
African Journal of Business Management Vol. 4(10), pp. 2051-2058, 18 August, 2010
Available online at http://www.academicjournals.org/AJBM
ISSN 1993-8233 ©2010 Academic Journals

Full Length Research Paper

An optimal algorithm for type-I assembly line balancing
problem with resource constraint

Hsiu-Hsueh Kao1*, Din-Horng Yeh2, Yi-Hsien Wang3 and Jui-Cheng Hung4

1Department of Finance, Yuanpei University, No.306, Yuanpei St., Hsin-Chu 30015, Taiwan.

2Department of Business Administration, National Chung Cheng University, No.168, University Rd., Min-Hsiung Chia-Yi
62102, Taiwan.

3Department of Banking and Finance, Chinese Culture University, No.55, Hwa-Kang Road, Yang-Ming-Shan, Taipei
11114, Taiwan.

4Department of Finance, Lunghwa University of Science and Technology, No.300, Sec.1, Wanshou Rd., Guishan
Shiang, Taoyuan County 33306, Taiwan.

Accepted 31 May, 2010

In this paper we consider resource-constrained type-I assembly line balancing problem (RCALBP-I) in
which resource of different types, such as machines and workers, are required in processing tasks. The
objective of RCALBP-I is to minimize not only the number of workstations needed, but also the number
of resource types required. A shortest route algorithm is proposed to find the optimal solution for
RCALBP-I. An illustrative example is also given to show the effectiveness of the proposed algorithm.

Key words: Layout, line balancing, resource constraint, shortest route.

INTRODUCTION

Assembly line balancing problem (ALBP) has been
studied extensively since the pioneer work of (Bryton,
1954; Salveson, 1955; Jackson, 1956). During the past
decades numerous optimal approaches have been
developed to solve ALBP with different characteristics,
including parallel, U-type, mixed-model, two-sided, etc.
For extensive surveys (Baybars, 1986; Ghosh and
Gagnon, 1989; Erel and Sarin, 1998; Scholl, 1999;
Becker and Scholl, 2006). In the literature, the so-called
type-I ALBP (ALBP-I) considers an assembly line that
consists of a set of tasks with given processing times and
precedence relationships that define the permissible
ordering of tasks. The objective of ALBP-I is to assign the
set of tasks to successive workstations in order to
minimize the number of workstations needed for a given
cycle time Ghosh and Gagnon (1989). The following
definition of ALBP-I is adapted from Gutjahr and Nemhauser

*Corresponding author. E-mail: simonkao@mail2000.com.tw.

(1964).
Given a set A of tasks to be assigned, a positive real

valued function T defined on A representing processing
times of tasks, and a partial order P defined on A
denoting precedence relationship among tasks. Let C be
the given cycle time and N be the number of workstations
needed in the assembly line. The objective of ALBP-I is to
find a partition of the set A into successive
subsets AAi ⊆ , Ni ,...,1= , so that the number of

workstations N is minimized. Let)(xT denote the

processing time of task x, and �
∈

=
iAx

i xTAT)()(be the

total processing time of the tasks in subset iA . A partition

of subsets iA is feasible if the following conditions hold:

AAi

N

i
=

=1
� , (1)

2052 Afr. J. Bus. Manage.

φ=ji AA � , ji ≠ , (2)

CAT i ≤)(, Ni ,...,1= , (3)

If xPy (that is, x precedes y) and iAx ∈ , jAy ∈ , then

ji ≤ . (4)

Conditions (1) and (2) simply state that all the tasks have
to be assigned, and each task is assigned to one and
only one subset; condition (3) ensures that, for any
subset, the total processing time of the tasks in the
subset does not exceed the given cycle time, while
condition (4) maintains precedence relationship among
tasks. Conventionally, subset iA is usually called
workstation i, and a task x is said to be assigned to

workstation i if iAx ∈ .
Recently, some researchers studied assembly system

design problems (ASDP) in which the objective was to
optimize some economic criteria (e.g., total cost) with
machine selections (Nicosia et al., 2002; Yamada and
Matsui, 2003). However, only limited researches discuss
the practical situation of resource constraints that arises
often in assembly line balancing. In the real-world ALBP,
different types of resources (such as machines and
workers) are often required in task processing; as pointed
out by A�pak and Gökçen (2005), the issue of line
balancing with limited resources has always been a
serious problem in industry. In their recent paper A�pak
and Gökçen (2005) developed a 0 - 1 integer
programming model for a resource-constrained ALBP,
and the objective was to balance the assembly line so
that the number of resources required was minimized for
a given number of workstations.

In this paper, we revisit the same ALBP considered by
A�pak and Gökçen (2005), for convenience, we call the
problem resource-constrained type-I ALBP, or simply
RCALBP-I; however, the objective is to minimize not only
the number of workstations needed, but also the number
of resource types required. Motivation of this paper arises
from practical needs. In practice, a workstation in the
assembly line usually consists of one or more dedicated
machines as well as workers and tools. Thus, minimizing
both the number of workstations and resources is
equivalent to utilizing the least number of machines,
workers, and tools. We propose an optimal approach,
based on the shortest route algorithm developed by
Gutjahr and Nemhauser (1964), to solve RCALBP-I
considered in this paper. The paper is organized as
follows: first, problem description of RCALBP-I is given;
then, the proposed optimal approach is described,
followed by an illustrative example given by A�pak and
Gökçen (2005), conclusion and future research are
discussed in the last.

METHODOLOGY

Definition of RCALBP-I

As stated above, RCALBP-I differs from the traditional ALBP-I
defined previously in that different types of resource are required in
task processing in RCALBP-I. The definition of RCALBP-I is
described as follows. Consider the ALBP-I with a given cycle time
C, and let A be the set of tasks to be assigned and N be the number
of workstations needed. Also, let)(xT and)(xR be the

processing time and the resource type required for task Ax ∈ ,
respectively. For simplicity, we assume in this paper that each task
requires only one type of resource; the extension to multiple types

of resource is straightforward. Let AAi ⊆ be the subset

consisting of tasks that are assigned to workstation i, then)(iAT

is the total processing time and)(iAR is the set of resource types

required for workstation i. Let)(iAR denote the number of

resource types required for workstation i. Therefore, for RCALBP-I
considered in this paper, the objective is to find a feasible partition

iA in order to minimize both the number of workstations N and the

number of resources �
=

N

i
iAR

1

)(for the assembly line.

The shortest route algorithm

In order to develop the shortest route algorithm, we need to show
how to construct the network diagram for RCALBP-I. The
construction procedure consists of two parts: nodes generation and
arcs generation, which are explained in details below.

Nodes generation

In this paper we adapt the procedure developed by Gutjahr and
Nemhauser (1964), in nodes generation. In the network diagram, a
node is represented by the so-called state that is simply a subset of
tasks. These subsets (that is, states) are generated stage by stage,
and satisfy the following properties:

(i) No subsets are duplicated during the generation procedure.
(ii) All subsets generated are states.
(iii) Every subset is generated.

Conceptually, the proposed shortest route algorithm enumerates all
the feasible partitions in order to find the optimal ones that achieve
the desired objective.

The procedure starts from stage 0 with the empty set as the first
state generated. The set of tasks with no predecessors are placed
in stage 1 and are considered as “marked” tasks. All the subsets of
the marked tasks are generated and are defined as states. For
each generated state S, an unmarked immediate follower is defined
as a task that is an immediate successor of at least one task in S
and is not preceded by any tasks not in S. In general, for any state

kS generated in stage n, the unmarked immediate followers of kS

are placed in a set)(kSF . For each subset)(kl SFS ⊂ , the

union lk SS � is generated as a new state in stage 1+n . When

all the states in stage n have been considered, the tasks in

)(kSF are then marked and the procedure is repeated for stage

1+n . The procedure of nodes generation is finished when all the
tasks are marked and all states are therefore generated.

Arcs generation

In their paper, Gutjahr and Nemhauser (1964) developed a
procedure of arcs generation in which only one optimal solution was
given because just a necessary portion of feasible arcs was
generated. In this paper, we propose a modified arcs generation
procedure in which we enumerate all the feasible arcs so that the
desired solution for RCALBP-I can be found from among all the
alternative optimal solutions of ALBP-I. The proposed arcs
generation procedure is described as follows.

As mentioned above, a state kS represents a node k in the

network diagram constructed (that is, the number of states
generated is equal to the number of nodes). In the proposed
procedure, arcs are also generated stage by stage. The procedure
starts from stage 0 with state 0 as node 0, which is considered as
“marked” node. A directed arc is generated from node 0 to node k if

a state kS satisfies CST k ≤)(, and all the nodes having

directed arcs from node 0 are placed in stage 1 as marked nodes.
In general, for any marked node k in stage n, a directed arc is

generated from node k to an unmarked node l if a state lS satisfies

lk SS ⊂ and CSTST kl ≤−)()(; and node l is placed in

stage 1+n as marked node. The procedure is terminated when all
the nodes have been marked. Note that, in the proposed
procedure, all feasible paths are enumerated from node 0 (that is,
the empty state) to the last node (i.e., the state containing all the
tasks). According to Gutjahr and Nemhauser (1964), the number of
directed arcs needed for a path from node 0 to the last node is
equal to the minimum number of workstations needed for the
assembly line. The remaining issue is to find the paths that also
minimize the number of resources required, which is accomplished
as follows.

Computation of shortest routes

In order to find the desired solution, the length of arcs is defined as
follows. Consider the directed arc),(lk from node k to node l, and

let kS and lS be the associated states respectively. Let

kli SSA /= , that is, iA denotes a workstation i containing task

kl SSx /∈ . Then, the length of arc),(lk is defined to be

)(iAR , the number of resource types required for workstation i.

Let N be the minimum number of workstations obtained in the

above procedure of nodes generation, then �
=

N

i
iAR

1

)(is equal to

the total number of resource types required for a path from node 0
to the last node. Therefore, the path with the minimum value of

�
=

N

i
iAR

1

)(is the desired solution that not only gives the minimum

number of workstations but also requires the minimum number of
resource types.

Kao et al. 2053

Illustrative example

We use the example presented in A�pak and Gökçen (2005), as

depicted as in Figure 1 with the given cycle time 9=C , to
illustrate the proposed shortest route algorithm. As shown in the
figure, there are 11 tasks (represented by nodes) and their
processing times as well as the required resource type are given
next to the nodes. For instance, processing time of task 1 is 6 and
the required resource is type A (Figure 1 Illustrative example by
A�pak and Gökçen 2005).

Nodes generation

Starting from stage 0, we have the first generated φ=0S (the

empty set containing no task). Since task 1 is the only unmarked

immediate follower, we have }1{)(0 =SF and place task 1 in

stage 1 as marked. The only subset of)(0SF is }1{ ; by taking

the union of 0S and }1{ , we generate the

state }1{}1{01 == �SS and proceed to stage 1. In stage 1, the

unmarked immediate followers of state 1S are tasks 2, 3, 4 and 5,

and we have }5,4,3,2{)(1 =SF and these tasks are then

placed in stage 2 as marked. By taking the union of 1S and each

subset of)(1SF , we generate the states }2,1{2 =S to

}5,4,3,2,1{16 =S as shown in Table 1. The procedure continues

and the result of nodes generation is summarized as in Table 1, in
which state time is the total processing time of tasks in the state. As
seen in the table, there are totally 51 states generated (in which the

last state 51S contains all tasks) (Table 1, Nodes generation).

Arcs generation

Starting from stage 0 with the empty state 0S as node 0, we

generate directed arcs from node 0 to nodes 1, 2, 5, and 8 (that is,

states }1{1 =S , }2,1{2 =S , }5,1{5 =S , and }5,2,1{8 =S

respectively) because their state times are less than or equal to the

cycle time 9 and they contain state 0S as subset. These nodes are

placed in stage 1 as marked, and the procedure proceeds to stage

1. Take node 5 with state }5,1{5 =S as example, directed arcs

are generated from node 5 to nodes 10, 11, 13, 20, 14, and 22
because (i) the differences between their state times and that of the

state 5S are less than or equal to the cycle time 9, and (ii) the state

5S is subset of these states. The procedure continues and the

result of arcs generation is summarized as in Table 2 (Table 2 Arcs
generation).

Computation of shortest routes

The resulting network diagram obtained from the
procedures is as depicted in Figure 2 (Figure 2 Network

2054 Afr. J. Bus. Manage.

 1

 3

 4

 5

 2 6

 7

 8

 9 11

 10

(6,A)

(2,B)

(5,A)

(7,B)

(1,A)

(2,B) (6,B)

(3,A) (5,A)

(5,B)

(4,A)

Figure 1. Illustrative example by (A�pak and Gökçen, 2005).

Table 1. Nodes generation.

Stage Marked tasks State Node Tasks in state State time Immediate followers
0 0S 0 φ 0 1

1 1 1S 1 1 6 2, 3, 4, 5

2 2, 3, 4, 5 2S 2 1, 2 8 6

 3S 3 1, 3 11

 4S 4 1, 4 13

 5S 5 1, 5 7

 6S 6 1, 2, 3 13 6

 7S 7 1, 2, 4 15 6

 8S 8 1, 2, 5 9 6

 9S 9 1, 3, 4 18

 10S 10 1, 3, 5 12

 11S 11 1, 4, 5 14

 12S 12 1, 2, 3, 4 20 6

 13S 13 1, 2, 3, 5 14 6

 14S 14 1, 2, 4, 5 16 6

 15S 15 1, 3, 4, 5 19 7

 16S 16 1, 2, 3, 4, 5 21 6, 7

3 6, 7 17S 17 1, 2, 6 10 8

 18S 18 1, 2, 3, 6 15 8

 19S 19 1, 2, 4, 6 17 8

 20S 20 1, 2, 5, 6 11 8

 21S 21 1, 2, 3, 4, 6 22 8

 22S 22 1, 2, 3, 5, 6 16 8

Kao et al. 2055

Table 1. Nodes generation (continued).

Stage Marked tasks State Node Tasks in state State time Immediate followers
 23S 23 1, 2, 4, 5, 6 18 8

 24S 24 1, 3, 4, 5, 7 22 9

 25S 25 1, 2, 3, 4, 5, 6 23 8

 26S 26 1, 2, 3, 4, 5, 7 24 9

 27S 27 1, 2, 3, 4, 5, 6, 7 26 8, 9

4 8, 9 28S 28 1, 2, 6, 8 16 10

 29S 29 1, 2, 3, 6, 8 21 10

 30S 30 1, 2, 4, 6, 8 23 10

 31S 31 1, 2, 5, 6, 8 17 10

 32S 32 1, 2, 3, 4, 6, 8 28 10

 33S 33 1, 2, 3, 5, 6, 8 22 10

 34S 34 1, 2, 4, 5, 6, 8 24 10

 35S 35 1, 3, 4, 5, 7, 9 27

 36S 36 1, 2, 3, 4, 5, 6, 8 29 10

 37S 37 1, 2, 3, 4, 5, 6, 7, 8 32 10

 38S 38 1, 2, 3, 4, 5, 7, 9 29

 39S 39 1, 2, 3, 4, 5, 6, 7, 9 31

 40S 40 1, 2, 3, 4, 5, 6, 7, 8, 9 37 10

5 10 41S 41 1, 2, 6, 8, 10 21

 42S 42 1, 2, 3, 6, 8, 10 26

 43S 43 1, 2, 4, 6, 8, 10 28

 44S 44 1, 2, 5, 6, 8, 10 22

 45S 45 1, 2, 3, 4, 6, 8, 10 33

 46S 46 1, 2, 3, 5, 6, 8, 10 27

 47S 47 1, 2, 4, 5, 6, 8, 10 29

 48S 48 1, 2, 3, 4, 5, 6, 8, 10 34

 49S 49 1, 2, 3, 4, 5, 6, 7, 8, 10 37

 50S 50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 42 11

6 11 51S 51 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 46

diagram of the illustrative example).

As seen in the figure, six arcs are needed for a path
from node 0 to the last node (that is, state 51S);
according to Gutjahr and Nemhauser (1964), this means
that the minimum number of workstations needed is 6.
Also we see that many alternative paths exist, indicating
that there are alternative optimal solutions using the
same minimum number of workstations. In order to find

the desired solutions for RCALBP-I that also minimizes
the number of resource types required, we need to
compute the length of arcs. Take the arc)14,2(directed
from node 2 to node 14 for example, we have

}5,4{/ 214 =SS . As defined above, the length of arc

)14,2(is given by 2})5,4({ =R because task 4 and

task 5 require resource type A and B respectively. After

2056 Afr. J. Bus. Manage.

Table 2. Arcs generation.

Stage Marked nodes Node Arcs to nodes
0 0 0 1, 2, 5, 8
1 1 3, 4, 6, 7, 10, 11, 13, 17, 18, 20
 2 6, 7, 13, 17, 18, 20, 14, 19, 22, 28, 31
 5 10, 11, 13, 20, 14, 22

1, 2, 5. 8

8 13, 20, 14, 22, 31, 23
2 3 9, 12, 15
 4 9, 12, 15, 16, 21, 24
 6 12, 16, 21, 29, 33
 7 12, 16, 21, 25, 26, 30, 34
 10 15, 16
 11 15, 16, 24, 25

3, 4, 6, 7, 10, 11, 13, 17, 18, 20, 14, 19,
22, 28, 31, 23

13 16, 25, 33
 17
 18 21, 25, 29, 33
 20
 14 16, 25, 26, 34
 19 21, 25, 30, 34, 27
 22 25, 33
 28 30, 34, 33, 29, 41, 44
 31 34, 33, 44
 23 25, 34, 27

3 9, 12, 15, 16, 21, 24, 25, 26, 30, 34, 33,
29, 27, 41, 44

9 35

 12 32, 36, 38
 15 35
 16 36, 38
 21 39, 32, 36
 24 35, 38, 39
 25 37, 36, 39
 26 37, 38, 39
 30 43, 47, 32, 36, 37
 34 36, 37, 47
 33 46, 36
 29 42, 32, 36, 46
 27 37, 39
 41 42, 43, 46, 47
 44 46, 47

4 35, 32, 36, 38, 39, 37, 43, 47, 46, 42 35
 32 40, 45, 48, 49
 36 40, 48, 49
 38 40
 39 40
 37 40, 49
 43 48, 45, 49
 47 48, 49
 46 48
 42 48, 45

5 40, 45, 48, 49 40 50, 51
5 45 50
5 48 50

Kao et al. 2057

Table 2. Cont’d.

Stage Marked nodes Node Arcs to nodes
5 49 50, 51
6 50, 51 50
6 51

 3

4

6

7

10

11

13

14

17

18

19

20

22

23

28

31

30

9

12

15

16

21

24

25

26

27

29

33

34

41

44

2

5

8

1

0

32

35

36

37

38

39

42

43

46

47

40

45

48

49

50

51

Figure 2. Network diagram of the illustrative example.

computing the length of all directed arcs, we may apply
any shortest route algorithm such as Dijkstra (1959) to
find the shortest routes from node 0 to the last node.

Computational result is also shown in Figure 2, in which
there are totally six shortest routes represented in bold
lines; the minimum number of resource types required is

2058 Afr. J. Bus. Manage.

given by 6)(
6

1

=�
=i

iAR . Take the route

51493726710 SSSSSSS →→→→→→ for example
to show how the result of task assignment can be
obtained. Tasks assigned to workstations 1 through 6 are
given by }1{/ 011 == SSA , }4,2{/ 172 == SSA ,

}7,5,3{/ 7263 == SSA , }8,6{/ 26374 == SSA ,

}10{/ 37495 == SSA and }11,9{/ 49516 == SSA
respectively, which is the same optimal solution obtained
in A�pak and Gökçen (2005). Note that, although there
are five other shortest routes, only one possible different
task assignment can be obtained (for example, from the
path 514947341450 SSSSSSS →→→→→→):

}5,1{/ 051 == SSA , }4,2{/ 5142 == SSA ,

}8,6{/ 14343 == SSA , }10{/ 34474 == SSA ,

}7,3{/ 47495 == SSA and }11,9{/ 49516 == SSA .

Conclusion and future research

In this paper we consider type-I assembly line balancing
problem with resource constraint (RCALBP-I) in which
the objective is to find the optimal task assignment that
minimizes not only the number of workstations needed,
but also the number of resource types required. It is of
practical importance that the number of resource types
should be minimized as possible in order to utilize the
least number of resource requirements.

We propose a shortest route algorithm in which all
alternative optimal solutions are enumerated in order to
find the desired solution of RCALBP-I. Future research
may include extensions of the proposed algorithm to
solve different types of assembly line balancing problem
and the development of efficient algorithms to solve
practical large-size problems.

REFERENCES

A�pak K, Gökçen H (2005). Assembly line balancing: two resource

constrained cases. Int. J. Prod. Econ. 96: 129-140.
Baybars I (1986). A survey of exact algorithms for the simple assembly

line balancing problem. Manage. Sci. 32: 909-932.
Becker C, Scholl A (2006). A survey on problems and methods in

generalized assembly line balancing. Eur. J. Oper. Res. 168: 694-
715.

Bryton B (1954). Balancing of continuous production line. MS thesis,
Northwestern University.

Dijkstra EW (1959). A note on two problems in connection with graphs.
Numerical Mathematics, 1: 269-271.

Erel E, Sarin SC (1998). A survey of the assembly line balancing
procedures. Prod. Plan. Control, 9(5): 414-434.

Ghosh S, Gagnon RJ (1989). A comprehensive literature review and
analysis of the design balancing and scheduling of assembly
systems. Int. J. Prod. Res. 27: 637-670.

Gutjahr AL, Nemhauser GL (1964). An algorithm for the line balancing
problem. Manage. Sci. 11(2): 308-315.

Jackson JR (1956). A computing procedure for a line balancing
problem. Manage. Sci. 2: 261-271.

Nicosia G, Pacciarelli D, Pacifici A (2002). Optimally balancing assembly
lines with different workstations. Discrete Appl. Mathematics, 118: 99-
113.

Salveson ME (1955). The assembly line balancing problem. J. Industrial
Eng. 6: 18-25.

Scholl A (1999). Balancing and sequencing of assembly lines. Physica-
Verlag Heidelberg, New York.

Yamada T, Matsui M (2003). A management design approach to
assembly line systems. Int. J. Prod. Econ. 84: 193-204.

