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A new aggregation method for decision making is presented by using induced aggregation operators and 
the index of maximum and minimum level. Its main advantage is that it can assess complex reordering 
processes in the aggregation that represent complex attitudinal characters of the decision maker such as 
psychological or personal factors. A wide range of properties and particular cases of this new approach 
are studied. A further generalization by using hybrid averages and immediate weights is also presented. 
The key issue in this approach against the previous model is that we can use the weighted average and 
the ordered weighted average in the same formulation. Thus, we are able to consider the subjective 
attitude and the degree of optimism of the decision maker in the decision process. The paper ends with 
an application in a decision making problem based on the use of the assignment theory. 
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INTRODUCTION 
 
Aggregation operators (Beliakov et al., 2007) are very 
useful for decision making (Chen, 2009; Demir and 
Bostanci, 2010; Kacprzyk and Zadrozny, 2009; Liu, 2009, 
2010; Sreekumar and Mahapatra, 2009; Wang et al., 
2009; Xu and Cai, 2011; Xu and Hu, 2009, 2010; Yang et 
al., 2010). They are able to fuse the available information 
in order to obtain a representative result that permits us 
to make decisions. A very practical aggregation operator 
is the ordered weighted averaging (OWA) operator 
(Yager, 1988; Yager and Kacprzyk, 1997). It provides a 
parameterized family of aggregation operators between 
the minimum and the maximum. The OWA operator can 
be extended by using order inducing variables in the 
reordering step of the aggregation obtaining the induced 
OWA (IOWA) operator (Yager and Filev, 1999). Since its 
appearance, it has been studied by a lot of authors. 

Yager developed further improvements by using other 
aggregation operators such as the Choquet integral 
(Yager, 2004). Tan  and  Chen  (2010)  also  presented  a  
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generalization with Choquet integrals. Merigó and Gil-
Lafuente (2009) generalized it by using generalized and 
quasi-arithmetic means. Merigó and Casanovas (2009) 
implemented this approach in Dempster-Shafer theory of 
evidence. They also developed further extensions by 
using uncertain information (Merigó and Casanovas, 
2010a, b, 2011a, c) and distance measures (Merigó and 
Casanovas, 2010c, d, 2011b). Wei developed several 
applications by using intuitionistic fuzzy information (Wei, 
2010; Wei et al., 2010). Wu et al. (2009) developed 
several extensions by using continuous aggregations. 

Another useful technique for decision making is the 
index of maximum and minimum level (IMAM) (Gil-
Lafuente, 2001, 2002). It uses similarity measures like 
the Hamming distance (Hamming, 1950) for making 
decisions. Recently, Merigó and Gil-Lafuente (2009) have 
suggested the use of the OWA operator in the IMAM 
operator. They called it the ordered weighted averaging 
index of maximum and minimum level (OWAIMAM) 
operator. It provides a parameterized family of similarity 
measures between the minimum and the maximum. 
Therefore, we can aggregate the information considering  
ideals in the information and the attitudinal character of 
the decision maker  in  the  specific  problem  considered.  
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Thus, it is able to include a wide range of particular cases 
including the OWA distance (OWAD) operator (Merigó 
and Gil-Lafuente, 2007, 2010; Xu and Chen, 2008) and 
the OWA adequacy coefficient (OWAAC) operator (Gil-
Lafuente and Merigó, 2010; Merigó and Gil-Lafuente, 
2008, 2010). 

The aim of this paper is to present a new development 
based on the use of the IOWA operator in the IMAM 
operator. We call it the induced ordered weighted 
averaging index of maximum and minimum level 
(IOWAIMAM) operator. Its main advantage is that it can 
deal with complex reordering processes in the 
aggregation based on the use of order inducing variables. 
Thus, we can represent more complex environments that 
consider the degree of optimism of the decision maker 
and a wide range of other situations such as psycholo-
gical and personal factors. Moreover, it also includes a 
wide range of particular cases such as the weighted 
IMAM (WIMAM), the normalized IMAM (NIMAM) and the 
OWAIMAM operator. We study some of its main 
properties. 

We further extend this approach by using the hybrid 
average (Xu and Da, 2003). Thus, we are able to deal 
with the weighted average and the IOWA operator in the 
same formulation. We called it the induced hybrid 
averaging index of maximum and minimum level 
(IHAIMAM) operator. Moreover, we also present another 
approach by using immediate weights that also consider 
the use of the weighted average and the IOWA operator. 
We call it the immediate weighted induced OWAIMAM 
(IWIOWAIMAM) operator. It is similar to the IHAIMAM 
operator but it has some technical differences in its 
formulation. We study the applicability of the new 
approach in a decision making problem regarding the 
selection of strategies in an assignment process. Thus, 
we can assign several elements of one set (enterprises) 
to another set of elements (strategies). We see that each 
aggregation operator may lead to different results 
because depending on the assumptions made by the 
decision maker the decisions may be different. 
 
 
PRELIMINARIES 
 
Here we briefly revise the IMAM, the IOWA operator, the 
hybrid average and the immediate weights. 
 
 
The index of maximum and minimum level 
 
The NIMAM (Gil-Lafuente, 2001, 2002) is a similarity 
measure used for calculating the differences between two 
elements, two sets, etc. In decision making, we can use it 
for comparing alternatives in business decision making 
problems including strategic management, product 
management and financial management. In summary, we 
could define it as a measure that includes the Hamming 
distance (Hamming, 1950) and the  adequacy  coefficient  

 
 
 
 
(Gil-Aluja, 1998; Gil-Lafuente, 2005; Kaufmann and Gil-
Aluja, 1986, 1987) in the same formulation. Sometimes, 
when normalizing the IMAM it is better to give different 
weights to each individual element. Thus, we get the 
WIMAM. It can be defined as follows. For two sets X = 
{x1, x2, …, xn} and Y = {y1, y2, …, yn}, it can be defined as 
follows: 
 
 
Definition 1 
 
A WIMAM of dimension n is a mapping K: (0, 1)n × (0, 1)n 

� (0, 1) that has an associated weighting vector W = V + 
U of dimension n with the following properties: 
 

1) � = =n
i iw1 1, 

2) wi ∈ (0, 1) 
 

and such that: 
 
K(X,Y)= 

[ ]�� −∨×+−×
v

iii
u

iii vyvxvZuyuxuZ ))()((0)()()()( , (1) 

 
Where xi and yi are the ith arguments of the sets X and Y 
respectively, and u + v = n.  
 

In the following, we present a simple numerical example 
of the WIMAM operator in order to see how this algorithm 
operates. 
 
 
Example 1 
 
Assume two sets of arguments X = (0.6, 0.4, 0.8, and 
0.3) and Y = (0.9, 0.2, 0.7, and 0.5). Assume that the two 
first arguments have to be treated with the Hamming 
distance and the other two with the adequacy coefficient. 
We assume the following weighting vector: W = (0.3, 0.3, 
0.2, and 0.2). Thus, the WIMAM is as follows: 
 

K (X, Y) = 0.3 × |0.6 – 0.9| + 0.3 × |0.4 – 0.2| + 0.2 × (0 ∨ 
(0.8 – 0.7)) + 0.2 (0 ∨ (0.3 – 0.5)) = 0.17. 
 
 
The induced OWA operator 
 
The IOWA operator was introduced by Yager and Filev 
(1999). The main difference against the classical OWA 
operator (Yager, 1988) is that the reordering step of the 
IOWA is carried out with order-inducing variables, rather 
than depending on the values of the arguments ai. It can 
be defined as follows. 
 
 
Definition 2 
 

An IOWA operator of dimension n is a mapping IOWA: 
Rn× Rn → R defined by an associated weighting vector W 
of dimension n with � = =n

j jw1 1 and wj ∈  (0, 1),  and  a  set 



 
 
 
 
of order-inducing variables ui, by a formula of the 
following form: 
 
IOWA (�u1,a1�, �u2,a2�, …, �un,an�) = 

�
=

n

j
jjbw

1

,    (2) 

 
Where (b1, …,  bn) is simply (a1, a2,…, an) reordered in 
ascending order of the values of the ui, ui is the order-
inducing variable and ai is the argument variable. 
 
 
Example 2 
 
Assume a set of arguments A = (80, 40, 20, and 60) to be 
aggregated with the following weighting vector W = (0.2, 
0.2, 0.3, and 0.3) and order inducing variables U = (20, 
14, 29, and 17). Thus, we get: 
 
IOWA = 0.2 × 40 + 0.2 × 60 + 0.3 × 80 + 0.3 × 20 = 50. 
 
Note that it is possible to distinguish between the 
ascending IOWA (AIOWA) and the descending IOWA 
(DIOWA) by using wj = w*n − j + 1, where wj is the jth weight 
of the AIOWA and w*n − j + 1 the jth weight of the DIOWA 
operator. 
 
 
The hybrid average 
 
The HA operator (Xu and Da, 2003) is an aggregation 
operator that uses the WA and the OWA operator in the 
same formulation. Thus, it is possible to consider in the 
same problem, the attitudinal character of the decision 
maker and the degree of importance of the variables. 
One of its main characteristics is that it provides a para-
meterized family of aggregation operators that includes 
the maximum, the minimum, the arithmetic mean (AM), 
the WA and the OWA operator. It can be defined as 
follows: 
 
 
Definition 3 
 
An HA operator of dimension n is a mapping HA: Rn 

� R 
that has an associated weighting vector W of dimension n 

with � = =n
j jw1 1 and wj ∈ (0, 1), such that:                                      

 

HA (a1, a2, …, an) = �
=

n

j
jjbw

1

,      (3) 

 
Where bj is the jth smallest of the âi (âi = nωi ai, i = 1, 2, 
…, n), ω = (ω1, ω2, …, ωn)

T is the weighting vector of the 
ai, with ωi ∈ (0, 1) and the sum of the weights is 1. 
 
 
Example 3 
 

Assume the  same  information  than  Example  2  and   a  
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weighting vector � = (0.1, 0.2, 0.3, and 0.4). Thus, we 
get: 
 
HA = 0.2 × (20 × 0.3 × 4) + 0.2 × (40 × 0.2 × 4) + 0.3 × 
(80 × 0.1 × 4) + 0.3 × (60 × 0.4 × 4) = 49.6. 
 
Note that it is possible to distinguish between the 
ascending HA (AHA) operator and the descending HA 
(DHA) operator by using wj = w*n − j + 1, where wj is the jth 
weight of the AHA and w*n − j + 1 the jth weight of the DHA 
operator. For further information on the HA operator, for 
example (Merigó and Casanovas, 2010a; Merigó et al., 
2010; Wei, 2009; Xu, 2010; Zhao et al., 2009, 2010). 
 
 
Immediate weights 
 
The immediate weight (IW) is an immediate probability 
(Engemann et al., 1995, Merigó, 2010; Yager et al., 
1995) but focussed on the use of the weighted average 
instead of the probability. Thus, it is able to use the 
weighted average and the OWA operator in the same 
formulation. It can be defined as follows: 
 
 
Definition 4 
 
An IW operator of dimension n is a mapping IW: Rn → R 
that has an associated weighting vector W of dimension n 
with wj ∈ (0, 1) and � = =n

j jw1 1, such that:  

 
IW (a1, a2,…, an) = 

�
=

n

j
jjbv

1
ˆ ,                (4) 

 
Where bj is the jth smallest of the ai, each ai has 
associated a WA vi, vj is the associated WA of bj, and 

� == n
j jjjjj vwvwv 1 )/(ˆ . 

 
 
Example 4 
 
Assume the same information than Example 2 and a 
weighting vector V = (0.3, 0.3, 0.3, and 0.1). Thus, we 
get: 
 
�

60
24.0

1.03.0
80

24.0
3.02.0 +××+××=IW 4520

24.0
3.03.0

40
24.0

3.02.0 =××+××

 
. 
As we can see, if wj = 1/n for all j, we get the weighted 
average and if vj = 1/n for all j, the OWA operator. 
 
 
THE INDUCED ORDERED WEIGHTED AVERAGING 
INDEX OF MAXIMUM AND MINIMUM LEVEL 
 
Here we introduce the IOWAIMAM operator and study 
some of its main properties and particular cases. The 
induced ordered weighted averaging  index  of  maximum  
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and minimum level (IOWAIMAM) operator is an aggre-
gation operator that uses order-inducing variables with 
the IMAM and the OWA operator. Its main advantage is 
that it includes a wide range of aggregation operators and 
it is very useful when dealing with complex reordering 
processes where the highest result is not always the first 
(or the last) in the reordering process. By using the IMAM 
operator, we can deal with the Hamming distance and the 
adequacy coefficient in the same formulation depending 
on the interests of the decision maker in the aggregation. 

For two sets X = (x1, x2, …, xn) and Y = (y1, y2, …, yn), it 
can be defined as follows: 
 
 
Definition 7 
 
An IOWAIMAM operator of dimension n is a mapping f: 
(0, 10n × (0, 1)n 

� (0, 1) that has an associated weighting 
vector W of dimension n with wj ∈ (0, 1) and 

11 =� =
n
j jw , such that: 

 

f (�u1, x1, y1� ,…, �un, xn, yn�)  =  �
=

n

j
jjKw

1

,            (5) 

 
Where Kj represents all the |xi – yi| and the (0 ∨ (xi – yi)), 
reordered in ascending order of the values of ui, ui is the 
order-inducing variable and xi and yi are the argument 
variables. 
 
 
Example 5 
 
Assume the same information than Example 1 and the 
order inducing variables U = (16, 27, 12, and 36). Thus, 
we get: 
 
IOWAIMAM = 0.3 × (0 ∨ (0.8 – 0.7)) + 0.3 × |0.6 – 0.9| + 
0.2 × |0.4 – 0.2| + 0.2 (0 ∨ (0.3 – 0.5)) = 0.16. 
 
Note that it is possible to distinguish between ascending 
(AIOWAIMAM) and descending (DIOWAIMAM) orders by 
using wj = w*n−j+1, where wj is the jth weight of the 
DIOWAIMAM and w*n−j+1 the jth weight of the 
AIOWAIMAM operator. Moreover, we can suggest an 
equivalent removal index that it is a dual of the 
IOWAIMAM because Q (X, Y) = 1 − K (X, Y). We call it 
the induced ordered weighted averaging dual IMAM 
(IOWADIMAM). Note that if the weighting vector is not 
normalized, that is, W =� = ≠n

j jw1 1, then, the 

IOWAIMAM operator can be expressed as: 
 

f (�u1, x1, y1�, …, �un, xn, yn�) = �
=

n

j
jjKw

W 1

1
,           (6) 

 
 
 
 
Note also that the IOWAIMAM operator is commutative, 
monotonic, bounded and idempotent. A further interesting 
aspect is the reflexivity property, that is: 
 
IOWAIMAM ((u1, x1, y1), …, (un, xn, yn)) = 0 if and only if xi 
= yi for all i ∈ (1, n).  
 
Note also that IOWAIMAM ((u1, x1, y1), …, �un, xn, yn�) = 
IOWAIMAM ((u1, y1, x1),…, (un, yn, xn)). 
 
Other interesting generalizations can be developed 
following Spirkova (2009) and Torra and Narukawa 
(2010). For example, we can develop the function 
induced OWAIMAM operator, which uses a generating 
function r for the order inducing variables such that r: I � 
R, being that I ⊂ R is a closed interval I = (a, and b) and a 
generating function for the arguments such that s: Rm � 
R. This generating function expresses the formation of 
the arguments when a previous analysis exists, such as 
the use of a multi-person process where each argument 
is constituted by the opinion of m persons. Moreover, we 
use a weighting function f for the weighting vector 
(Spirkova, 2008). 

In this case, we directly extend the approach by 
obtaining the function induced mixture IMAM (IMIMAM) 
operator as follows. In this definition, we refer to the 
arguments as two sets X = (x1, x2, …, xn) and Y = (y1, y2, 
…, yn). 
 
 
Definition 8 
 
An IMIMAM operator of dimension n is a mapping 
IMIMAM: (0, 1)n × (0, 1)n × (0, 1)n → (0, 1) that has an 
associated vector of weighting functions f, r: I � )0, ∞(, is 
a some positive continuous function, s: Rm � R, such 
that: 
 
IMIMAM ((ro(u1), sp(x1), sq(y1)),…, (ro(un), sp(xn), sq(yn))) = 

�

�

=

=
n

j
jyj

n

j
jyjyj

bsf

bsbsf

1

1

))((

)())((
,                                          (7)                

 
Where sy(bj) is the |sp(xi) – sq(yi)| and the (0 ∨ (sp(xi) – 
sq(yi))) value of the IMD triplet (ro(ui), sp(xi), sq(yi))) having 
the jth smallest ro(ui); ui is the order-inducing variable; 
|sp(xi) – sq(yi)| is the argument variable represented in the 
form of individual distances; and o, p and q indicate that 
each order-inducing variable and each argument is 
formed by using a different function. A further interesting 
issue is the use of infinitary aggregation operators 
(Mesiar and Pap, 2008). In this case, we can represent 
an aggregation process where there are an unlimited 
number of arguments that appear in the aggregation 
process. 



 
 
 
 

Note that �
∞

= =1 1j jw . By using, the IOWAIMAM 

operator we get the infinitary IOWAIMAM (∞-IOWAIMAM) 
operator as follows: 
 

∞-IOWAIMAM (�u1, x1, y1� ,…, �un, xn, yn�) = 
�
∞

=1j
jjbw , (8) 

 
However, note that the reordering process is much more 
complex, that is, we never know which argument is the 
largest argument because we have an unlimited number 
of arguments. This problem can be partially solved by 
using the order inducing variables. For further reading 
about the usual OWA by Mesiar and Pap (2008). A 
further interesting issue to analyze is the different 
measures used for characterizing the weighting vector of 
the IOWAIMAM operator, based on the measures 
developed for the OWA operator by Yager (1988). Thus, 
we can analyze the degree of orness of the IOWAIMAM, 
the entropy of dispersion and the balance of the 
weighting vector. 
 
 
Families of IOWAIMAM operators 
 
A wide range of families of IOWAIMAM operators can be 
used by using a different manifestation in the weighting 
vector (Emrouznejad and Amin, 2010; Merigó et al., 
2010; Yager, 1993, 2009, 2010; Zhou and Chen, 2010). 
For example, it is possible to obtain the maximum, the 
minimum, the IMAM, the WIMAM operator and the 
OWAIMAM operator. 
 
 
Remark 1 
 
For example, it is possible to obtain the maximum, the 
minimum, the IMAM, the WIMAM operator and the 
OWAIMAM operator. 
 
i) The maximum is found if wp = 1 and wj = 0, for all j ≠ p, 
up = Max((xi, yi)).  
ii) The minimum, if wq = 1 and wj = 0, for all j ≠ q, uq = 
Min((xi, yi)). 
iii) If wk = 1 and wj = 0, for all j ≠ k, we get the step-
IOWAIMAM operator.  
iv) The IMAM is found when wj = 1/n, for all �xi, yi). 
v) The WIMAM when the ordered position of I is the same 
as the ordered position of ui.  
vi) The OWAIMAM is found when the ordered position of j 
is the same as the ordered position of ui. 
vii) If we use the Hamming distance in all the arguments, 
then the IOWAIMAM operator becomes the IOWAD 
operator (Merigó and Casanovas, 2010f). 
viii) If we use the adequacy coefficient (Kaufmann and 
Gil-Aluja, 1986) in all the arguments, then, we get the 
IOWA adequacy coefficient (IOWAAC) operator. 
ix) The median-IOWAIMAM, if n is odd we assign w(n + 1)/2 
= 1 and wj* = 0 for all others. If n  is  even  we  assign,  for  
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example, wn/2 = w(n/2) + 1 = 0.5 and wj* = 0 for all others.  
x) When wj* = 1/m for k ≤ j* ≤ k + m − 1 and wj* = 0 for j* > 
k + m and j* < k, we are using the window-IOWAIMAM 
operator. Note that k and m must be positive integers 
such that k + m − 1 ≤ n.  
xi) If w1 = wn = 0, and for all others wj* = 1/(n − 2), we are 
using the Olympic-IOWAIMAM. Note that it is possible to 
present a general formulation of the Olympic-IOWAIMAM 
considering that wj = 0 for j = 1, 2, …, k, n, n − 1, …, n − k 
+ 1; and for all others wj* = 1/(n − 2k), where k < n/2. Note 
that if k = 1, then, this general form becomes the usual 
Olympic-IOWAIMAM. 
xii) The centered-IOWAIMAM operator is found if the 
aggregation is symmetric (wj = wj + n −1), strongly decaying 
(when i < j ≤ (n + 1)/2 then wi < wj and when i > j ≥ (n + 
1)/2 then wi < wj) and inclusive (wj > 0).  
xiii) The generalized S-IOWAIMAM operator is obtained 
when w1 = (1/n)(1 − (α + β)) + α, wn = (1/n)(1 − (α + β)) + 
β, and wj = (1/n)(1 − (α + β)) for j = 2 to n − 1 where α, β 
∈ (0, 1) and α + β ≤ 1. 
 
Note that if α = 0, the generalized S-IOWAIMAM operator 
becomes the “andlike” S-IOWAIMAM operator and if β = 
0, it becomes the “orlike” S-IOWAIMAM operator. 
 
 
THE INDUCED HYBRID AVERAGING INDEX OF 
MAXIMUM AND MINIMUM LEVEL 
 
The IOWAIMAM operator can be further generalized by 
using the HA operator (Xu and Da, 2003). Thus, we can 
use the weighted average and the IOWA operator in the 
IMAM, considering both the attitudinal character of the 
decision maker and its subjective probability (or degree of 
importance). We call this new aggregation operator the 
induced hybrid averaging index of maximum and 
minimum level (IHAIMAM) operator. 
 
 
Definition 9 
 
An IHAIMAM operator of dimension n is a mapping 
IHAIMAM:  
 
(0, 1)n × (0, 1)n 

� (0, 1) that has an associated weighting 
vector W of dimension n with � = =n

j jw1 1 and wj ∈ (0, 

1), such that: 
 

IHAIMAM (�u1, x1, y1� ,…, �un, xn, yn�) = 
�
=

n

j
jjKw

1

,   (9) 

 
Where Kj represents all the |xi – yi|* = nωi |xi – yi| and the 
(0 ∨ (xi –  yi))* = nωi (0 ∨ (xi –  yi)), reordered in 
decreasing order of the values of the ui, ui is the order-
inducing variable, with i = 1, 2, …,n, ω = (ω1, ω2, …, ωn)

T 
is the weighting vector of the (0 ∨ (xi –  yi)), with ωi ∈ (0, 
1) and the sum of the weights is 1. 
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Example 6 
 
Assume the following fuzzy sets in an aggregation 
process: 
 
X = (0.8, 0.4, 0.8, and 0.5), and Y = (0.6, 0.5, 0.7, and 
0.9). 
 
The following weighting vectors: 
 
W = (0.3, 0.3, 0.3, and 0.1) and � = (0.4, 0.3, 0.2, and 
0.1), and the order inducing variables U = (14, 17, 22, 
and 19). 
 
If we calculate the similarity between X and Y using the 
IHAIMAM operator and assuming that the first two 
arguments of the sets X and Y has to be treated with the 
Hamming distance and the other ones with the adequacy 
coefficient, we get the following: 
 
First, we weight the arguments with the weighted 
average: 
 
(0 ∨ (0.8 – 0.7)) × 0.4 × 4 = 0.16, 
(0 ∨ (0.5 – 0.9)) × 0.3 × 4 = 0, 
|0.8 – 0.6| × 0.2 × 4 = 0.16, 
|0.4 – 0.5| × 0.1 × 4 = 0.04. 
 
Next, we develop the aggregation with the IOWA 
operator: 
 
IHAIMAM (X, and Y) = 0.3 × 0.16 + 0.3 × 0 + 0.3 × 0.16 + 
0.1 × 0.04 = 0.1. 
 
Note that if wj = 1/n, for all j, we obtain the WIMAM 
operator and if ωi = 1/n, for all i, we obtain the 
IOWAIMAM operator. If wj = 1/n and ωi = 1/n, for all i and 
j, we get the NIMAM operator. The IHAIMAM operator 
accomplishes similar properties than the IOWAIMAM 
operator.  

However, it is not idempotent nor commutative. 
Moreover, we can also study a wide range of families of 
IHAIMAM operators following the methodology explained 
in induced ordered weighted averaging index of 
maximum and minimum level. 
 
 
IMMEDIATE WEIGHTS IN THE IMAM OPERATOR 
 
A similar extension than the IHAIMAM operator can be 
suggested by using immediate weights in the aggre-
gation. Thus, we get the immediate weighted IOWAIMAM 
(IWIOWAIMAM) operator. Its main advantage is that it can 
deal with the weighted average and the IOWA operator in 
the same formulation. It can be defined as follows: 
 
 
Definition 10 
 
An IWIOWAIMAM operator of dimension n is  a  mapping  

 
 
 
 
IWIOWAIMAM: 
 
(0, 1)n × (0, 1)n 

� (0, 1) that has an associated weighting 
vector W of dimension n with wj ∈ (0, 1) and � = =n

j jw1 1, 

such that: 
 

 IWIOWAIMAM (�u1, x1, y1�,…, �un, xn, yn�) = �
=

n

j
jjbv

1
ˆ , (10) 

 

Where bj is the |xi – yi| and the (0 ∨ (xi – yi)) value having 
the jth smallest ui, ui is the order-inducing variable, xi, yi ∈ 
(0, 1), each |xi – yi| and (0 ∨ (xi – yi)) has associated a 
WA vi, vj is the associated WA of bj, 
and � == n

j jjjjj vwvwv 1 )/(ˆ . 

 

Note that it is also possible to consider descending and 
ascending orders and the dual by using Q (X, Y) = 1 − K 
(X, Y). It also accomplishes similar properties than the 
IOWAIMAM operator excepting that it is not commutative. 
Furthermore, it is possible to study a wide range of 
families of IWIOWAIMAM operators by using a different 
expression in the weighting vector as explained in 
induced ordered weighted averaging index of maximum 
and minimum level. 
 
 
Example 7 
 
Assume the same information of Example 1. With the 
IWIOWAIMAM operator we get the following: 
 
First, we calculate the weights. Thus, we have to adapt 
the ordering of W to V (or vice versa). W* = (0.3, 0.1, 0.3, 
and 0.3). Now we mix the weighting vectors by using 

� == n
j jjjjj vwvwv 1 )/(ˆ . Therefore, we obtain: 

 

5.0
24.0

4.03.0ˆ1 =×=v ,  

 

125.0
24.0

3.01.0ˆ2 =×=v , 

 

25.0
24.0

2.03.0ˆ3 =×=v ,          

 

125.0
24.0

1.03.0ˆ4 =×=v . 

 
Once we have the new weighting vector, we can 
aggregate the information according to the reordering 
established in the order inducing variables. That is, 
 
IWIOWAIMAM (X, Y) = 0.5 ×((0 ∨ (0.8 – 0.7)) + 0.125 × 
(0 ∨ (0.5 – 0.9)) + 0.25 × |0.8 – 0.6| + 0.125 × |0.4 – 0.5| 
= 0.1. 
 
Note that in Examples 1 and  2  we  get  the  same  result 
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Table 1. Characteristics of the markets. 
 

 C1 C2 C3 C4 C5 C6 

A1 0.6 0.6 0.8 0.6 0.8 0.5 
A2 0.5 0.7 0.6 0.7 0.6 0.7 
A3 0.4 0.4 0.9 0.5 0.7 0.8 
A4 0.7 0.6 0.7 0.7 0.4 0.6 
A5 0.5 0.6 0.7 0.6 0.5 0.7 
A6 0.4 0.6 0.8 0.3 0.6 0.6 

 
 
 
with both methods, but sometimes these methods may 
lead to different results depending on the assumptions 
made in the analysis. 
 
 
APPLICATION IN ASSIGNMENT THEORY 
 
In the following, we are going to develop a brief 
illustrative example of the new approach in a decision 
making problem concerning strategy selection. We focus 
on the use of the assignment theory where we want to 
assign several elements of one set to other elements of a 
second set. Note that in the literature we may find a wide 
range of methods for doing so (Gil-Aluja, 1999), but in 
this paper we will focus on a very simple algorithm that 
assigns the results by elimination of rows and columns 
(Gil-Aluja, 1999). Note that other applications could also 
be considered (Gil-Aluja et al., 2009). 

Assume that a group of companies are planning an 
investment strategy for the next year and they consider 
the possibility of expanding to several markets but they 
do not want to compete between them. The key idea is 
that each company should focus in one market. After 
careful analysis of the information, the companies 
consider that the main markets are the following: 
 
i) Expand to the Nigerian market: A1. 
ii) Expand to the South African market: A2. 
iii) Expand to the Egyptian market: A3. 
iv) Expand to the Argelian market: A4. 
v) Expand to the Kenian market: A5. 
vi) Expand to the Tanzanian market: A6. 
 
After careful review of the information, the group of 
experts of the company establishes the following general 
information regarding the strategies. They have sum-
marized the information of the strategies in six general 
characteristics C = (C1, C2, C3, C4, and C5). 
 
i) C1: Benefits in the short term. 
ii) C2: Benefits in the mid term. 
iii) C3: Benefits in the long term. 
iv) C4: Risk of the strategy. 
v) C5: Size of the market. 
vi) C6: Other factors. 

The companies involved in the following decision process 
that can invest in these markets are the following: 
 
i) E1: Enterprise A. 
ii) E2: Enterprise B. 
iii) E3: Enterprise C. 
iv) E4: Enterprise D. 
 
With this information, the group of experts of the 
company describes each market and each company 
according to the characteristics established. That is, with 
the markets we get the expected results when investing 
in these markets and with the enterprises, the results 
they would like to obtain in this strategy. We assume that 
each company has similar characteristics so they are 
more or less equally qualified for carrying out the 
strategic investment process. The results are shown in 
Table 1 for the markets and in Table 2 for the enterprises. 
The results are valuations (numbers) between 0 and 1 
being 1 the best result and 0 the worst result. 

With this information, it is possible to develop different 
methods for calculating the similarity between the 
enterprises and the markets. In this example, we 
consider the WIMAM, the IOWAD operator and the 
IOWAIMAM operator. We consider that the first three 
characteristics have to be treated with the adequacy 
coefficient and the other three with the Hamming 
distance. We assume that W = (0.1, 0.1, 0.1, 0.2, 0.2, 
and 0.3) and V = (0.2, 0.2, 0.2, 0.2, 0.1, and 0.1). With 
the WIMAM operator we get the following similarities 
between the enterprises and the markets shown in Table 
3. With this information, now we can develop an 
assignment process by using one of the algorithms 
available in the literature. For example, we will use the 
algorithm presented by Gil-Aluja (1999) regarding 
elimination of rows and columns. By using this algorithm, 
we always select the lowest similarity and then eliminate 
its row and its column until we have assigned all the 
elements of one of the sets. 

Note that in Table 3 we already show the first 
assignment process where we write in parenthesis the 
element selected and in which position in order to see 
how we have eliminated rows and columns. Once we 
have found the first assignment, we eliminate its row and 
its column (E3 and A1) and we repeat the process with the  
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Table 2. Characteristics of the enterprises. 
 
 C1 C2 C3 C4 C5 C6 

E1 0.6 0.7 0.8 0.7 0.6 0.6 
E2 0.3 0.6 0.9 0.6 0.8 0.7 
E3 0.5 0.6 0.7 0.7 0.7 0.5 
E4 0.4 0.7 0.7 0.6 0.6 0.6 

 
 
 

Table 3. Aggregated results and assignment process (step 1). 
 
 A1 A2 A3 A4 A5 A6 

E1 0.07 0.07 0.17 0.06 0.1 0.17 
E2 0.04 0.1 0.05 0.13 0.07 0.14 
E3 0.03 (1º) 0.05 0.13 0.04 0.06 0.15 
E4 0.05 0.05 0.11 0.06 0.04 0.11 

 
 
 

Table 4. Aggregated results and assignment process (step 2). 
 
 A1 A2 A3 A4 A5 A6 

E1 0.07 0.07 0.17 0.06 0.1 0.17 
E2 0.04 0.1 0.05 0.13 0.07 0.14 
E3 0.03 (1º) 0.05 0.13 0.04 0.06 0.15 
E4 0.05 0.05 0.11 0.06 0.04 (2º) 0.11 

 
 
 

Table 5. Aggregated results and assignment process (step 3). 
 
 A1 A2 A3 A4 A5 A6 

E1 0.07 0.07 0.17 0.06 (4º) 0.1 0.17 
E2 0.04 0.1 0.05 (3º) 0.13 0.07 0.14 
E3 0.03 (1º) 0.05 0.13 0.04 0.06 0.15 
E4 0.05 0.05 0.11 0.06 0.04 (2º) 0.11 

 
 
rest of the Table.  

The second assignment process is presented in Table 
4. Next, we eliminate the row and the column of the 
second assignment and repeat the process until we have 
assigned all the possible elements. The third and fourth 
assignments are presented in Table 5. 
 
 
Assignment process 1 
 
1º- Enterprise 3 assigned with market A1 (Nigeria). 
2º- Enterprise 4 assigned with market A5 (Kenia). 
3º- Enterprise 2 assigned with market A3 (Egypt). 
4º- Enterprise 1 assigned with market A4 (Argelia). 
 
Next, we develop a similar assignment process but with 
the IOWAD operator. We assume that U = (13, 16, 17, 
27, 22, and 19). The results are shown in Table 6. In  this 

case, by using the assignment algorithm by elimination of 
rows and columns, we obtain the following results. 
 
 
Assignment process 2 
 
1º- Enterprise 2 assigned with market A1 (Nigeria). 
2º- Enterprise 3 assigned with market A5 (Kenia). 
3º- Enterprise 4 assigned with market A2 (South Africa). 
4º- Enterprise 1 assigned with market A4 (Argelia). 
 
By using the IOWAIMAM operator, we can also develop a 
similar analysis in order to obtain an optimal assignment 
process. Note that with the IOWAIMAM we are using the 
Hamming distance and the adequacy coefficient in the 
same formulation and aggregated with the OWA 
operator. The results are presented in Table 7. By using 
the assignment algorithm commented before, we  get  the
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Table 6. Aggregated results with the IOWAD operator. 
 

 A1 A2 A3 A4 A5 A6 

E1 0.06 0.08 0.2 0.09 (4º) 0.1 0.15 
E2 0.04 (1º) 0.18 0.13 0.24 0.13 0.14 
E3 0.07 0.17 0.17 0.1 0.05 (2º) 0.14 
E4 0.13 0.07 (3º) 0.15 0.11 0.07 0.1 

 
 
 

Table 7. Aggregated results with the IOWAIMAM operator. 
 

 A1 A2 A3 A4 A5 A6 

E1 0.06 0.08 0.18 0.06(3ab) 0.1 0.15 
E2 0.04 0.09 0.08 (4ºb) 0.1 0.07 (4ºa) 0.09 
E3 0.02 (1º) 0.05 0.13 0.04 0.05 0.12 
E4 0.05 0.04 (2ºa) 0.11 0.05 0.04 (2ºb) 0.08 

 
 
 
following assignment results. 
 
 
Assignment process 3 
 
1º- Enterprise 3 assigned with market A1 (Nigeria). 
2º- Two optimal assignments: 
2ºa) Enterprise 4 assigned with market A2 (South Africa). 
3ºa) Enterprise 1 assigned with market A4 (Argelia). 
4ºa) Enterprise 2 assigned with market A5 (Kenia).  
 
or 
 
2ºb) Enterprise 4 assigned with market A5 (Kenia). 
3ºb) Enterprise 1 assigned with market A4 (Argelia). 
4ºb) Enterprise 2 assigned with market A3 (Egypt). 
 
As we can see, we obtain different results with each 
aggregation method. Thus, depending on the method 
used, our decisions may be different. Note that with the 
IOWAIMAM we find that there are two optimal 
assignment processes. However, if we analyze both 
assignments in detail, we see that the degree of 
optimality of the first assignment process is 0.02 + 0.04 + 
0.06 + 0.07 = 0.19, and for the second assignment 
process is 0.02 + 0.04 + 0.06 + 0.08 = 0.20. Thus, 
although both assignment processes are optimal, it 
seems that the first one is better. 
 
 
CONCLUSIONS 
 
We have presented a new aggregation method very 
useful for decision making problems. We have introduced 
the IOWAIMAM operator. It is an aggregation operator 
that uses the IOWA and the IMAM operator  in  the  same  

formulation. Thus, it uses the Hamming distance and  the  
adequacy coefficient in the same formulation. Moreover, 
it also uses a complex reordering process in the 
aggregation of the information by using order inducing 
variables. We have also seen that it includes a wide 
range of particular cases such as the OWAIMAM, the 
WIMAM, the IOWAD and the weighted Hamming 
distance. We have further extended this approach by 
using the hybrid average obtaining the IHAIMAM 
operator. Thus, we have been able to use weighted 
averages and IOWA operators in the IMAM operator. We 
have also presented a similar model by using immediate 
weights that we have called the IWIOWAIMAM operator. 
We have studied the applicability of this new approach in 
a decision making problem regarding the selection of 
strategies in an assignment process. We have seen that 
depending on the particular type of aggregation operator 
used the results may lead to different decisions. 
Therefore, we have seen that it is very important that the 
decision maker appropriately selects the method that is in 
closest accordance with his interests. 

In future research, we expect to develop further 
developments by using other types of aggregation 
operators such as probabilistic ones or the use of unified 
aggregation operators. We will also consider other 
decision making applications in business problems and 
by using other assignment and grouping algorithms. 
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