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In this paper, the study attempts to determine the optimal capital investment in setup cost reduction and 
optimal lot sizing policies for an economic order quantity (EOQ) model with random yields. The setup 
cost is treated as the function of capital expenditure in technology. The study shows that the expected 
total annual cost functions with capital investment is convex and develop a solution procedure to 
determine the optimal lot sizes and the capital investment in setup cost reduction with a limited capital 
budget. Finally, a numerical example is presented to illustrate the results and compared to the results 
without considering capital investment. These results evidently show that significant costs savings can 
be obtained through capital investment in setup cost reduction. In addition, the sensitivity analysis is 
also included. 
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INTRODUCTION 
 
The random yield production or procurement problem has 
become an important research topic in production and 
inventory studies. In particular, several papers have 
reported the implications of yield randomness on lot 
sizing decisions. For an extensive review on many other 
lot sizing problems with random yields, interested readers 
are referred to the excellent paper by Yano and Lee 
(1995). Silver (1976) was one of the earliest authors that 
extended the classical economic order quantity (EOQ) 
model to include the case where the quantity received 
from the supplier does not necessarily match the quantity 
requisitioned. Kalro and Gohil (1982) extended Silver’s 
model to include complete and partial backlogging of 
demands. Parlar and Berkin (1991) analyzed the supply 
uncertainty problem for a class of EOQ models. Recently, 
Yuanjie and Zhang (2008) studied a simply supply chain 
with one supplier and one retailer where there is random 
yield production and uncertain demand. Other related 
studies can be found in Shih (1980), Gerchak (1992), 
Parlar and Wang (1993), Parlar and Perry (1995),  Erdem  
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and Ozekici (2002).  
In existing EOQ-type models, the yield distribution itself 

is assumed to be known and given. For example, the 
fraction distribution of defectives produced is fixed. 
However, to a certain extent, a firm may wish and be able 
to choose production processes, machines, and suppliers 
based on their yield distributions and associated costs. 
Such considerations are often mentioned in relation to 
modern manufacturing strategies (Spence, 1988). Some 
recent research has attempted to improve the production 
process by investment in modern production technology 
which can impact yield distribution. Cheng (1991) 
assumed that the unit production cost of an item 
increases with the yield rate. The optimal lot sizes and 
yield rate were obtained for this situation. Gerchak and 
Parlar (1990) considered the problem of jointly 
determining the yield variance and lot sizes when the 
yield variability could be reduced through appropriate 
investment. However, they did not investigate the 
advantages of capital investment in reducing setup cost. 
The benefits of reduced setups are well documented 
(Hong and Hayya, 1995). For example, faster 
changeovers have been associated with lower inventory, 
faster throughput, shorter lead time, improved quality, and 
lower unit  cost.  Much  of  the  analytical  work  on  setup  
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reduction examined the benefits of reduced setups on 
inventory and setup cost. Recently, Lin and Hou (2005) 
extended the work of Noori and Keller (1986) and 
Gerchak (1992) to consider how the setup cost and yield 
standard deviation can be reduced through capital 
investments without a limited capital budget. Hou and Lin 
(2004) studied the effects of an imperfect production 
process on the optimal production run length when capital 
investment in process improvement is adopted. Hou 
(2007) extended the work of Hou and Lin (2004) to 
consider an economic production quantity model with 
imperfect production processes, in which the setup cost 
and process quality are functions of capital expenditure. 
However, the company has recognized the resources or 
budget allocated are usually limited. With a limited capital 
budget, the study would appropriately allocate capital 
budget to reduce setup cost and then determine the 
optimal lot sizing policies. As a result, the study considers 
a lot size model with random yields when the setup cost 
can be reduced through capital investment under a 
limited capital budget. Other several relationships 
between the amount of capital investment and setup cost 
level have been reported by many researches as in 
Porteus (1986), Billington (1987), Kim et al. (1992), 
Hwang et al. (1993), Hong (1997), Hofmann (1998), and 
Chung and Huang (1999). 

Based on the above arguments, this article attempts to 
model the production process when yield variability can 
be reduced through investment in setup cost reduction 
under a limited capital budget. To the knowledge, no 
previous research has addressed such scenario. In this 
analysis, the study assumes that setup cost is the 
function of capital expenditure. The study shows that the 
objective function is convex. With this convexity, an 
iterative solution procedure is presented to find the 
optimal results. Therefore, the optimal capital investment 
and ordering policies that minimize the expected total 
annual costs for the system are appropriately determined. 
Finally, a numerical example is provided to illustrate the 
results obtained and assess the performance on cost 
savings by adopting capital investment under a limited 
capital budget. In addition, the sensitivity analysis is 
performed to investigate the effects of changing 
parameters values on the optimal solution of the system. 
 
 
Notations and assumptions 
 
The study defines the following notations to present the 
mathematical model in this paper: 
 
1) D : Demand rate in units/per year. 
2) Q : the quantity ordered, in units. 
3) v : unit variable cost, in $/unit. 
4) r : inventory carrying charge, in $/$/per year 
5) YQ : the quantity received given that Q units are 
ordered, is a random variable.  

 
 
 
 
6) Uθ : the maximum available budget for investment in 
setup cost reduction. 
7) sθ : the available budget for investment in setup cost 

reduction, Us θθ ≤≤0 . 

8) )( sf θ : the capital investment in setup cost reduction, 

defined as
sU

s
sf

θθ
θθ
−

=)( .    

9)  0A : the original setup cost. 

10) A : the nominal setup cost per setup, a function of 

sθ , with A0 = A(0).  

11) AL: the technological lower limit of setup cost when 

the capital investment sθ = Uθ , that is, LA = A( Uθ ). 

12) σ : the yield’s standard deviation. 
13) )( QYE : the expected value of YQ given that Q units 

are ordered (that is, QYE Q µ=)( ) . 

14)
QYσ : the standard deviation of YQ given that Q units 

are ordered, is proportional to Q (that is, Q
QY σσ = ). 

15) µ : the bias factor and
Q

YE Q )(
=µ , represents the 

expected amount received as a proportion of the amount 
ordered. 
16) i : cost of capital, in $/$/per year. 
17) )( *

sf θ : the optimal capital investment in setup cost 
reduction.  
18) Q*: the optimal order quantity. 
 
In addition, the following assumptions are used 
throughout this paper: 
 
1) Demand is constant and deterministic. 
2) The unit variable cost is independent of the quantity 
order. 
3) The lead time is zero and independent of the quantity 
ordered. 
4) The quantity received is a random variable depending 
upon the quantity ordered.  
5) )( sA θ  is a continuously differentiable decreasing 

function and convex in capital expenditure  sθ .  
6) For the sake of generality, the study assumes that 

00 ≥> σµ . 
7) The relationship between setup cost reduction and 
capital investment can be described using a logarithmic 
investment cost function under maximum available 
budget Uθ . That is, when the maximum available budget  

Uθ  is utilized then the setup cost will decrease exponen-
tially to a technological lower limit AL . Hence,  the  capital 



 
 
 
 
investment function in setup cost reduction,  )( sf θ , can 
be stated as 
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where 
sU

s
sf

θθ
θθ
−

=)(  and 1/a is the fraction of the 

reduction in A per dollar increase in investment. 
 
 
MATHEMATICAL MODEL 
 
Based on the above notations and assumptions, the study has the 
expected relevant cost per unit time are  
 

 TC(Q) = [ ]220
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As it takes investment to reduce setup cost, the study should 
include an amortized investment cost in the proposed model. 
Therefore, the expected total annual costs of the system, 

),( sQETC θ , are composed of equation (1) and the amortized 

total capital cost, )( sif θ , as follow: 
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Subject to Us θθ ≤≤0  

 

where  )( sf θ is based on Equation (1). Hence, Equation (3) can 

be stated as   
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It is easy to show that ETC in Equation (4) is convex on A. To find 
the minimum cost, the partial derivatives of the ),( AQETC can 
be evaluated as 
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From Equation (5), the optimal setup cost can be solved as 
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Q
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Substituting Equation (6) into Equation (4) yields the following 
corresponding expected total annual cost expression, EAC: 
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ANALYSIS AND SOLUTION PROCEDURE 
 
This work aims to minimize the expected total annual 
cost )(QEAC defined in Equation (7) in Q > 0 

and 0AAAL ≤< . Hence, the following results will be 
shown.  
 
Theorem 1: )(QEAC  is convex with respect to 0>Q . 
Proof: Equation (7) yields 
 

Q
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and  
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Thus, the study concludes that )(QEAC  is convex on 

0>Q .  
Based on the convex nature of the function, EAC(Q), 

the first-order condition for a minimum is given by 

0)( =QEAC
dQ
d . Hence, the study can obtain  
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Notice that the optimal setup cost and lot size can be 
expressed in a closed form as shown in Equations (6) 
and (10), respectively. Thus, the optimal solution (Q*, A*) 
can be obtained easily by solving the above Equations (6) 
and (10). That is, the solution procedure which can 
initially use Equation (10) to get the optimal lot size Q*, 
and then substituting Q* into Equation (6) to find the 
optimal setup cost )( ** QA . When no capital investment 
in setup cost reduction is made, then AL = 0 and A* = A0. 
Hence, from Equation (6), the study has  
 

Q
DA

ia
µ

0=                                                      (11) 

 
Thus, the corresponding expected total annual cost EAC 
in Equation (7) can reduce to the expression of Equation 
(2) which is the result of Silver (1976) and Gerchak and 
Parlar (1990). Therefore, the lot size model with random 
yields in this paper is an extension of both Silver (1976) 
and Gerchak and Parlar (1990). Next, substituting 
Equation (11) into Equation (10), the optimal lot size will 
reduce to  
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Table 1. The results for Example1. 
 

Model type Q* *A  ))(( skf θ  EAC(Q*) EAC (%) 

Model 1 30.135 24.701 (1895.485) 1103.999 52.67 
Model 2 85.749 200 (0) 2332.381 --- 

 

EAC is defined the percentage of savings in EAC as compared with Model 2.  
 
 

Table 2.  Optimal results with changing the parameter AL. 
 

Model type Changing the 
parameter AL 

Change in the 
parameter (%) Q* *A ))(( skf θ  EAC(Q*) EAC (%) 

Model 1 

10 -50 22.255 13.472 (2081.225) 917.52 60.66 
15 -25 26.525 19.138 (1976.077) 1017.905 56.36 
20 0 30.135 24.701 (1895.485) 1103.999 52.67 
25 25 33.320 30.198 (1828.595) 1180.591 49.38 
30 50 36.202 35.647 (1770.386) 1250.246 46.40 

Model 2 --- --- 85.749 200 (0) 2332.381 --- 
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Therefore, the results for special case such as no capital 
investment in setup cost reduction are derived. 
 
 
NUMERICAL EXAMPLE AND SENSITIVITY ANALYSIS 
 
Two different models used for comparison are specified 
as follows. 
 
Model 1: lot size model with random yields and with 
capital investments (Equation (7)), and Model 2: lot size 
model with random yields and without capital investment 
(see Equation (2)). 
The percentage of savings of expected total annual cost 
is defined by  
 

%100
2 model of )(
1 model of )(

1% *

*

×�
�
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To illustrate the above procedure, let us consider the 
following numerical example: 
 
Example: D = 1000, i=0.15, A0 = 200, σ = 1.2, µ  = 2.0, v 

= 40, r = 0.25, a = 520, AL = 20, 2500=uθ . Applying the 
proposed procedure as mentioned above, the study 
provides the results for the two models as in Table 1. 
From the results shown in Table 1, the study sees that 
significant savings of the expected total annual cost are 
achieved through capital investment. Here, the study gets 
the optimal setup cost A* = $24.701, the available  budget  

for investment in setup cost reduction 682.2498=sθ . 
Then, the optimal capital investment in setup cost 
reduction, =)( skf θ $1895.485, namely, the optimal 
investment require $1895.485 when the optimal setup 
cost A* = $24.701 and the optimal lot size *Q  = 30.135 
are required. The corresponding expected total annual 
cost )( *QEAC = $1103.999, which is less than the cost 
when there is no capital investment for setup cost 
reduction. The percentage of expected total annual cost 
savings  is  given  by  52.67%.  That  is,  52.67%   of   the  
expected total annual cost savings are relative to the 
model without capital investment in setup cost reduction. 

In addition, sensitivity analysis is performed to 
investigate the performance on cost savings when capital 
investment in setup cost reduction is adopted under a 
limited capital budget. Here, the effects of changing the 
parameters AL, a, µ andσ on the optimal lot sizing 
policies and the expected total annual cost savings are 
studied. Whenever one parameter is changing by some 
percentage, all other parameters are remained at their 
original values. Investigation has been done for both 
positive and negative changes of these parameters. The 
obtained results are summarized in Tables 2 to 5. The 
following inferences can be obtained from the sensitivity 
analysis based on Tables 2 to 5.   
 
(1) Table 2 shows that the lot sizes and expected total 
annual cost decreases as lower limit of setup cost (AL) 
decreases. Furthermore, the expected total annual cost 
savings significantly increases as AL decreases. This 
means the more capital investment is required to achieve 
the smaller setup cost as AL decreases which results in 
the more considerable cost savings. 
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Table 3.  Optimal results with changing the parameter a. 
 

Model type Changing the 
parameter a 

Change in the 
parameter (%) Q* *A ))(( skf θ  EAC(Q*) EAC (%) 

 Model 1 

260 -50 28.588 22.230 (1141.664) 948.844 59.32 
390 -25 29.352 23.434(1544.077) 1029.991 55.84 
520 0 30.135 24.701(1895.485) 1103.999 52.67 
650 25 30.937 26.033(2207.249) 1172.567 49.73 
780 50 31.757 27.431(2486.081) 1236.698 46.98 

       
Model 2 --- --- 85.749 200(0) 2332.381 --- 

 
 
 

Table 4.  Optimal results with changing the parameter µ . 
 

Model 
type 

Changing the 
parameter µ  

Change in the 
parameter (%) Q* *A ))(( skf θ  EAC(Q*) EAC (%) 

Model 1 

1.0 -50 43.812 23.417(2061.335) 1378.202 40.91 
1.5 -25 36.247 24.241(1949.049) 1184.043 49.23 
2.0 0 30.135 24.701(1895.485) 1103.999 52.67 
2.5 25 25.483 24.969(1866.640) 1063.860 54.39 
3.0 50 21.943 25.135(1849.603) 1041.067 55.36 

       
Model 2 --- --- 85.749 200(0) 2332.381 --- 

 
 
 

Table 5.  Optimal results with changing the parameter σ . 
 
Model 
type 

Changing the 
parameterσ  

Change in the 
parameter (%) 

Q* *A ))(( skf θ  EAC(Q*)  EAC (%) 

Model 1 

0.6 -50 34.078 25.316(1831.551) 1017.627 56.37 
0.9 -25 32.263 25.033(1860.014) 1054.916 54.77 
1.2 0 30.135 24.701(1895.485) 1103.999 52.67 
1.5 25 27.917 24.355(1935.242) 1162.694 50.15 
1.8 50 25.758 24.018(1977.092) 1229.013 47.31 

       
Model 2 --- --- 85.749 200(0) 2332.381 --- 

 
 
 
(2) Table 3 shows that both the lot sizes and setup cost 
decrease as parameter a decrease. This implies that the 
optimal lot sizes depend on how costly it is to reduce the 
setup cost. Moreover, the expected total annual cost 
savings significantly increases as a decrease. 
(3) From Table 4, the study can see that when the mean 
yield µ increases, both the optimal lot sizes and expected 
total annual cost decrease. This implies that a reduction  
in the average proportion of defectives results in lower 
values of lot sizes and expected total annual cost. In 
other words, improving quality will cause lower values of 
lot sizes and expected total annual cost. 
(4) From Table 5, the study can see that Q is decreasing 
in σ . In other words, the required lot sizes will increase if 

the yield variability can also be reduced through capital 
investment. In addition, the expected total annual cost 
savings significantly increases as σ decreases. Hence, 
the study may further consider the optimal investment 
allocation between yield variability and setup cost 
reductions in future study. 
 
 
Conclusions 
 
Since appropriate investments in modern production 
technology are an important strategy in manufacturing, 
the study attempts to model the production process by 
which yield variability can be reduced through investment  
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in setup cost reduction. In the analysis, the study 
assumes that the relationship between setup cost 
reduction and capital investment can be described using 
a logarithmic investment cost function under maximum 
available budget. To explore lot sizing policies, the 
expected total annual cost function with capital 
investment was formulated. The study showed that the 
cost function is convex and developed a solution 
procedure to determine the optimal lot sizes and setup 
cost. Therefore, the optimal capital investment could be 
appropriately determined. Finally, a numerical example is 
provided to illustrate the results and evaluate the effects 
of utilizing capital investment. In addition, the sensitivity 
analysis of the optimal solution with respect to 
parameters of the model is carried out. It should be 
emphasized that these results evidently show that 
significant cost savings can be achieved by investing in 
setup cost reduction. This approach is consistent with the 
JIT manufacturing philosophy which calls for reducing 
setup cost to achieve the inventory reductions. 
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