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The analytic hierarchy process (AHP) is a structured technique for dealing with complex decision- 
making and is already used to solve many group decision problems. This paper used the Cauchy-
Schwarz inequality to improve the AHP algorithm that was developed by Escobar et al. (2004). They 
provided an upper bound for the group geometric consistency index in order to prove that the group 
geometric consistency index is less than the maximum of each individual geometric consistency 
indexes. Although they proposed a useful and novel AHP method, the upper bound estimation still 
could be improved to provide better group consistency estimation accuracy. This paper proposed a 
new upper bound estimation that would be able to function in a situation where there are some 
individual decision makers, whose geometric consistency indexes are greater than the threshold that is 
proposed by Aguarón and Moreno-Jiménez. The experiment results showed that this paper provided a 
robust and better estimation. The purposes of this study are as follow; first, this study used Cauchy-
Schwarz inequality to improve the synthesized method in AHP method, and to achieve better upper 
bound estimation. Second, numerical examples are provided to illustrate the findings. Our relative error 
is 7% of that by Escobar and others to indicate the accuracy. Third, this paper showed that even if the 
weights changed, the proposed method is still robust with different combinations for decision makers. 
This study modified one entry of the comparison matrix. The results showed that our estimation 
performed well on most cases (16 of 17, about 94%) by the sensitivity analysis. Finally, two existing 
papers with group decision problem were examined with our findings to indicate 6 of 9 are predictable 
by our upper bound. We also provide a reasonable explanation why the other 3 of 9 cannot be predicted 
by ours. 
 
Key words: Analytic hierarchy process, group decisions, geometric consistency index. 

 
 
INTRODUCTION 
 
The analytic hierarchy process (AHP) was designed by 
Saaty (1980) as a flexible and easily understandable 
method, assisting decision-makers to solve multi-criteria 
decision-making problems in a reasonable and practical 
manner. The AHP model is widely and successfully used 
today in many fields; for example, Zanakis et al. (1995) 
studied over 100 applications of AHP  within  service  and  
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government sectors. In spite of all this, some researchers 
still question its appropriateness and completeness. To 
mention a few examples, Apostolou and Hassell (1993) 
considered that comparison matrices with consistency 
ratio >0.1 are acceptable. Bernhard and Canada (1990) 
suggested that the incremental benefit/cost ratios should 
be compared with a cutoff ratio instead of just the 
benefit/cost ratios found in Saaty (1980, 1995). Finan and 
Hurley (1996) made a diagonal procedure that 
constructed a rank-order consistent matrix.  

Some researchers have tried to revise those 
improvements.    For    instance,     Chu   and   Liu  (2002)  
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illustrated problems within Apostolou and Hassell (1993). 
Yang et al. (2004) demonstrated that the methods used 
in Bernhard and Canada (1990) was incomplete and later 
modified it. Chao et al. (2004) explained that the diagonal 
procedure of Finan and Hurley (1996) did not pass the 
consistency test found by Saaty (1980). Lin et al. (2008b) 
showed that the proof of the proposition shown in Finan 
and Hurley (2002) was false. Moreover, their counter 
example not only failed to satisfy the 1 to 9 scale bound 
of Saaty (1980), but after making revisions to meet 
Saaty’s condition, the rank reversal disappeared. 

The AHP model was originally designed for one expert. 
As the managerial situation becomes multi-dimensional, 
several experts need to be considered in the example of 
a group situation where there is more knowledge and 
experience to solve the decision-making problem. Early 
observations and suggestions for using AHP in group 
decision making were given in the research publication 
by Saaty (1989).  

Some of the published papers have focused on how 
groups construct the hierarchy, compare elements in the 
hierarchy, and aggregate weights. Four basic approaches 
can be used to set the weights of elements in a hierarchy: 
1. Consensus, 2. Vote or compromise, 3. Geometric 
mean of the individual judgments, and 4. Weighted 
arithmetic mean.  

Aczel and Saaty (1983) have shown that the geometric 
mean preserves the reciprocal property in the combined 
pairwise comparison matrix. The geometric mean is the 
approach most commonly used by groups to set priorities. 
For example, the geometric mean has been incorporated 
into the popular Expert Choice 2000 Team software 
(2001).  

Xu (2000) claimed that if the consistency index of all 
individuals passed the test proposed by Saaty (1980), 
then the group’s consistency index would also pass the 
test. Lin et al. (2008a) pointed out that Xu’s proof was 
dependent on a false relation among the individual 
priority vectors and the group priority vector that is 
implicitly assumed by Xu (2000).  

Earlier research based on the consistency measure of 
Aguarón and Moreno-Jiménez (2003), was later used by, 
Escobar et al. (2004) which also provided an upper 
bound for the group consistency index in order to show 
that if all individual comparison matrices passed the 
consistent test, then the group comparison matrix will 
also pass the consistent test. 
 
 
AN UNSOLVED PHENOMENON IN GROUP DECISION 
OF AHP 
 

However, according to the upper bound of Escobar et al. 
(2004), researchers can not answer the question that is 
proposed by Aull-Hyde et al. (2006): While it is known 
that the weighted geometric mean comparison matrix is 
of acceptable consistency if all individual comparison 
matrices   are   of   acceptable   consistency,   this   paper  

 
 
 
 
attempts to address the following question: Under what 
conditions would an aggregated geometric mean 
comparison matrix be of acceptable consistency if some 
(or all) of the individual comparison matrices are not of 
acceptable consistency? 

The main purpose of this technical note is to provide an 
acceptable answer to the open question asked in the 
paper by Aull-Hyde et al. (2006). Here we present an 
improved upper bound estimate such that if some 
individual comparison matrices are not of acceptable 
consistency, then our upper bound would still provide a 
valuable estimation to insure that the group comparison 
matrix will pass the consistency test. In attempting to 
answer the previous question, we found that Aull-Hyde et 
al. (2006) used different approaches in applying Monte 
Carlo’s simulation to show that a sufficiently large group 
size is enough to insure that the group comparison matrix 
would pass the consistency test.  

We try to improve the findings from the paper of 
Escobar et al. (2004) by considering the consistency for 
group decision-making in the analytic hierarchy process. 
Escobar et al. (2004) extended the results for the 
eigenvector priorization method (EM) (Xu, 2000) and for 
its associated consistency index (Saaty, 1980). They 
used the weighted geometric mean method (WGMM) as 
the aggregation method, the row geometric mean method 
(RGMM) as the priorization procedure, and the geometric 
consistency index (GCI), proposed by Crawford and 
Williams (1985), as the inconsistency measure. They 
then derived that the group geometric consistency index 
is less than the maximum of the individual geometric 
consistency index.  

María et al. (2005) and Lin et al. (2008a) had both 
referred to Escobar et al. (2004) in their references; 
however, in the paper by María et al. (2005), they did not 
consider the following discussions and revisions that we 
propose here. On the other hand, Lin et al. (2008a) have 
focused to improve the work done by Xu (2000).  

We will show how the methods found in Escobar et al. 
(2004) are invalid and we attempt to revise their 
estimation in order to derive our new estimation for the 
group geometric consistency index. In using the same 
numerical example, we demonstrate that our new 
estimation is better applied than the results shown 
previously.  

According to our hypothetical example, which is a small 
modification of the example of Xu (2000), there are at 
times with some decision-makers, whose geometric 
consistency index is greater than the threshold that is 
proposed by Aguarón and Moreno-Jiménez (2003) and 
Escobar et al. (2004). Our new estimation helps to yield 
meaningful results and provides an easy method to check 
the group consistency. 
 
 
REVIEW OF PREVIOUS RESULTS 
 

Let  us  suppose  that  for  an  analytic  hierarchy process   



 
 
 
 
problem,  there  are  m decision-makers and the 

comparison matrices for the alternatives 1A
, 2A

, n
A,L

, 
corresponding to a criterion for the k-th decision maker, is 

denoted by 
( )

nn

k

jia
×

][

. By the RGMM, it implies the priority 

vector, 
( )][][

1

][ ,, k

n

kk www L=
 with 

nn

j

k

ji

k

i aw

1

1

][][











= ∏

=  for 

ni ,,2,1 L=
. The error matrix for the k-th decision maker, 

( )
nn

k

ji

k
eE

×
= ][][

 where 
][

][

][][

k

i

k

jk

ji

k

ji
w

w
ae =

 for 
nji ≤≤ ,1

. 
 
 
The geometric consistency index 
 
The geometric consistency index for the k-th decision 

maker, (
[ ]kGCI ), is assumed as: 
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Aguarón and Moreno-Jiménez (2003) suggested that for 

comparison matrices with size 3n = , the threshold is 

0.31, for 4n = , the threshold is 0.35, and when 4n >  

the threshold is 0.37. If 
[ ]kGCI  is less than the 

corresponding threshold, then the comparison matrix of 
the k-th decision maker will pass the consistency test. 

According to the WGMM, with the weight 
k

β  for the k-

th decision maker and 0>
k

β , mk ,,2,1 L= , 

∑
=
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m
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k

1

1β , Escobar et al. (2004) defined the group 

consistency index as follows: 
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They applied the Schwarz inequality in the next lemma. 
 

Lemma 1 of Escobar et al. (2004):  For 
nRba ∈, , it 

holds that 
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Proof of Lemma 1 in Escobar et al. (2004). They 
assumed that when there is without loss of generality, 
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In the next step, we quote their theorem 1. 
 
Theorem 1 of Escobar et al. (2004):  Using the WGMM 
as the aggregation procedure, the RGMM as the 
priorization procedure, and the GCI to measure the 

inconsistency, it holds that { }][

,,1
max k

mk

G GCIGCI
L=

≤ . 

They used the numerical example of Xu (2000) with 
four decision makers (I, II, III, and IV) and four 
alternatives (A, B, C, and D) such that the comparison 
matrices are; 
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They provided two different weights where 

( )4321 ,,, ββββ  is ( )25.0,25.0,25.0,25.0 , denoted as 

G1, and ( )4.0,3.0,2.0,1.0  denoted as G2. We quote their 

computation and showed the results in Table 1 of 
Escobar et al. (2004). 

In Table 1 of Escobar et al. (2004), the typing error has 

been corrected for 
IGCI   from 0.134987 to 0.134897. 

Aguarón and Moreno-Jiménez (2003) found that for 4 x 4 

comparison matrix if 35.0<GCI , the comparison matrix 

passes the consistency test. From the last row of  Table 1,  
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Table 1. Priorities and GCIs for the individual and group (Escobar et al., 2004). 
 

Alternatives I II III IV G1 G2 

A 0.614455 0.646125 0.569339 0.596672 0.607838 0.601506 

B 0.224617 0.227012 0.276410 0.220793 0.236901 0.238691 

C 0.098538 0.079288 0.096733 0.108937 0.095543 0.097987 

D 0.062390 0.047575 0.057518 0.073598 0.059717 0.061816 

GCI 0.134897 0.235805 0.119358 0.165691 0.155377 0.154707 
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Moreover, 1554.01 =GGCI  and 1547.02 =GGCI  are 

both less than 0.35, so that in the paper by Escobar et al. 
(2004), they claimed that their estimation for the group 
geometric consistency index is valid. Their findings were 
highlighted after each individual GCI had passed the 
consistency test, so that their Theorem 1 guaranteed that 
the group geometric consistency index would also pass 
the consistency test. 
 
 
The inherent problem of this study 
 
Here, we will attempt to point out why the results from 
published literature are questionable. In trying to explain 
our idea, let us recall Table 1, in which all individual GCIs 
are less than 0.35. For a well-defined group geometric 

consistency index, say 
G

GCI , it is logical to expect that a 

35.0<G
GCI  can pass the consistency test.  

In our point of view, the purpose of Theorem 1 in 
Escobar et al. (2004) is to insure that their definition, 
Equation (2), for the group geometric consistency index is 
well-defined. If we hypothetically changed some entries 

of the comparison matrix, 
II

A , we can construct a new 

comparison matrix, say 
V

A : 
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so that 35.0738313.0 >=VGCI . Given this new 

situation, Theorem 1 of Escobar et al. (2004) cannot help 
us to determine whether or not the group geometric 
consistency index will pass the consistency test. This 
would indicate that the estimation of the group geometric 
consistency index should be able to handle, for instance, 
the problem when some decision makers have the GCI 
beyond the threshold as proposed by Aguarón and 
Moreno-Jiménez (2003). 

REVISIONS OF THIS STUDY 
 
First, we mention an improved approach to using the 
Schwarz inequality. 

The Schwarz inequality:  For 
nRba ∈, , it holds that : 
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us derive better results than that of Escobar et al. (2004). 
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Proof : By the Schwarz inequality, we derive that: 
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Next, we revise theorem 1 of Escobar et al. (2004). 
 
Proposition 2:  Using the WGMM, with the weight 

( )
m

βββ ,,, 21 L , as the aggregation procedure, the 

RGMM as the priorization procedure, the GCI to measure 
the inconsistency, it holds that, 
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Proof: From Equation (2) and Schwarz inequality, we 
know that: 
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Here, we begin to compare our revisions with that of 
Escobar et al. (2004).  
 

Proposition 3:  Our estimation, 
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we finish the first part of the proof. Since kβ  denotes the 

weight for the k-th decision maker, in a group decision 
making environment, every expert opinion should be 
considered, otherwise we would not invite the expert in 
the decision group, such is that we can assume that 

0kβ > , for 1, 2,,...,k m= . It implies that only when 

[ ] [ ] [ ]1 2 m
GCI GCI GCI= = =L , all the individual decision 

makers have the same personal geometric consistency 
index, then the estimation of Escobar et al. (2004), 
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However, under the condition that 
[ ] [ ] [ ]1 2 m

GCI GCI GCI= = =L , any reasonable estimation 

will imply that the evaluation of the group geometric 

consistency index is the same  as  [ ]1
GCI .  Hence,  when  
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[ ] [ ] [ ]1 2 m
GCI GCI GCI= = =L , our estimation should have 

the same value as that of Escobar et al. (2004). It points 
out that both methods satisfy the idempotency property; 

that is ( ),...,f x x x= . A desired property is that 

proposed by Xu and Da (2003) and Xu (2004) for an 
aggregation operator. Moreover, in other cases, our 
estimation is smaller than that of Escobar et al. (2004). 
Therefore, we claim that we derived an improved upper 
bound for the group geometric consistency index. 

 
 
Numerical examples 
 
Our estimation 

 
We first consider the numerical example in Xu (2000) and 
Escobar et al. (2004). By Proposition 2, we use the 
results in Table 1 to derive that: 
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In comparing the results of Escobar et al. (2004), they 
found that: 
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Our estimations for the group geometric consistency 
index are 0.1611 and 0.1603, both being smaller than 
0.2358, found in Escobar et al. (2004). If we compute the 
relative error, then: 
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From Equations (15) and (16), our estimation, 
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, of Escobar et al. (2004). 
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Table 2. For different combination of decision makers’ weights. 
 

β1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 

β2 0.2 0.2 0.3 0.3 0.4 0.4 0.1 0.1 

β3 0.3 0.4 0.2 0.4 0.2 0.3 0.3 0.4 

β4 0.4 0.3 0.4 0.2 0.3 0.2 0.4 0.3 

G2 0.207 0.201 0.254 0.241 0.301 0.294 0.170 0.165 

Our estimation 0.226 0.220 0.277 0.264 0.327 0.320 0.181 0.176 

         

β1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 

β2 0.3 0.3 0.4 0.4 0.1 0.1 0.2 0.2 

β3 0.1 0.4 0.1 0.3 0.2 0.4 0.1 0.4 

β4 0.4 0.1 0.3 0.1 0.4 0.2 0.4 0.1 

G2 0.258 0.239 0.307 0.292 0.172 0.162 0.214 0.196 

Our estimation 0.279 0.260 0.329 0.315 0.183 0.173 0.230 0.212 

         

β1 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 

β2 0.4 0.4 0.1 0.1 0.2 0.2 0.3 0.3 

β3 0.1 0.2 0.2 0.3 0.1 0.3 0.1 0.2 

β4 0.2 0.1 0.3 0.2 0.3 0.1 0.2 0.1 

G2 0.305 0.298 0.170 0.164 0.212 0.200 0.255 0.248 

Our estimation 0.325 0.318 0.180 0.175 0.226 0.214 0.271 0.265 

 
 
 
An individual consistency index is beyond the 
threshold value 
 
Moreover, we consider the hypothetical example in 
“reviews of previous results”. It follows that we replace 
decision-maker II with decision-maker V. When 

( )4321 ,,, ββββ  is ( )25.0,25.0,25.0,25.0  for G1, 

225938.01 =GGCI  and our estimation. 

 

244795.0

2
5

2,1

][ =









∑

≠= kk

k

k GCIβ 35.0< .                     (17) 

 

When ( )4321 ,,, ββββ  is ( )4.0,3.0,2.0,1.0  for (G2), 

206802.02 =GGCI  and our estimation, 

  

225667.0

2
5

2,1

][ =







∑

≠= kk

k

k GCIβ 35.0< .                     (18) 

 
From Equations (17) and (18), we provide examples 

where some decision-makers whose 35.0>GCI , such 

that the estimation of Escobar et al. (2004) fails to offer a 

prediction to whether or not the group GCI  will be less 

than 0.35. By Proposition 2, our approach still provides a 

good estimation for the group GCI  that will pass the 

consistency test.  

Variation of relative weights of decision makers 
 
Next, we consider the problem as to whether or not our 
results are strongly dependent on some particular 
weights of decision makers. We propose using the 
permutation of the previous example where 

( )4321 ,,, ββββ ( )4.0,3.0,2.0,1.0=  to demonstrate that 

our approach is stable for different combinations of 
decision-makers’ weights in Table 2. 

Table 2 illustrates that our estimation is reliable for all 
different possible combinations. In this situation, when 

the decision-maker 
V

A  is with 35.0>GCI , our 

approach provides a good estimation for group GCI . 

 
 
Variation of one entry in the comparison matrix 
 
Next, we will study the shortcoming of our approach. In 
this note, our main goal is to improve the method of 
finding an upper bound of Escobar et al. (2004). 
Unfortunately, their estimation can only apply in cases 
when all individual decision makers pass the consistency 
test. By Proposition 3, we are able to offer an improved 
upper bound. However, it is still an upper bound with 
limitations that will sometimes show our estimation to be 

an overestimate of the group GCI , such that the group 

35.0<GCI  but our estimation 35.0> . 

We   run    the    sensitivity    analysis    for    
]5[

13a     with   
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Table 3.  The sensitivity analysis for 
]5[

13a . 

 

]5[

13a  group GCI  Our estimation Relative error (%) GCI  of 
V

A  

9 0.1547 0.1603 3.58 0.2358 

8 0.1595 0.1658 3.94 0.2704 

7 0.1652 0.1726 4.50 0.3153 

6 0.1721 0.1811 5.26 0.3744 

5 0.1860 0.1919 6.26 0.4546 

4 0.1916 0.2060 7.53 0.5678 

3 0.2068 0.2257 9.12 0.7383 

2 0.2301 0.2558 11.15 1.0254 

1 0.2750 0.3131 13.86 1.6431 

a=0.6662 b=0.3043 0.3500 15.03 2.0795 

1/2 0.3263 0.3775 15.69 2.4210 

c=0.3726 0.3500 d=0.4068 16.24 2.7995 

1/3 0.3593 0.4182 16.42 2.9503 

1/4 0.3840 0.4486 16.81 3.3590 

1/5 0.4039 0.4729 17.06 3.6951 

1/6 0.4207 0.4932 17.23 3.9820 

1/7 0.4353 0.5108 17.35 4.2332 

1/8 0.4481 0.5263 17.44 4.4572 

1/9 0.4596 0.5401 17.51 4.6597 
  
 
 

9/1,...,2/1,1,...,8,9]5[

13 =a  to list the results in Table 3. In 

examining Table 3 sensitivity analysis, we may say that 
the group comparison matrix has an average effect to 

moderate higher GCI  of an individual decision-maker. 

For example, when 
]5[

13a  changes from 9  to 9/1 , the 

GCI  of 
V

A  varies from 0.2358 to 4.6597, which is 20 

times greater. On the other hand, the group GCI  varies 

from 0.1547 to 0.4596, three times greater. 
As shown in Table 3, a majority of our estimates, 16 out 

of 17, can predict whether or not group GCI  will pass 

the consistency test. This indicates that our estimation 
provides a reliable prediction for the group comparison 
matrix. Only when our estimation happens to be slightly 
higher than 0.35, for example, 0.37, does our approach 

require further examination for group GCI . 
 
 

ANALYSIS OF RESULTS 
 
Moreover, we consider the monotonic property for the 
relative error between our estimation and the exact group 

GCI . Then we may claim that the relative error is an 

increasing function of group GCI . This is an advantage 

for our estimation method, since we are only concerned 

about those groups with 35.0<GCI . 

To be more precise, we assumed c,b,a  and d  in the 

following. When [ ]
aa =

5

13
, then  group  bGCI =   and  our  

estimation is 350. . On the other hand, when 
[ ]

ca =
5

13
, 

then group 35.0=GCI  and our estimation is d . It 

follows that 66620.a = , 30430.b = , 37260.c = , and 

40680.d = . 

Under the increasing property, we only need to study 

those groups of GCI  of  ( ]350.,b  such that the group 

GCI  passes the consistency test, but our estimation as 

( ]d,.350  fails the consistency test. 

When we execute the sensitivity analysis, we discover 

that when [ ] aac <≤
5

13 , then group GCI  are [ )350.,a  

and our estimations are ( ]d,.350 . A case in point is that 

only when 
[ ]

21
5

13
/a =  does it satisfy the condition 

[ ]
6662.03726.0

5

13
=<= ≤ ac a . Our estimation is too high 

and it implies a false estimation for the group GCI .  

The conclusion we draw from this analysis is that for the 
remaining 16 cases for the Saaty 1 to 9 scales bound 
(Saaty, 1980), our estimation can provide accurate 

inference for the groupGCI . 

 
 
Practical application 
 
Finally, we provide some practical applications of our 
proposed estimation for the group consistency index. We 
reviewed   some  articles  and  searched  for  papers with 
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Table 4. The individual expert and group consistency index, before reducing the dispersion. 
 

Index Weight Weight Weight 

G (1)=0.9424 1/5 1/15 5/15 

G (2)=0.4121 1/5 2/15 4/15 

G (3)=0.7023 1/5 3/15 3/15 

G (4)=0.9470 1/5 4/15 2/15 

G (5)=0.7113 1/5 5/15 1/15 

Our proposed estimation 0.7284 0.7371 0.7197 

Group consistency index 0.3149 0.3656 0.3926 

 
 
 

Table 5. The individual expert and group consistency index, after reducing the dispersion.  

 

Index Weight Weight Weight 

G (1)=0.5899 1/5 1/15 5/15 

G (2)=0.1466 1/5 2/15 4/15 

G (3)=0.4091 1/5 3/15 3/15 

G (4)=0.5792 1/5 4/15 2/15 

G (5)=0.8011 1/5 5/15 1/15 

Our proposed estimation 0.3908 0.5042 0.2918 

Group consistency index 0.2033 0.3339 0.1405 

  
 
 
examples of group decision-making, where the 
comparison matrices are documented in detail. There are 
two papers that fulfilled our requirement: Saaty and 
Vargas (2007) and Altuzarra et al. (2007). The published 
matrices can potentially form a data set for analysis. We 
cite the original comparison matrices for a group of five 
experts from Saaty and Vargas (2007) in the following,  
 

( )

( ) ( )

1 1 1
1 2,3, 4,5,6 , 2,1, ,4 3,4, ,2,8

2 3 2

1 1, 2,3, 4,5 5,4,3, 2,1

1 1
1 , ,1, 2,5

4 3

1

    
    
    

 
 

  
   

 
 

       (19) 

 
In Saaty and Vargas (2007), they did not provide the 
weights for those five decision-makers. Therefore, to start, 
we can consider the following cases: (a) uniformly 
distributed, (b) increasing order, and (c) decreasing order, 
and then find the consistency index for individuals and 
group (Table 4). 

Since all five experts are inconsistent, our proposed 
upper bound will imply that there is a relatively high 
estimation for the group consistency index. We would say 
that in two-thirds of our overestimated upper bound, we 
are able to predict that the group consistency index is 
also greater than the threshold. 

We also record the comparison matrices after  reducing  

the dispersion in Saaty and Vargas (2007), 
 

( ) ( ) ( )
( ) ( )

( )

1 2,3, 4,5,6 2, 2,1,1, 2 3, 4,3, 2,8

1 1, 2,3, 4,5 5,4,3,2,1

1 1, 2,1,2,5

1

 
 
 
 
 
 

,              (20) 

 
and then we find the consistency index for individual 
experts and the group (Table 5). 

After reducing dispersion, four of them are still 
inconsistent having a relatively lower inconsistency index. 
Consequently, the group consistency index and our 
estimation both decrease. Our proposed upper limit can 
only provide accurate predictions for cases where the 
group consistency index has a very small value. 
Otherwise, our estimations are too high to provide a 
meaningful prediction. This is a phenomenon that has 
been discussed by Aull-Hyde et al. (2006). They claimed 
that for group decision-making problems, if the number of 
experts is large enough, then the synthesized group 
comparison matrix will pass the consistency test. Their 
experiment data showed that for 4 by 4 comparison 
matrices, if the group of experts is more than 40 persons 
from their 10,000 randomly generated experiments, then 
all group comparison matrices pass the consistency test. 
This example may be a special case, where in only 5 
experts with diverse opinions and after synthesizing can 
their opinions be a better trade-off for a consistent group 
comparison matrix. 
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Table 6. The individual expert and group consistency index in Altuzarra et al. (2007). 
 

Index Weight Weight Weight Weight 

G (1)=0.1042 1/6 1/21 6/21 2/21 

G (2)=0.3608 1/6 2/21 5/21 3/21 

G (3)=0.7616 1/6 3/21 4/21 6/21 

G (4)=0.4972 1/6 4/21 3/21 5/21 

G (5)=0.4305 1/6 5/21 2/21 4/21 

G (6)=0.0196 1/6 6/21 1/21 1/21 

Our proposed estimation 0.3020 0.2786 0.3264 0.4428 

Group consistency index 0.0583 0.0579 0.0671 0.0823 

 
 
 
Application of Altuzarra et al. (2007) and Wang and 
Xu (1990) 
 
In Altuzarra et al. (2007), they used a group decision 
problem that was proposed by Wang and Xu (1990). We 
adopt the abbreviated expression from Saaty and Vargas 
(2007), and list the comparison matrices of six experts as 
shown in the following: 
 

( ) ( ) ( )

( ) ( ) ( )

1
1 3,4, ,3,2,2 5,3,3,5,6,5 4,5,2,2,3,4 7,8,5,6,3,9

2

1 3,4,5,1.2,3 2,3,1,3,5,2 5,6,2,2,4,6

1 1 1
1 ,1,2,4, ,1 3,5, ,5,1,2

2 2 2

1
1 3,7,5, ,5,3

2

1

  
  
  

 
 

    
       

 
  
   

 
 

       (21) 

 
Then we find the consistency index in Table 6. 

In Altuzarra et al. (2007), they did not provide the 
weights for those six decision-makers. Therefore, to start, 
we consider the following cases: (a) uniformly distributed, 
(b) increasing order, and (c) decreasing order. 

Only ( )1G , ( )2G  and ( )6G  are less than the threshold 

0.37, which indicates that the comparison matrices of 
these three experts are consistent. The remaining three 
comparison matrices are inconsistent. 

According to our proposed method, our upper bound 
can provide an accurate prediction for the three assigned 
cases. On the other hand, we create a special case that 
is related to the worst condition for our proposed method 
with relatively high weights for those inconsistent experts. 
Our estimation is 0.4428, but as the group consistency 
index is acceptable as 0.0823 to indicate some special 
situations, our upper bound may be too big to apply.  
 
 
DISCUSSION AND CONCLUSION 
 

We derived a new estimation for the group geometric 
consistency index.  By  the  same  numerical  example  of 

Escobar et al. (2004), our estimation is more accurate 
than their results given, since our estimation error is 7% 
of theirs. When some decision makers have comparison 
matrices that are not consistent, the procedure of 
Escobar et al. (2004) cannot provide estimation. However, 
our new estimation is still applicable to indicate whether 
or not the group geometric consistency index is 

acceptable. With one individual, decision-maker, 
V

A , 

whose consistency index is 0.74V
GCI =  for 24 different 

cases of weights for decision-makers, we show that our 
upper bound can correctly predict the group consistency 
index. Using a sensitivity analysis for one entry of the 

comparison matrix 
V

A , we demonstrated that 94% of our 
upper bound can provide the right prediction for the group 
consistency index. 

Our new estimation implies a simple procedure to 
predict the group consistency index, such that our 
revisions will undoubtedly result in helping the 
development of theoretical analysis and practical 
applications. 
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