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Facing the demand of periodic pattern and expiration date, how to make an optimal ordering policy by
the retailer of fast deteriorating items is the key problem nowadays. In this study, we propose a model
for fast deteriorating items with periodic pattern demand and expiration date. An algorithm is presented
to derive an optimal replenishment cycle, shortage period and order quantity such that the unit time
profit is maximized. The coordination policy between the retailer and the supplier improves the
efficiency of the ordering policy especially when the deterioration rate is high. Numerical examples and
sensitivity analysis are provided to illustrate the theory.

Key words: Fast deteriorating items, expiration date, coordination, periodic pattern demand.

INTRODUCTION

This study is motivated by a real life problem faced by a
florist. Most florists usually make frequent replenishments
due to fast deterioration of fresh flowers. The high
deteriorated cost and the frequent ordering cost have
affected the flower retailer’s benefit. The problem facing a
florist is how to develop an ordering policy that maximizes
the profit. In general, profit is a function of the sales
revenue, the purchasing cost, the lost sale cost, the
processing cost, the inventory holding cost, the ordering
cost, the production cost, and the shipment cost.

Flower, fruit, and seafood are common fast
deteriorating items. These products will deteriorate
expeditiously with time resulting in fast decreasing utility
or price from the original one. The customer demand
follows a periodic pattern that repeat itself after a short
time interval. Moreover, the customer demand declines
when the product is close to its expiration date. The
product expiration date indicates the latest time that the
product may be used (not the end of the product life cycle
time). The loss of profit is caused by deterioration and
declining demand. To improve the supply chain
efficiency, the coordination between the supplier and the
retailer must be considered.

Deteriorating inventory was originally studied by Ghare
and Schrader (1963). Since then, it has received much
attention from researchers (Wee, 1995; Rau et al., 2003;
Yang, 2004; Hsieh and Lee, 2005; Dye et al., 2007; You,

2005; He et al.,, 2010). Generally, two situations of
deteriorating rate are discussed. One is constant (Shah
and Jaiswal, 1977; Aggarwal, 1978; Padmanabhana and
Vratb, 1995; Bhunia and Maiti, 1999), and the other is not
constant [a: Linear increasing function of time (Bhunia
and Maiti, 1998; Mukhopadhyay et al., 2004); b: Weibull
distributed (Wee, 1999; Mahapatra, 2005; Chakrabarty et
al., 1998); c: Other function of time (Abad, 2001)]. Ho et
al. (2007) considered the effects of deteriorating
inventory on lot-sizing in material requirements planning
systems. They presented the effect on the relevant cost
due to various deterioration rates. Hsu et al. (2007)
addressed a deteriorating inventory replenishment model
with expiration date and uncertain lead time. Goyal and
Gupta (1989), Weng (1995), Fites (1996), Zimmer (2002),
Sucky (2005), considered the coordination between the
suppliers and the retailers in order to improve the
performance of the supply chains. Hsu et al. (2010)
proposed to invest on preservation technology to
decrease the deterioration rate of items. However,
researches on the influence of expiration date and
products with fast deterioration rate have received little
attention.

In this study, the customer demand periodic pattern
was assumed. The retailer obtains the product from the
supplier for sale to the customers. The constant
deteriorating rate product has an expiration date. An
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algorithm with coordination policy is developed to
determine the replenishment and backordering decision
of the deteriorating items with expiration date and
periodic pattern demand.

ASSUMPTIONS AND NOTATION

The following notation is used throughout this paper.
The general parameters are:

T Length of a periodic interval

N Discrete number; NT denotes the expiration date of
product

K Constant deterioration rate of on-hand-stock, 0 <k<1
6(n) The fraction that customers are willing to purchase
the item under the condition that they receive their order
after n units of time

The decision variables are:

n) Discrete number; decision variable, nT denotes the
replenishment cycle, n <N

V') Critical time at which inventory level reaches zero,
decision variable

The parameters related to the retailer are:

ng*) Discrete number; ng T denotes the retailer’s optimal
replenishment cycle

Vr*) Retailer’s optimal critical time

p) Retailer’s selling price per unit

py) Retailer’s selling price per unit when shortages occur
h) Unit inventory holding cost per unit time

c) Retailer’'s wholesale purchase price per unit

C,) Retailer’s ordering cost per replenishment cycle

r) Retailer’s penalty cost per unit of a lost sale including
loss of profit

u) Retailer's processing cost including making an
inventory and deteriorated items per period

Q) Retailer’s order quantity each replenishment

Q.) Retailer's sales amount without backordering over
replenishment cycle

Q.) Retailer's backordered quantity at the end of
replenishment cycle

Fr) Unit time profit for the retailer

The parameters related to the supplier are:
Cm) Supplier’s production cost per unit, c,, < ¢
s) Supplier's shipment cost per replenishment
Fs) Unit time profit for the supplier

The other related parameters are as follows:

n,*) Discrete number; n;*T denotes the supplier-retailer
joint optimal replenishment cycle

V;*) Supplier-retailer joint optimal critical time

1,(0) Maximum inventory level at the start of a cycle

F) Unit time system profit, that is, the supplier-retailer
joint total profit; F=Fg+Fg

In developing the model, the following assumptions are
made:

(i) The retailer’s selling price per unit p and backorder
price pp, are predetermined such that: p,=Ap >c, where
0<A<1.

(i) Demand for the product is influenced by periods. That
is, d; is the demand rate at the j-th period such that

d, =dw(j), j=12,..N,

where w(j)= N _NJ +1 is a conserved function, and the

value of d is a known constant with d>0, which denotes
the demand rate of the first period. This means that the
customers’ demand is less when it is nearer to the
product expiration date. Note: The demand at the n-th

period includes two parts, that is, [0,v] and [V,T 1.
Since the retailer is willing to wait for backorders of new

items during stockout, the demand during [V,T ] is
based on d;, on the other hand, the demand rate during
[0,v]is d,.

(iii) Demand during the stock out period is partially lost
due to impatient customers.

(iv) Backlogged demand is satisfied at the beginning of
each replenishment.

(v) Shortage time is less than the length of a periodic
interval T.

(vi) The fraction of customers’ backordered is assumed to
be linearly decreasing with waiting time n and is assumed
to be

8(n)=1-n/T, 0< n<T.

(vii) The capacity of the warehouse is unlimited.

(viii) There is no replacement or repair of deteriorated
items during a given cycle.

MODELING AND ANALYSIS

In this section, a supply chain with the retailer and the
supplier is assumed. The retailer obtains the products
from the supplier for sale to the customers. The study
consider the products of fast deteriorating items with
constant deterioration rate k and expiration date NT. (For
example, the retailer places an order of some flowers in
bud, the flowers will deteriorate till fade for 7 days (N=7,
T=1 days).) The customers’ periodic pattern demand is d,
=1, 2, 3...N. Which means the demand is decreasing
due to fast deterioration. Shortage backorder is allowed.
Backlogged demand is satisfied at the beginning of each
replenishment. Placing an optimal order before the selling
period of the product is vital to the retailer. The aim of this
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Figure 1. Retailer’s inventory system (Hsu et al., 2007).

study is to maximize the unit time profit by determining
(1) the retailer's replenishment cycle (2) the duration of
the shortages, and (3) the retailer’s order quantity Q. Two
polices are developed to illustrate our study: (i) Without
coordination (ii) With coordination.

The inventory system of the retailer during a given
cycle is depicted in Figure 1. Suppose the retailer's
replenishment cycle is set at nT. The study derives the

model by backward deduction. Letl,(t),n<N, be the

inventory level during the nth period. The differential
equation governing the transition of the system during the
period interval is;

dl, (t
ﬁ:_dl, v<t<T,
dt

(In the nth period, since the customers who are willing to
backorder will need new items, therefore, the demand
rate in the nth period divides into two parts, that is, dp in

0<t<v,and d; in v<t<T)

din (t) _

= Kh®-dwn) o<t<v. @

with initial condition I, (V) = 0. From (1), one has

d L,
|n(t)=$[ek( t)—l], 0<t<v. )

Let In—l(t) be the inventory level during the (n-1)th
period, then

dly () _
dt

—Klp_1 () —dw(n -1), 3)
with initial condition 1 ,_;(T) = 1,(0) . From (3), one has

(D= % {W(n ~[eXT ) _1]+ w(n)[ek” —11e*T 4)}
,0<t<T. @

Similarly, the inventory level during the jth period is

n-1
'j(UZ%{WU)[ek“‘” 1+ Y wi)fedT el
i=j+1

rw(n)Ee” —ed-ITth 0<t<T =12 01
(5)

Next, the study deduces the retailer's and the supplier’s
objective functions. The objective functions include:

The sales revenues R(n,v),
The purchasing costC(n,v),

The lost sale cost L(N, V) |

The processing cost B(n,v) (including inventory and
deteriorated items),

The inventory holding cost H(n,v), and

The ordering cost, ¢,

The replenishment cycle and shortage length are set at
nT and T-v units of time, respectively. Then

Retailer’s unit time profit
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1
:_nT [sales revenue-purchasing cost-lost sale cost -

processing cost-ordering cost -inventory holding cost]

H(n,v)], O<v<T,n<N.

(6)

- LR -Clnw) - L) -B(ny) —c, -
nT

Supplier’s unit time profit
1

= _T [sales revenue- production cost-shipment cost]

— L {1h(0)+ QI -[h(0)+ Qlon ~sh, 0<v=T.n<N.
@)

Where

R(n,v) = pQ; +pQ,. (8)

n-1 T v B _ B
ZI djdt+J. g o= GO-DRN 20T Ny o
= 0 2N N

14
.[ ddt=dv, n=1.
0
9)

Since the retailer is willing to wait for backorders of new
items during stockout, the demand is assumed to be dl .

T

Q2 =J.d149(F ~tydt=d T° vy (10)
v T 2 2

The order quantity at each replenishment is

Q=1,(0)+Q; . One has

C(n,v) =[11(0)+Qz]c. 11)

T
The lost sale amount is 'fdl[l — (T —t)Idt , one
\Y4

has

.
L(n,v) = rJ.le[l—é?(T —t)dt (12)
And
B(n,v)=nu. (13)

H(n ZHT+HT1+HV, n>3 (14)
j=1
dh[ e -1
H(l'V):?[ " —V]. (15)

thleT-1 _ N-1(y, |eT-1] diN-1[e"-1
H() = — | T4 -1 v
(V)k[k N( )k TN x| as

where (Appendix A)

- T
T (T

Hia =] In-s(00t 8

Hy =h| I, (t)dt . (19)

For kv <<1, e is replaced by 1+ kv+k2V% (Taylor
series approximation), One has

a1 v k&% 4 17 )2
Fallv)= {pdep( o) c[_ (kv+7) )
2
T hd K
Tt )
r(2+2T V) gty » ( b, o<ver, -

2= L dN-Dv, 4 T2 VA d kT
Fr(2v) nT{p(dT+ v )+/1p(_|_(2 2))c[k{W(l)(e 1)

(kv —)eT ET__V__ YN o,
W G

hd | e -1 ER K32 e -1 th -1 k
ST T o oW |2 [ o<
(21)
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d T? v?

FR(n,V)::T{p(d(n—l)(zN +2-mT  d(N+1-n)v

)+ ﬂp(? (7 - ?))

2N
d N +1_n k2V2 k[(n—l)T] d T2 V2
-C[?{ o +T(kv+T)e }+T( > 2 )]
2 (n—1)kT KT
v hd N-n+1 k22 € —e
rd(=+—-v) .nu-C-—— v
Grar ) -mu-Co- Ty (et (V 2 j k

( )}}, 0<v<T,n>3.

_ kT _ 2.2 kT N-n+1 ky?
+N n+2(e 1—T)+N n+1 kv+kv e 1+ v

N k 2 k N 2
Where

n-1 .
ay = WAET —1)+ 3 wi)EeT _1)ekl-DT] and

i=2

ekT 1 1_e7kT

e -1 (n—2)2N +3-n)
= -T
2 ( k l 2N TNk

d 2,2 4 T2 2
Fs@v)="7 { (kv + )+?(7—7)]
(c-cm)-s}. (23)

N —l k2V2 . d TZ V2
T (k > )e + T ( 2 2 ) ](c- cm)-s}.
(24)
1 d
F nv)=z-—{—| &
s(n,v) e k[ 1
2.2
+ M (kV + k_v)ek[(nfl)-r]](c_cm)_
s}, O<v<T,nx>3, (25)
Without coordination
When the retailer determines the order quantity
independently, the retailer's optimization can be

formulated as:

(22)

Max: Fg(n,v)

Subjectto: 1<n<N, O0<v<T, (26)
From Equations 20 to 22, the retailer's unit time profit
Fr(n, v) is a function of two variables n and Vv, where Vv
is a real number and n is a discrete variable.

Theorem 1

FR (n, V) is concave in V.

Proof (Appendix B)
From Theorem 1, for given n, we can derive the optimal

vr (N) by solving the equation, oFg(n,v)/0v =0.

oFg (n,v)/ov :%[g (c—Ap-r)v-(cd %e(”’lm LONN=n+1 g

T— JL+kv)

N-n+1 dhN-n+1
+dr+—

+M N N (27)

Equating Equation 27 with respect to V to zero, one can
derive the retailer’s critical time
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N=n+degs i‘-(cd+@)e(”—1)”]+dr
__ N K
RN =31

(Cd + @)ke(n—l)kT _ d (C — ﬂ'p — r)
k T
(28)

E3 -
Let VR () = mn{VR (n),T}. Since the integer variable
n cannot be found by an analytic method, the following
solution search procedure is used.

Solution search procedure

Step 1. Setn=1,ng =0,Vvg=0and Fr=0
Step 2. While n<N do Step 3-5.

Step 3. Solve Vg(N) and vg*(n) using (28).

Step 4. Calculate Fr(n, Vg (n)) using (20)-(22).

Step 5. If FR(n VR (n)) > Fg, let Fg —FR(n VR (n)) NR=n
and vg = Vg (n).

Step 6. Stop.

From the solution search procedure, if the retailer's
optimal solution is (ng , VR (nR)) then the retailer’'s optimal

unit time profit is Fr(NR ) VR (nR)) the supplier’s unit time
profit is FS(nR VR (nR)) and the unit time system profit is

F(Nr, V (NR)) = Fr(Nr , Vr (NR))+Fs(Nr , V& (NR)). (29)

Example 1

The preceding theory can be illustrated by the following
numerical example with the following parameters:

Length of a periodic interval, T=10 h
Expiration date, N=10, NT=100 h
Retailer’s selling price per unit, p=%$30
Backorder price, pp=Ap=21, where A=0.7

Retailer's unit inventory holding cost per unit time,
h=%$0.05

Retailer’'s wholesale purchase price per unit, c=$12

Retailer’s penalty cost per unit of a lost sale including
loss of profit, r=$5

Processing cost per period, y=$20

Retailer’s ordering cost per replenishment cycle, ¢,=$800

Demand rate, dj =dw(j), j=12,.10,  where
w(j) =(11-j)/10, d=8.
With the deterioration rate k=0.008, using the

mathematical software MATHCAD and MAPLE 7, the
optimal decision is obtained and the results are as
follows: (Table 1) ng =3, vg=10, the optimal
replenishment cycle is ng "T=30, the length of shortage is
0, the optimal order quantity Q=I1,(0)+Q,=242.597, the
sales amount Q;+Q,=216, the deteriorated quantity per
period is 26.597, the optimal unit profit of retailer is
Fr =$84.74, the unit profit of supplier is Fs=$51.606, and
the unit time system profit is Fr +Fs=$136.346.

Sensitivity analysis

Sensitivity analysis is carried out when a parameter of the
fixed set of parameter values ®={k, N, p, d, T, A, h, c, r, u,
and c,} changes 10, 20 and 30%. The results are shown
in Tables 2 to 13. The main conclusions drawn from the
sensitivity analysis are as follows:

1) The parameters p, d and c are very sensitive to PPC,
the parameters k, N, T and ¢, have medium degree
sensitivity to PPC, the parameters A, h, r, and u have low
degree sensitivity to PPC.

2) When the values of p, d and N increase, PPC
increases.

3) When the values of c, k, and ¢, increase, PPC
decreases.

4) When T increases, PPC does not increase because
the replenishment cycle increases to counteract the profit
effect.

5) When A and r increases, PPC maintains nearly
constant because the shortage is little.

With coordination

If the retailer and the supplier coordinate to determine
their order quantity by sharing their production and
demand information, that is, to determine n; and v;(n;),
then the unit time system profit is

F(ny, vi(ny)) = Fr(ny, vi(ny))+Fs(ny, vi(ny)). (30)

Theorem 2
F(n,v) is concavein V .
Proof (Appendix C)

Applying the solution search procedure and Theorem 2,
the optimal solution of n; "and v, (nJ) can be derived. With
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k=0.008, N=10, p=30, d=8, T=10, A=0.7, h=0.05, c=12, r=5, y=20, c,=800.

n vr(n)  Fr(nve () RMV)/nT  Cw)/nT L(nv)/nT  ¢,/nT B(n,v)/nT  H(n,v)/nT
1 10 56.16 240 99.84 0 80 2 2
2 10 83.482 228 98.642 0 40 2 3.876
3 10° 84.74° 216 97.039 0 26.667 2 5.555
4 9.239 80.08 203.878 95.022 0.029 20 2 6.748
5 7.675 73.933 192.208 92.525 0.216 16 2 7.533
6 6.304 67.373 181.044 89.657 0.455 13.333 2 8.226
7 5.154 60.823 170.166 86.454 0.671 11.429 2 8.79
8 4.26 54.542 159.428 82.878 0.824 10 2 9.184
9 3.661 48.733 148.702 78.831 0.893 8.889 2 9.356
10 3.41 43.579 137.842 74.153 0.869 8 2 9.241
Table 2. Sensitivity analysis for sensitive parameter k.
K ng VR Fr PPC (%)
0.0056 3 10 88.233 4.1
0.0064 3 10 87.086 2.8
0.0072 3 10 85.922 1.4
{0.008} 3 10 84.74 --
0.0088 3 10 83.54 -14
0.0096 3 10 82.322 -2.9
1. PPC denotes percent profit change. 2. The value in {} is the parameter of Example 1.
Table 3. Sensitivity analysis for sensitive parameter N.
N ng VR Fr PPC (%)
7 2 10 80.792 -4.7
8 2 10 81.913 -3.3
9 3 10 83.448 -15
{10} 3 10 84.74 --
11 3 10 85.797 1.2
12 3 10 86.678 2.3
13 3 10 87.423 3.2
Table 4. Sensitivity analysis for sensitive parameter p.
p ng VR Fr PPC (%)
21 3 10 19.94 -76.5
24 3 10 41.54 -51
27 3 10 63.14 -25.5
{30} 3 10 84.74 --
33 3 10 106.34 25.5
36 2 10 129.082 52.3
39 2 10 151.882 79.2

8843
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Table 5. Sensitivity analysis for sensitive parameter d.

*

*

d nr VR Fr PPC (%)

5.6 3 10 50.718 -40.1

6.4 3 10 62.059 -26.8

7.2 3 10 73.399 -13.4

{8} 3 10 84.74 -

8.8 3 10 96.081 134

9.6 2 10 108.578 28.1
10.4 2 10 121.126 42.9

Table 6. Sensitivity analysis for sensitive parameter T.

T Ng VR Fr PPC (%)

7 3 8.293 78.249 -7.7

8 3 9.245 81.495 -3.8

9 3 10 83.604 -1.3
{10} 3 10 84.74 --
11 3 10 85.162 0.5
12 3 10 85.125 0.45
13 3 10 84.783 0.05

Table 7. Sensitivity analysis for sensitive parameter A.

A ng. VR Fr PPC (%)
0.49 3 10 84.74 0
0.56 3 10 84.74 0
0.63 3 10 84.74 0
{0.7} 3 10 84.74 -
0.77 3 9.654 84.769 0.03
0.84 3 8.618 85.243 0.6
0.91 3 7.783 86.167 1.7

Table 8. Sensitivity analysis for sensitive parameter h.

h=0.05 nr VR Fr PPC (%)
0.035 3 10 86.406 2
0.04 3 10 85.851 1.3
0.045 3 10 85.295 0.65
{0.05} 3 10 84.74 -
0.055 3 10 84.184 -0.66
0.06 3 10 83.629 -1.3
0.065 3 10 83.074 -2




Table 9. Sensitivity analysis for sensitive parameter c.
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* * *

C ngr VR Fr PPC (%)
8.4 3 10 113.852 34.4
9.6 3 10 104.148 22.9
10.8 3 10 94.444 115
{12} 3 10 84.74 -
13.2 3 10 75.036 -11.5
14.4 3 10 65.332 -22.9
15.6 3 10 55.628 -34.4

Table 10. Sensitivity analysis for sensitive parameter r.
r ng’ VR Fr PPC (%)

3.5 3 10 84.74 0

4 3 10 84.74 0

4.5 3 10 84.74 0

{5} 3 10 84.74 -

55 3 10 84.74 0

6 3 10 84.74 0

6.5 3 10 84.74 0

Table 11. Sensitivity analysis for sensitive parameter p.
u e Ve Fr PPC (%)
14 3 10 85.34 0.71
16 3 10 85.14 0.47
18 3 10 84.94 0.24
{20} 3 10 84.74 --
22 3 10 84.54 -0.24
24 3 10 84.34 -0.47
26 3 10 84.14 -0.71
Table 12. Sensitivity analysis for sensitive parameter c,.

Co nr VR Fr PPC (%)
560 2 10 95.482 12.7
640 2 10 91.482 8
720 2 10 87.482 3.2
{800} 3 10 84.74 -
880 3 10 82.073 -3.1
960 3 10 79.407 -6.3
1040 3 10 76.74 -94
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Table 13. Sensitivity analysis of PPl when parameter changes.

Parameter -30% -20% -10% +10% +20% +30% Degree of sensitivity
k 4.1 2.8 1.4 -1.4 -2.9 -4.3 Medium
N -4.7 -3.3 -1.5 1.2 2.3 3.2 Medium
p -76.5 -51 -25.5 25.5 52.3 79.2 High
d -40.1 -26.8 -13.4 13.4 28.1 42.9 High
T -1.7 -3.8 -1.3 0.5 0.45 0.05 Medium
A 0 0 0 0.03 0.6 17 Low
h 2 13 0.65 -0.66 -1.3 -2 Low
c 34.4 22.9 11.5 -11.5 -22.9 -34.4 High
r 0 0 0 0 0 0 Low
V] 0.71 0.47 0.24 -0.24 -0.47 -0.71 Low
Co 12.7 8 3.2 -3.1 -6.3 -9.4 Medium

2.2

k“v
eV ~1+kv+

OF (n,v)/ov = %[% (€ — AP — 1)y — (€ %e(”ﬂ)” + ﬁ%e(”fﬂ'ﬂ )L+ kv)

+ pd N—n+1+dr+ﬂN—n+l

N k N
Equating Equation 31 with respect to V to zero, one can
derive the joint critical time

N=n*1pg . 9 d +O|'(h)e(”—1)”]+ dr

N k
vy(n)=
N —N +1 (Cmd + C:(h)ke(n—l)kT _ d (Cm _Tﬂ‘p - r)
(32)

% -
Let vy (n)= mn{VJ (n)1T}. If the joint optimal solution is
(n;’, vy (ny)), then the optimal unit time system profit is

F(ny, vy’ (ny)) = Fr(ny, vy (ng)) + Fs(ny', vy (ny)). (33)
It is obviously the optimal unit time system profit (33) is
better than that of the unit time system profit (29) (Table 14).
The coordination policy can be illustrated by the following
Example 2.

Example 2

N=10, p=30, d=1, T=100, A=0.9, h=0.005, c=10,

Cm=5, r=25, wp=20, s=150, and c,=1200. With the

k

(31)

deterioration rate k=0.0025, using the mathematical
software MATHCAD and MAPLE 7, the optimal decision
is obtained and the results are as follows (Table 14):

Sensitivity analysis

Sensitivity analysis with different deterioration rate k is
carried out in Tables 15 and 16, Figures 2 and 3. The
main conclusions drawn are as follows:

(1) Table 15 and Figure 2 show the changes in ng, Vg,
the deteriorated quantity per period (|1(O)—Q1 )Ing and

the ordering quantity |1(0)+Q2 for variable k. It is shown
that as k increases, the replenishment cycle ngT
decreases, but ( Il(O)—Ql )Ing increases.

(2) Table 16 and Figure 3 show the changes in the
retailer’s unit time profit Fg, the supplier’s unit time profit
Fs and the unit time system profit Fr+Fs for variable k.
Itis shown that as k increases, Fgr, Fr+Fs decreases, but
Fs increases.

From the afore-mentioned analysis, it can be shown that
higher deterioration rate leads to lower system profit.
However, if the retailer and the supplier coordinate to
determine their order quantity, the system profit increases
significantly. Even though the overall profit is better, the
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Table 14. Optimal ordering decision with v.s. without coordination.

Item Without coordination Coordination
N 2 3

VR 87.828 83.895
order quantity, Q=I1(0)+Q> 237.68 382.824
sales amount, Q1+Q2 190.476 271.924
deteriorated quantity per period, (I1(O)-Q1)/nR* 23.602 36.967
unit profit of retailer, Fr $9.751 $9.268
unit profit of supplier, Fs $5.192 $5.866
unit time system profit, Fr+Fs $14.943 $15.134

Table 15. Optimal ordering decision without coordination for various deterioration rates.

N=10, p=30, d=1, T=100, A=0.9, h=0.005, c=10, r=25, y=20, s=150, c,=1200.

. X Deteriorated quantity Orderi_ng
k NRr VR 11(0) Q1 per period = (11(0)- Q2 quantity
Qu)/ngr =1;(0)+Q>
1.563%10 3 93.869 270.972 265.095 1.959 5.943 276.916
6.25*10™ 3 90.848 286.791 262.678 8.038 8.733 295.524
0.0025 2 87.828 226.249 179.045 23.602 11.431 237.68
0.01 1 85.714 122.448 85.714 36.734 13.266 135.714
Table 16. The effect of system profit increase with various deterioration rates.
N=10, p=30, d=1, T=100, A=0.9, h=0.005, c=10, cm=5, r=25, =20, s=150, c,=1200.
Parameter Without coordination Coordination Percent profit increase
k nr' VR’ Fr' Fs FrR'+ Fs nJ v Fr Fs (Fr+Fs)’ Fr(%) Fs(%) FrtFs(%)
1.563*104 3 93869 12972 4115  17.087 3 92.803 12971 4117  17.088 -0.006 0.04 0.005
6.25% 10+ 3 90.848 12327 4424  16.751 3 91.367 12327 4425 16.752 -0.002  0.009 0.001
0.0025 2 87.828  9.751 5192  14.943 3 83895 9268 5866 15134 -5 13 1.3
0.01 1 85.714  3.086 5.285 8.371 2 64.501 038 9493 9113 -112.3 79.6 8.9

Percent profit increase = [(unit time profit of coordination / unit time profit without coordination)-1]*100 %.

retailer may not gain profit under coordination. Therefore,
in order to entice the retailer to co-operate, a
compensation mechanism must be incorporated.

Conclusion

This study focuses on how to determine the optimal
ordering policy for fast deteriorating items with expiration
date. The customers’ demand will decrease due to
nearness to expiration date. Facing the deterioration and
expiration date, how to decide an optimal order quantity
is vital to retailer. The study develops a maximum profit
model for coordinating the retailer and the supplier. The
numerical examples show that the higher deterioration
rate results in less the profit. However, the coordination

policy between the retailer and the supplier will improve
the efficiency of the ordering policy. When the
deterioration rate increases, coordination should be
considered since the percent profit increases
significantly. However, in order to entice the retailer to co-
operate, compensation mechanism must be incorporated
(Zimmer, 2002). The results of this study give managerial
insights to decision maker developing an optimal ordering
decision for deteriorating product with expiration date.
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Appendix B: Proof of Theorem 1.
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this completes the proof.

Appendix C: Proof of Theorem 2.
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