al. (2007) 

HLP as a set of M/M/1 queuing hubs nodes 2007 Rodriguez et al. (2007) 

Conditional p-hub median location problem 2009 Eiselt and Marianov (2009) 

Stochastic p-hub center with service level constraints 2009 Sim et al. (2009) 

Reliable hub location problem 2009 Kim and O'Kelly  (2009) 

HLP for time definite transportation 2009 Campbell (2009) 

Efficient formulations of incomplete HLP 2009 Alumur and Kara (2009) 

HLP with multiple capacity levels 2010 Correia et al. (2010) 

Competitive HLP in liner service providers 2010 Gelareh et al. (2010) 

Game theoretical model in HLP 2010 Lin and Lee (2010) 

Design of an intermodal hub-and-spoke network 2010 Ishfaq and Sox (2010) 

A real-world case study of HLP in Morocco 2010 Menou et al. (2010) 

Hierarchical HLP network for dual express services 2010 Lin (2010) 

Stochastic uncapacitated HLP 2011 Contreras et al. (2011) 

HLP with balancing requirements 2011 Correia et al. (2011) 

Partitioning-hub-location-routing problem 2011 Catanzaro et al. (2011) 

Allocation strategies in HLP 2011 Yaman (2011) 

Ordered median hub location problem 2011 Puerto et al. (2011) 

HLP with decentralized management 2011 Vasconcelos et al. (2011) 

Evolutionary algorithm for capacitated HLP 2011 Kratica et al. (2011) 

 
 
 
Kapov et al. (1996), Ernst and Krishnamoorthy (1996), 
and Ebery et al. (2000). 

In the last decade, there has been a considerable 
increase in the number of publications in the area of HLP. 
Some of the main contributions to the literature of HLP 
are given in Table 1. A glance over this table shows that 
the majority of recent contributions are about presenting 
new variants of classical HLP, considering game theory 
concepts, adding partitioning and routing to the location 
module, etc. 

The literature of location problems has witnessed some 
heuristic and metaheuristic methods to solve variants of 
HLP. The first heuristic is O’Kelly (1987) which proposed 
two exhaustive heuristics to solve the p-hub median 
problem. Another heuristic was proposed by Klincewicz 
(1991) which outperforms the one by O’Kelly (1987). 
Following these heuristics, a number of metaheuristics 
have been presented in the literature of HLP, including: 
Tabu search and GRASP by Klincewicz (1992), 
simulated annealing by Ernst and Krishnamoorthy (1996), 
genetic algorithm by Kratica et al. (2007), and variable 
neighborhood search by Perez-Perez et al. (2007) and 
Illic et al. (2010). 

Using fuzzy variables in modeling mathematical 
programming problems is rather untouched in the litera-
ture. Some of the problems targeted in the literature are 
reported  in  Table  2  and  their  solution  procedures  are  

cited for further information. Using credibility theory to 
solve mathematical programming problems is rather 
untouched in the literature. Moreover, to the best of our 
knowledge, there has not been any heuristic or 
metaheuristic for SA-H-MP. Therefore, this paper 
addresses an efficient simulation-embedded VNS to 
solve SA-H-MP in both crisp and fuzzy environments. 

 
 
PROBLEM DEFINITION 
 

Based on the taxonomy of Klose and Drexl (2005), the 
following assumptions are made for the problem of this 
paper which was originally proposed by Yaman (2009): 
 

1. The problem is studied on a network of vertices and 
edges. 
2. The objective is of a minisum type, minimizing the total 
cost of the flows. 
3. There is no capacity restriction in the network. 
4. The problem is multi-stage and the decision is to be 
made for a hierarchy of nodes. 
5. There is a single product in the network. 
6. Demand in the network is completely inelastic. 
7. The problem is static. In other words, the decision is 
made for a single period. 
8. The problem parameters are uncertain  and  estimated
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Table 2. Some problems solved in a fuzzy environment using credibility theory. 
 

Author Problem Solution procedure 

Peng and Liu (2004) Parallel machine scheduling Genetic algorithm 

Zhao and Liu (2005) Standby redundancy optimization Genetic algorithm 

Zheng and Liu (2006) Vehicle routing problem Genetic algorithm 

Liu and Li (2006) Quadratic assignment problem Genetic algorithm 

Huang (2007) Portfolio selection Genetic algorithm 

Yang and Liu (2007) Fixed charge solid transportation Tabu search 

Zhou and Liu (2007) Location-allocation problem Genetic algorithm 

Erbao and Mingyong (2009) Vehicle routing problem Differential evolution 

Lan et al. (2009) Multi-period production planning  Particle swarm optimization 

Liu and Gao (2009) Multi-job assignment problem Genetic algorithm 

Li et al. (2010) Portfolio selection Simulated annealing 

Ke and Liu (2010) Project scheduling Genetic algorithm 

Wen and Kang (2011) Location-allocation problem Genetic algorithm 

Fazel Zarandi et al. (2011) Location-routing problem Simulated annealing 

Davari et al. (2011) Maximal covering location problem Simulated annealing 
 
 
 

using fuzzy variables. 
9. There is a single objective in the problem. 
10. Both hubs and central hubs are desirable facilities. 
 

The three-layer hierarchical p-hub median location 
problem was first modeled by Yaman (2009). She 
presented a mixed integer mathematical programming 
assuming that triangular inequality holds for costs of the 
network. The structure of the network is as follows: there 
is a three-layer hub-and-spoke network in which the first 
level is composed of central hubs, the second layer is the 
layer of non-central hubs, and the third level is the 
demand nodes. Each demand node can host a central or 
non-central hub and should be allocated to one and only 
one hub node. Clearly, in satisfying any origin-destination 
demand, there is a need to visit up to four hub nodes.  

In the subsequent formulation, the sets I, H, C 
represent the sets of demand nodes, possible hub nodes, 
and possible central hubs, respectively (It is to be known 
that H ⊆ I and C ⊆ H). Moreover, Zijl is a binary variable 

taking a one value if node I ∈ I is assigned to hub j ∈ H  
 

and hub j is allocated to central hub l ∈ C. It is worth 

mentioning that if j ∈ H becomes a hub node and 

allocated to the central hub l ∈ C, then the value of Zjjl is 

equal to 1. Moreover, if node l ∈ C is a central hub, then 

the variable Zlll takes a value of 1. 
i

jlg is the amount of 

flow which has node i ∈ I as origin or destination 

travelling between hub j ∈H, and central hub l ∈ C. 
i

kl
f denote the amount of traffic of node i ∈ I as origin 

travelling from central hub k ∈ C to central hub l∈C\{k}. 
Moreover, p and p0 are the number of hubs and central 
hubs to be located. The amount of traffic to be routed 

from node i ∈ I to node m ∈ I is shown as tim. The cost of 

routing a unit of flow from node i ∈ I to node j ∈ I is 
shown as dij (dii = 0 and dij = dji for all pairs of i and j). The 
discount factor of routing between hubs and central hubs 
is shown as αH and the discount factor of routing between 
central hubs as αC. The mathematical formulation of 
Yaman (2009) is as follows: 
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Equation 1 is the objective function which calculates the 
fitness of a solution. This function is the summation of the 
routing costs between demand nodes and their allocated 
hub nodes, between hub nodes and their allocated 
central hubs, and also between the central hubs. 
Constraint (Equation 2) is used to guarantee that each 
demand node is allocated to a single hub node. Con-
straint (Equation 3) ensures that if the demand of node i 
is assigned to the hub j and central hub l, then the j

th
 

node must be a hub. If node j is assigned to the central 
hub l, then node l must be a central hub. This  is  ensured 
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using constraint (Equation 4). The number of non-central 
and central hubs is determined using Equations 5 and 6. 
The traditional flow balance constraints are modified and 
stated in constraint (Equation 7). Constraints (Equations 

8 and 10) are employed to compute the values of 
i

jlg in 

terms of the assignment variables. Equation 9 
strengthens the LP relaxation of the problem. Finally, 
constraints (Equations 11 and 12) are employed to 
ensure that z variables are binary and f values take 
positive values. 

The most distinctive feature of the problem in this paper 
is the assumption that demands are fuzzy variables 
which are not known exactly.  One of the applications of 
this problem is the case where a network is to be built 
from scratch. Needless to say, there is no historical data 
in such a case and experts can be regarded as the only 
reliable source to estimate the uncertain parameter. In 
such a problem, the mathematical formulation is as 
Equation 13 in which the expected value of total costs is 
to be minimized. It should be noted that in Equation 13, 
demands are fuzzy variables. Owing to these fuzzy 
values in the objective function, there is no analytical 
procedure to calculate the expected values. Therefore, a 
fuzzy simulation algorithm should be designed in order to 
approximate the fitness of a solution. 
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SA-H-MP is proven to be NP-Hard by Yaman (2009). 
Knowing that the traditional p-hub median problem is NP-
hard, this is easily verifiable by relaxing the problem to 
the traditional p-hub median problem assuming p = p0. 
Hence, for larger sizes of the problem, exact methods are 
handicapped to reach optimal solutions and there is a 
need to devise some non-exact procedures. In this paper, 
an efficient variable neighborhood search (VNS) is 
presented which shows promising results. Then, a fuzzy 
simulation is embedded within the proposed VNS to solve 
the fuzzy test problems.   

 
 
FUZZY VARIABLES 
 
The concept of fuzzy sets was first introduced by Zadeh 
in the mid 1960s and Kaufmann (1975) coined the term 
fuzzy variable. To measure a fuzzy event, various 
measures have been proposed so far. One of the most 
well-known measures is the possibility measure which 
was first proposed by Zadeh (1975, 1978). Later, Dubois 
and Prade (1988) published a considerable amount of 
publications regarding the theoretical foundations of 
possibility  theory.  Due   to    some   restrictions   of    the  

possibility theory, Liu and Liu (2002) presented the 
credibility measure. Traditional measures of uncertainty 
such as belief measure ((Dempster, 1967) and (Shafer, 
1976)), possibility measure (Zadeh, 1978), and necessity 
measure (Zadeh, 1979) do not assume the self-duality 
property. Therefore, they are inconsistent with the law of 
contradiction and law of excluded middle. However, the 
credibility measure is self-dual and satisfies these two 
laws. This is a considerable advantage of this measure 
compared with the other types of measures. Since this 
paper deals with fuzzy variables, this part is devoted to 
introducing some basics of credibility theory. For more 
information, one may consult with valuable sources such 
as Liu (2009). 
 

Definition 1 (Liu, 2009). Let Θ be a nonempty set, and P 

the power set of Θ, and Cr a credibility measure. Then, 
the triplet (Θ, P, Cr) is called a credibility space 
Definition 2 (Liu, 2009). A fuzzy variable is a measurable 

function from a credibility space (Θ, P (Θ), Cr) to the set 
of real numbers.  

Definition 3 (Liu, 2009). Let Θk be nonempty sets on 
which Crk are credibility measures, k = 1, 2, …, n, 

respectively, and Θ = Θ1 × Θ2 ×…Θn. Then 
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Figure 2. A triangular fuzzy variable. 
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For each (θ1,θ2,…,θn)∈Θ. 
 
Definition 4 (Liu, 2009). An n-dimensional fuzzy vector is 

defined as a function from a credibility space (Θ, P, Cr) to 
the set of n-dimensional real vectors. 

Definition 5 (Liu, 2009). Let ξ be a fuzzy variable defined 
on the credibility space (Θ, P, Cr). Then, its membership 
function is derived from the credibility measure by 
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Definition 6 (Liu and Liu, 2002). Let ξ be a fuzzy variable. 

Then the expected value of ξ is defined by: 
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Definition 7. Let (Θ, P (Θ), Pos) be a possibility space, 

and A be a set in P (Θ) and the membership function µ 

(u) of fuzzy variable ξ is given as µ. Then: 
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 To show how an event can be measured using fuzzy 

measures, a triangular fuzzy variable ξ = (r1, r2, r3) is 

shown in Figure 2. From the definitions of possibility, 

necessity and credibility, it is easy to obtain: 
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SOLUTION PROCEDURE 
 
Here, we deal with the elaboration of the proposed VNS 
algorithm, its modules, and how it is used to solve the 
crisp and fuzzy versions of the problem. The proposed 
approach can be considered as a juxtaposition of two 
modules: fuzzy simulation, and variable neighborhood 
search. These modules are elaborated subsequently.  

 
 
Variable neighborhood search 

 
Variable neighborhood search (VNS) is a relatively recent 
metaheuristic based on the simple idea of changing 
neighborhood within a local search to identify better local 
optima (Mladenovic and Hansen, 1997). It has been used 
in various fields such as scheduling (Liao and Cheng, 
2007), supply chain management (Lejeune, 2006), and 
routing (Fleszar et al., 2009). VNS exploits systematically 
the following observations: (i) a local minimum with 
respect to one neighborhood structure is not necessarily 
the same with respect to another; (ii) a global minimum is 
a local minimum with respect to all possible neighbor-
hood structures; (iii) for many problems local minima with 
respect to one or several neighborhoods are relatively 
close to each other (Mladenovic et al., 2010). 

A standard VNS starts by initializing a solution and 
defining a set of neighborhoods kmin to kmax. In each 
iteration, a shaking is carried out in the neighborhood Nk 

(x) to get a new solution x′. Then, a local search is 

applied from x′ to get a local optimum x′′. If this local 
optimum has a better fitness, it replaces x and k = kmin, 
otherwise,  k   is   increased.   The   same   procedure   is 
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Figure 3. The representation of a sample solution. 

 
 
 
followed until the stopping criteria are met. 

In this paper, we employ a skewed version of VNS to 
get better results. In a standard VNS, a shift to a new 
solution is made only when there is an improvement in 
the solution quality. However, in a skewed VNS moves 
which lead to slightly inferior solutions are accepted. In 
other words, an inferior solution is accepted if the 
following inequality holds true: 
 

δ≤
−

inc

incnew

Z

ZZ
 (23) 

 
where Znew, Zinc, and δ represent the fitness of the new 
solution, the fitness of the current solution, and the 
maximum tolerable deterioration in the solution quality, 
respectively. This step is carried out in order to 
counteract premature convergence. It is to be noted that 
based on our preliminary experiments, we defined δ = 
0.002. Our experiments testified that using a skewed 
VNS can clearly bring about the ability to escape local 
optima. 
 
 
Solution encoding and representation 
 
An efficient solution encoding can considerably contribute 
to a successful performance of any metaheuristic algo-
rithm. To be resourceful in finding a suitable procedure to 
encode solutions, a couple of representation schemes 
were devised. Our experiments using these schemes led 
us to select a bipartite representation which works as 
follows. Assume that there are n demand nodes, and  the 

number of hub and central hubs to be located are h and 
c, respectively. Then, using the proposed representation 
scheme, each solution contains n + h bits of which n bits 
are in the first section and the remaining bits are in the 
second. The first section of a solution shows the 
allocation of nodes to hubs or central hubs. In other 
words, the value in the i

th
 bit of the solution string shows 

the index of the hub/central hub to which the node i is 
allocated. Moreover, the second section contains the 
index of hub nodes. Since each central hub is allocated 
to itself in the first section, there is no need to add the 
indices of central hubs to the solution string. Hence, the 
length of the second section is equal to h. Figure 3 shows 
an example which could be used to explain the encoding 
scheme further. It should be recalled that the direct 
allocation of a spoke to a central hub is possible as 
shown for node 3. 
 
 
Solution initialization 
 
The initialization of any heuristic or metaheuristic can 
drastically affect the quality of its solutions. In this paper, 
a population-based initialization step is carried out as 
follows: First, a population of initial solutions is generated, 
each containing a random set of hubs and central hubs. 
Then, for each solution, demands are allocated to the 
nearest hub or central hub. The initial solution of the algo-
rithm is the one which has the best solution quality in the 
initial population of solutions. Although that the nearest-
neighbor strategy does not necessarily give optimal 
solutions for HLP (Alumur and Kara, 2008), it can provide 
the   algorithm   with   some   comparatively   good   initial  
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Figure 4. The performance of the three neighborhood search structures on a 

sample solution. 

 
 
 
solutions. It should be noted that in our paper, we defined 
the size of the population to equal 1000. 
 
 
Termination criterion 
 
In our preliminary experiments, we realized that after 
three minutes, there is virtually no sign of improvement in 
the solution quality. Therefore, running the procedure for 
180 s has been considered as the termination criterion. 
 
 
Neighborhood search structure (NSS) 
 
The core of any VNS is its neighborhood search 
structures and how it explores the search space to reach 
better solutions. The set of neighborhoods used for 
shaking is at the heart of the VNS. Each neighborhood 
should strike a proper balance between perturbing the 
incumbent solution and retaining the good parts of the 
incumbent solution (Hemmelmayr et al., 2009). In this 
paper, three structures have been employed which deal 
with both the allocation and the location sections of a 
solution. The set of solutions which neighbor the 
incumbent solution x using the q

th
 NSS is shown as Nq(x). 

The first mechanism which is shown as N1(x) deals with 

changing the allocation of nodes i∈I\H from a hub j∈H to 

another hub l∈H. To put it in simpler terms, N1(x) 
contains all the solutions which differ from the current 

solution  in  the  allocation  of  π  nodes.  Our   exhaustive  

experiments showed that the values of π which are 
greater than 3 are not effective to intensify the search. 

Thus, we have restricted the value of π to three. The 
second move N2(x) is associated with substitution of the 

role of the node i∈H and another node j∈I\H. Clearly, 
using this move, the roles of a hub and a demand node 
are exchanged. Finally N3(x) is carried out when the role 

of a node i∈H\C and another node j∈C are exchanged 
without affecting the number of hubs and central hubs 
located. Figure 4 illustrates a sample solution which is 
modified using each of the three structures. In this paper, 
N1(x) is used as the local search procedure of VNS and 
the other two are the shaking procedures to be applied.  
 
 

Simulation-embedded VNS 
 
Since the objective function of the mathematical model 
has a fuzzy parameter, there is no deterministic 
procedure to calculate the fitness of a solution and to find 
the optimal solution. In order to simulate a fuzzy 

programming model like U: x → E [f (x, ξ)], which is dealt 
with in this paper, Liu (2009) presented a simulation 
algorithm as given in Figure 5. 
 
 
NUMERICAL EXAMPLES 
 
Here, we set out to show the efficiency of the proposed approach. 
To do so, the problem generation method is elaborated and 
numerical    examples   are   solved.   Moreover,   we   go   into   the 
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• Set e = 0. 

• Randomly generate θk from the credibility space (Θ, P, Cr) and write νk = (2 Cr

{θk}) ∧ 1 and produce ξk = ξ (θk), k = 1, 2, …, N, respectively. Then, randomly 

generate ξk and write νk = µ (ξk) for k = 1, 2, …, N, where µ is the membership 

function of ξ. 

• a = f (x, ξ1) ∧ f (x, ξ2) ∧… f (x, ξN) and b = f (x, ξ1) ∨ f (x, ξ2) ∨… f (x, ξN). 

• For SimItr = 1: N 

o Generate a random number r from the range [a, b]. 

o If r ≥ 0, then e = e + Cr {f (x, ξ) ≥ r}, else e = e – Cr {f (x, ξ) ≤ r} 

• Endfor 

• Return U(x) = a ∨ 0 + b ∧ 0 + e. (b - a)/N  
 
Figure 5. The simulation algorithm of Liu (2009). 

 
 
 
performance of the algorithm in detail. 
 
 
Test problems 
 
Here, we report the results of running the proposed algorithm on a 
set of test problems. In order to get a better understanding of the 
performance of the proposed algorithm, first the efficiency of the 
proposed VNS is attested using a set of test problems. Then, one of 
the instances is solved using the simulation-embedded VNS 
assuming fuzzy demands. In generation of the test problems, the 
well-known CAB dataset has been used, similar to Yaman (2009). It 
was presumed that αC < αH. Five sets of test problems were 
generated totally, each containing problems with different values of 
p and p0 up to 6 nodes. These test problems are different in the 
values of the pair (αC, αH) as shown in Tables 3, 4, and 5. 
 
 
Computer specifications 
 

All the test problems were run on a 2.53 GHz CPU equipped with  4 

Gigabytes of RAM, using the CPLEX 12.2 solver. Moreover, the 
proposed solution algorithm was coded using Visual C++. 

 
 
RESULTS, VALIDATION AND DISCUSSION 

 
Crisp test problems 
 
In this part of the work, a set of experiments were carried 
out in order to assess the efficiency of the proposed 
approach. All the test problems were solved using the 
CPLEX commercial solver. Then, results of the proposed 
VNS are compared against the results obtained from 
CPLEX.  

To compare these two outputs, the relative percentage 
deviation (RPD) has been used which is found as stated 
in Equation 24. 
 

 

100*
Fitness

FitnessFitness
(RPD)deviation  percentage Relative

CPLEX

CPLEXVNS −
=  

 
In which FitnessVNS and FitnessCPLEX are the outputs from 
VNS and CPLEX, respectively. To show the performance 
of the proposed VNS, each test problem was solved five 
times. Then, the results of the worst, average, and best 
runs are summarized in Tables 3 through 5. Results 
show that while the worst performance of the proposed 
VNS hardly ever exceeds one percent, there are some 
instances where the optimal solution is found using the 
proposed VNS. Results show that in 35 out of 36 
instances, the optimal solution is obtainable in at least 
one of the five replications using the proposed procedure. 
In  addition,  in  23  instances,  the  optimal  solutions  are  

attained in all the five replications. In other words, the 
algorithm is able to reach the global optimum in all of the 
five runs. Figure 6 depicts the average performance of 
the proposed VNS for problems of various settings.  

From a runtime point of view, results show that while, in 
some cases, CPLEX is unable to reach optimal solutions 
in more than 4 h; our proposed VNS is run in 3 min, 
regardless of the problem parameters. Interestingly, the 
results of the proposed approach are not far from 
optimality. Moreover, the proposed algorithm is able to 
escape local optima owing to the inherent mechanisms of 
VNS. Figure 7 depicts a sample trend  of  solution  quality 
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Table 3. Comparing the results of CPLEX and the proposed VNS for (αC, αH) = (0.6, 0.9). 
 

p p0 
CPLEX 

 
VNS 

Time Fitness Time Best Gap (%)  Average Gap (%)  Worst Gap (%) 

3 1 299.818 10426074560  180 10426074560 0.00  10426074560 0.00  10426074560 0.00 

3 2 664.455 9464597766  180 9464597766 0.00  9464597766 0.00  9464597766 0.00 

3 3 10.187 8826647392  180 8826647392 0.00  8826647392 0.00  8826647392 0.00 

4 2 1469.67 9311789331  180 9311789331 0.00  9320417952 0.09  9333360883 0.2 

4 3 2379.343 8606860144  180 8606860144 0.00  8606860144 0.00  8606860144 0.00 

4 4 13.338 8020821500  180 8020821500 0.00  8020821500 0.00  8020821500 0.00 

5 3 3447.17 8454051709  180 8454051709 0.00  8477251006 0.27  8565711102 1.32 

5 4 2183.92 7931288504  180 7931288504 0.00  7935960257 0.06  7954647267 0.29 

5 5 19.188 7486046509  180 7486046509 0.00  7486046509 0.00  7486046509 0.00 

6 4 3869.621 7862099067  180 7862099067 0.00  7873639054 0.15  7913767875 0.66 

6 5 2059.852 7399297863  180 7399297862 0.00  7402520001 0.04  7415408556 0.22 

6 6 22.574 7071536179  180 7071536178 0.00  7071536178 0.00  7071536178 0.00 

 
 
 

Table 4. Comparing the results of CPLEX and the proposed VNS for (αC, αH) = (0.8, 0.9). 
 

p p0 
CPLEX 

 
VNS 

Time Fitness Time Best Gap (%)  Average Gap  (%)  Worst Gap (%) 

3 1 197.232 10426074560  180 10426074560 0.00  10426074560 0.0  10426074560 0.00 
3 2 1890.56 10114622268  180 10114622268 0.00  10114622268 0.00  10114622268 0.00 
3 3 37.268 9896424156  180 9896424156 0.00  9896424156 0.00  9896424156 0.00 
4 2 13435.836 9946414639  180 9946414639 0.00  9950406334 0.04  9956393877 0.10 
4 3 8661.222 9618082826  180 9618082826 0.00  9618082826 0.00  9618082826 0.00 
4 4 42.042 9288636845  180 9288636845 0.00  9288636845 0.00  9288636845 0.00 
5 3 14877.347 9465274391  180 9465274391 0.00  9476001546 0.11  9497283547 0.34 
5 4 6583.757 9095608117  180 9095608117 0.00  9095608117 0.00  9095608117 0.00 
5 5 121.353 8831244506  180 8831244506 0.00  8831244506 0.00  8831244506 0.00 
6 4 7360.922 8974808838  180 8974808838 0.00  9007333312 0.36  9056862401 0.91 
6 5 4819.144 8666718166  180 8666718166 0.00  8666718166 0.00  8666718166 0.00 
6 6 120.776 8463112374  180 8463112374 0.00  8463112374 0.00  8463112374 0.00 

 
 
 
for the case with (αC, αH, p, p0) = (0.6, 0.9, 6, 4). 
Hence, there are compelling evidences to assert 
that the proposed procedure is efficient and can 
be used to solve fuzzy version as well. 

Experiments with fuzzy demands 
 
In order to examine the effect of considering 
demands   as   fuzzy   variables,   a   sample   test  

problem was generated. It has been assumed that 
demands are symmetric fuzzy variables (r1, r2, r3) 
where r2 equals the original demands of the CAB 
dataset.  Moreover,  r1  and  r3  are  values   which 
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Table 5. Comparing the results of CPLEX and the proposed VNS for (αC, αH) = (0.8, 0.8). 
 

p p0 
CPLEX  VNS 

Time Fitness  Time Best Gap (%)  Average Gap (%)  Worst Gap (%) 

3 1 135.674 9923897797  180 9923897797 0.00  9923897797 0.00  9923897797 0.00 

3 2 2132.987 9923897797  180 9923897797 0.00  9923897797 0.00  9923897797 0.00 

3 3 25.319 9896424156  180 9896424156 0.00  9896424156 0.00  9896424156 0.00 

4 2 3115.464 9528786908  180 9528786908 0.00  9528786908 0.00  9528786908 0.00 

4 3 9415.83 9406173571  180 9406173571 0.00  9423345201 0.18  9474656081 0.73 

4 4 44.164 9288636845  180 9288636845 0.00  9288636845 0.00  9288636845 0.00 

5 3 7570.588 9098003487  180 9098003487 0.00  9128810863 0.34  9150389806 0.58 

5 4 10431.382 8962997030  180 8962997030 0.00  8979750668 0.19  9012553142 0.55 

5 5 122.399 8831244506  180 8831244506 0.00  8831244506 0.00  8831244506 0.00 

6 4 7864.931 8689594212  180 8702839208 0.15  8749267304 0.69  8780392471 1.04 

6 5 9567.073 8562974155  180 8562974155 0.00  8584361231 0.25  8593279495 0.35 

6 6 129.996 8463112374  180 8463112374 0.00  8463112374 0.00  8463112374 0.00 
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Figure 6. The average error of the proposed VNS for problems with various values of (p, p0). 
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Figure 7. The performance of the algorithm in improving the solution quality. 

 
 
 

 
 
Figure 8. The crisp and fuzzy versions for the problem with (αC, αH, p, p0) = (0.6, 0.9, 6, 4). 

 
 
 

are ω% below and above r1, respectively. To generate 

the demand of each pair of nodes, the value of ω was 
considered to be one of the values 2, 5 and 10% for each 
pair of origin-destination nodes. To simulate each 
solution, 10000 iterations were used. Figure 8 shows  the  

results of running the proposed solution algorithm for the 
case (αC, αH, p, p0) = (0.6, 0.9, 6, 4) and the fuzzy test 
problem with the same parameters. The outputs of the 
problem for the crisp and fuzzy version are depicted in 
Figure  8,  which  differ  in  one  non-central  hub   and   a  



 
 
 
 
central hub. Clearly, the added uncertainty to the problem 
parameters can account for such a change in the 
solution. Apparently, using other levels of uncertainty can 
lead to other solutions which can be considerably 
different. 
 
 
CONCLUSION AND FUTURE RESEARCH AREAS  
 
To bring this paper to a close, we summarize the main 
points of the paper and some research directions are 
proposed. This paper considers the fuzzy version of SA-
H-MP and presented an efficient simulation-embedded 
VNS to solve it. The results of running the algorithm for 
the crisp test problems showed that the proposed 
algorithm is able to solve problems in an efficient and 
effective way and with errors not more than one percent. 
Furthermore, the procedure is robust to solve fuzzy test 
problem. However, there are still potential future research 
directions to be followed. For instance, the hierarchical 
hub location problem can be considered for some other 
types of the hub location problem such as covering or 
center problems. Moreover, there is still a need to fill the 
gap of assuming random variables in the literature of 
hierarchical hub location problems. Another future 
research area can be the inclusion of capacities for hub 
nodes in the network. 
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