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In this paper we consider resource-constrained type-I assembly line balancing problem (RCALBP-I) in 
which resource of different types, such as machines and workers, are required in processing tasks. The 
objective of RCALBP-I is to minimize not only the number of workstations needed, but also the number 
of resource types required. A shortest route algorithm is proposed to find the optimal solution for 
RCALBP-I. An illustrative example is also given to show the effectiveness of the proposed algorithm. 
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INTRODUCTION 
 
Assembly line balancing problem (ALBP) has been 
studied extensively since the pioneer work of (Bryton, 
1954; Salveson, 1955; Jackson, 1956). During the past 
decades numerous optimal approaches have been 
developed to solve ALBP with different characteristics, 
including parallel, U-type, mixed-model, two-sided, etc. 
For extensive surveys (Baybars, 1986; Ghosh and 
Gagnon, 1989; Erel and Sarin, 1998; Scholl, 1999; 
Becker and Scholl, 2006). In the literature, the so-called 
type-I ALBP (ALBP-I) considers an assembly line that 
consists of a set of tasks with given processing times and 
precedence relationships that define the permissible 
ordering of tasks. The objective of ALBP-I is to assign the 
set of tasks to successive workstations in order to 
minimize the number of workstations needed for a given 
cycle time Ghosh and Gagnon (1989). The following 
definition of ALBP-I is adapted from Gutjahr and Nemhauser 
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(1964). 
Given a set A of tasks to be assigned, a positive real 

valued function T defined on A representing processing 
times of tasks, and a partial order P defined on A 
denoting precedence relationship among  tasks. Let C  be 
the given cycle time and N be the number of workstations 
needed in the assembly line. The objective of ALBP-I is to 
find a partition of the set A into successive 
subsets AAi ⊆ , Ni ,...,1= , so that the number of 

workstations N is minimized. Let )(xT  denote the 

processing time of task x, and �
∈

=
iAx

i xTAT )()(  be the 

total processing time of the tasks in subset iA . A partition 

of subsets iA  is feasible if the following conditions hold: 
 

AAi

N

i
=

=1
� ,              (1) 
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φ=ji AA � , ji ≠ ,                                   (2) 
 

CAT i ≤)( , Ni ,...,1= ,            (3) 
 
If xPy  (that is, x precedes y) and iAx ∈ , jAy ∈ , then  

 

ji ≤ .                         (4) 
 
Conditions (1) and (2) simply state that all the tasks have 
to be assigned, and each task is assigned to one and 
only one subset; condition (3) ensures that, for any 
subset, the total processing time of the tasks in the 
subset does not exceed the given cycle time, while 
condition (4) maintains precedence relationship among 
tasks. Conventionally, subset iA  is usually called 
workstation i, and a task x is said to be assigned to 

workstation i if iAx ∈ . 
Recently, some researchers studied assembly system 

design problems (ASDP) in which the objective was to 
optimize some economic criteria (e.g., total cost) with 
machine selections (Nicosia et al., 2002; Yamada and 
Matsui, 2003). However, only limited researches discuss 
the practical situation of resource constraints that arises 
often in assembly line balancing. In the real-world ALBP, 
different types of resources (such as machines and 
workers) are often required in task processing; as pointed 
out by A�pak and Gökçen (2005), the issue of line 
balancing with limited resources has always been a 
serious problem in industry. In their recent paper A�pak 
and Gökçen (2005) developed a 0 - 1 integer 
programming model for a resource-constrained ALBP, 
and the objective was to balance the assembly line so 
that the number of resources required was minimized for 
a given number of workstations. 

In this paper, we revisit the same ALBP considered by 
A�pak and Gökçen (2005), for convenience, we call the 
problem resource-constrained type-I ALBP, or simply 
RCALBP-I; however, the objective is to minimize not only 
the number of workstations needed, but also the number 
of resource types required. Motivation of this paper arises 
from practical needs. In practice, a workstation in the 
assembly line usually consists of one or more dedicated 
machines as well as workers and tools. Thus, minimizing 
both the number of workstations and resources is 
equivalent to utilizing the least number of machines, 
workers, and tools. We propose an optimal approach, 
based on the shortest route algorithm developed by 
Gutjahr and Nemhauser (1964), to solve RCALBP-I 
considered in this paper. The paper is organized as 
follows: first, problem description of RCALBP-I is given; 
then, the proposed optimal approach is described, 
followed by an illustrative example given by A�pak and 
Gökçen (2005), conclusion and future research are 
discussed in the last. 

 
 
 
 
METHODOLOGY 
 
Definition of RCALBP-I 
 
As stated above, RCALBP-I differs from the traditional ALBP-I 
defined previously in that different types of resource are required in 
task processing in RCALBP-I. The definition of RCALBP-I is 
described as follows. Consider the ALBP-I with a given cycle time 
C, and let A be the set of tasks to be assigned and N be the number 
of workstations needed. Also, let )(xT  and )(xR  be the 

processing time and the resource type required for task Ax ∈ , 
respectively. For simplicity, we assume in this paper that each task 
requires only one type of resource; the extension to multiple types 

of resource is straightforward. Let AAi ⊆  be the subset 

consisting of tasks that are assigned to workstation i, then )( iAT  

is the total processing time and )( iAR  is the set of resource types 

required for workstation i. Let )( iAR  denote the number of 

resource types required for workstation i. Therefore, for RCALBP-I 
considered in this paper, the objective is to find a feasible partition 

iA  in order to minimize both the number of workstations N and the 

number of resources �
=

N

i
iAR

1

)(  for the assembly line. 

 
 
The shortest route algorithm 
 
In order to develop the shortest route algorithm, we need to show 
how to construct the network diagram for RCALBP-I. The 
construction procedure consists of two parts: nodes generation and 
arcs generation, which are explained in details below. 
 
 
Nodes generation 
 
In this paper we adapt the procedure developed by Gutjahr and 
Nemhauser (1964), in nodes generation. In the network diagram, a 
node is represented by the so-called state that is simply a subset of 
tasks. These subsets (that is, states) are generated stage by stage, 
and satisfy the following properties: 
 
(i) No subsets are duplicated during the generation procedure. 
(ii) All subsets generated are states. 
(iii) Every subset is generated. 
 
Conceptually, the proposed shortest route algorithm enumerates all 
the feasible partitions in order to find the optimal ones that achieve 
the desired objective. 

The procedure starts from stage 0 with the empty set as the first 
state generated. The set of tasks with no predecessors are placed 
in stage 1 and are considered as “marked” tasks. All the subsets of 
the marked tasks are generated and are defined as states. For 
each generated state S, an unmarked immediate follower is defined 
as a task that is an immediate successor of at least one task in S 
and is not preceded by any tasks not in S. In general, for any state 

kS  generated in stage n, the unmarked immediate followers of kS  

are placed in a set )( kSF . For each subset )( kl SFS ⊂ , the 

union lk SS �  is generated as a new state in stage 1+n . When 

all   the   states   in   stage   n   have   been considered, the tasks in  



 
 
 
 

)( kSF  are then marked and the procedure is repeated for stage 

1+n . The procedure of nodes generation is finished when all the 
tasks are marked and all states are therefore generated. 
 
 
Arcs generation 
 
In their paper, Gutjahr and Nemhauser (1964) developed a 
procedure of arcs generation in which only one optimal solution was 
given because just a necessary portion of feasible arcs was 
generated. In this paper, we propose a modified arcs generation 
procedure in which we enumerate all the feasible arcs so that the 
desired solution for RCALBP-I can be found from among all the 
alternative optimal solutions of ALBP-I. The proposed arcs 
generation procedure is described as follows. 

As mentioned above, a state kS  represents a node k in the 

network diagram constructed (that is, the number of states 
generated is equal to the number of nodes). In the proposed 
procedure, arcs are also generated stage by stage. The procedure 
starts from stage 0 with state 0 as node 0, which is considered as 
“marked” node. A directed arc is generated from node 0 to node k if 

a state kS  satisfies CST k ≤)( , and all the nodes having 

directed arcs from node 0 are placed in stage 1 as marked nodes. 
In general, for any marked node k in stage n, a directed arc is 

generated from node k to an unmarked node l if a state lS  satisfies 

lk SS ⊂  and CSTST kl ≤− )()( ; and node l is placed in 

stage 1+n  as marked node. The procedure is terminated when all 
the nodes have been marked. Note that, in the proposed 
procedure, all feasible paths are enumerated from node 0 (that is, 
the empty state) to the last node (i.e., the state containing all the 
tasks). According to Gutjahr and Nemhauser (1964), the number of 
directed arcs needed for a path from node 0 to the last node is 
equal to the minimum number of workstations needed for the 
assembly line. The remaining issue is to find the paths that also 
minimize the number of resources required, which is accomplished 
as follows. 
 
Computation of shortest routes 
 
In order to find the desired solution, the length of arcs is defined as 
follows. Consider the directed arc ),( lk  from node k to node l, and 

let kS  and lS  be the associated states respectively. Let 

kli SSA /= , that is, iA  denotes a workstation i containing task 

kl SSx /∈ . Then, the length of arc ),( lk  is defined to be 

)( iAR , the number of resource types required for workstation i. 

Let N be the minimum number of workstations obtained in the 

above procedure of nodes generation, then �
=

N

i
iAR

1

)(  is equal to 

the total number of resource types required for a path from node 0 
to the last node. Therefore, the path with the minimum value of 

�
=

N

i
iAR

1

)(  is the desired solution that not only gives the minimum 

number of workstations but also requires the minimum number of 
resource types. 
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Illustrative example 
 
We use the example presented in A�pak and Gökçen (2005), as 

depicted as in Figure 1 with the given cycle time 9=C , to 
illustrate the proposed shortest route algorithm. As shown in the 
figure, there are 11 tasks (represented by nodes) and their 
processing times as well as the required resource type are given 
next to the nodes. For instance, processing time of task 1 is 6 and 
the required resource is type A (Figure 1 Illustrative example by 
A�pak and Gökçen 2005). 
 
 
Nodes generation 
 

Starting from stage 0, we have the first generated φ=0S  (the 

empty set containing no task). Since task 1 is the only unmarked 

immediate follower, we have }1{)( 0 =SF  and place task 1 in 

stage 1 as marked. The only subset of )( 0SF  is }1{ ; by taking 

the union of 0S  and }1{ , we generate the 

state }1{}1{01 == �SS  and proceed to stage 1. In stage 1, the 

unmarked immediate followers of state 1S  are tasks 2, 3, 4 and 5, 

and we have }5,4,3,2{)( 1 =SF  and these tasks are then 

placed in stage 2 as marked. By taking the union of 1S  and each 

subset of )( 1SF , we generate the states }2,1{2 =S  to 

}5,4,3,2,1{16 =S  as shown in Table 1. The procedure continues 

and the result of nodes generation is summarized as in Table 1, in 
which state time is the total processing time of tasks in the state. As 
seen in the table, there are totally 51 states generated (in which the 

last state 51S  contains all tasks) (Table 1, Nodes generation). 

 
 
Arcs generation 
 

Starting from stage 0 with the empty state 0S  as node 0, we 

generate directed arcs from node 0 to nodes 1, 2, 5, and 8 (that is, 

states }1{1 =S , }2,1{2 =S , }5,1{5 =S , and }5,2,1{8 =S  

respectively) because their state times are less than or equal to the 

cycle time 9 and they contain state 0S  as subset. These nodes are 

placed in stage 1 as marked, and the procedure proceeds to stage 

1. Take node 5 with state }5,1{5 =S  as example, directed arcs 

are generated from node 5 to nodes 10, 11, 13, 20, 14, and 22 
because (i) the differences between their state times and that of the 

state 5S  are less than or equal to the cycle time 9, and (ii) the state 

5S  is subset of these states. The procedure continues and the 

result of arcs generation is summarized as in Table 2 (Table 2 Arcs 
generation). 
 
 
Computation of shortest routes 
 
The resulting network diagram obtained from the 
procedures  is  as  depicted in Figure 2 (Figure 2 Network  
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Figure 1. Illustrative example by (A�pak and Gökçen, 2005). 

 
 
 

Table 1. Nodes generation. 
 

Stage Marked tasks State Node Tasks in state State time Immediate followers 
0  0S  0 φ  0 1 

1 1 1S  1 1 6 2, 3, 4, 5 

2 2, 3, 4, 5 2S  2 1, 2 8 6 

  3S  3 1, 3 11  

  4S  4 1, 4 13  

  5S  5 1, 5 7  

  6S  6 1, 2, 3 13 6 

  7S  7 1, 2, 4 15 6 

  8S  8 1, 2, 5 9 6 

  9S  9 1, 3, 4 18  

  10S  10 1, 3, 5 12  

  11S  11 1, 4, 5 14  

  12S  12 1, 2, 3, 4 20 6 

  13S  13 1, 2, 3, 5 14 6 

  14S  14 1, 2, 4, 5 16 6 

  15S  15 1, 3, 4, 5 19 7 

  16S  16 1, 2, 3, 4, 5 21 6, 7 

3 6, 7 17S  17 1, 2, 6 10 8 

  18S  18 1, 2, 3, 6 15 8 

  19S  19 1, 2, 4, 6 17 8 

  20S  20 1, 2, 5, 6 11 8 

  21S  21 1, 2, 3, 4, 6 22 8 

  22S  22 1, 2, 3, 5, 6 16 8 
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Table 1. Nodes generation (continued). 
 

Stage Marked tasks State Node Tasks in state State time Immediate followers 
  23S  23 1, 2, 4, 5, 6 18 8 

  24S  24 1, 3, 4, 5, 7 22 9 

  25S  25 1, 2, 3, 4, 5, 6 23 8 

  26S  26 1, 2, 3, 4, 5, 7 24 9 

  27S  27 1, 2, 3, 4, 5, 6, 7 26 8, 9 

4 8, 9 28S  28 1, 2, 6, 8 16 10 

  29S  29 1, 2, 3, 6, 8 21 10 

  30S  30 1, 2, 4, 6, 8 23 10 

  31S  31 1, 2, 5, 6, 8 17 10 

  32S  32 1, 2, 3, 4, 6, 8 28 10 

  33S  33 1, 2, 3, 5, 6, 8 22 10 

  34S  34 1, 2, 4, 5, 6, 8 24 10 

  35S  35 1, 3, 4, 5, 7, 9 27  

  36S  36 1, 2, 3, 4, 5, 6, 8 29 10 

  37S  37 1, 2, 3, 4, 5, 6, 7, 8 32 10 

  38S  38 1, 2, 3, 4, 5, 7, 9 29  

  39S  39 1, 2, 3, 4, 5, 6, 7, 9 31  

  40S  40 1, 2, 3, 4, 5, 6, 7, 8, 9 37 10 

5 10 41S  41 1, 2, 6, 8, 10 21  

  42S  42 1, 2, 3, 6, 8, 10 26  

  43S  43 1, 2, 4, 6, 8, 10 28  

  44S  44 1, 2, 5, 6, 8, 10 22  

  45S  45 1, 2, 3, 4, 6, 8, 10 33  

  46S  46 1, 2, 3, 5, 6, 8, 10 27  

  47S  47 1, 2, 4, 5, 6, 8, 10 29  

  48S  48 1, 2, 3, 4, 5, 6, 8, 10 34  

  49S  49 1, 2, 3, 4, 5, 6, 7, 8, 10 37  

  50S  50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 42 11 

6 11 51S  51 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 46  

 
 
 
diagram of the illustrative example). 

As seen in the figure, six arcs are needed for a path 
from node 0 to the last node (that is, state 51S ); 
according to Gutjahr and Nemhauser (1964), this means 
that the minimum number of workstations needed is 6. 
Also we see that many alternative paths exist, indicating 
that there are alternative optimal solutions using the 
same minimum number of  workstations. In  order  to  find 

the desired solutions for RCALBP-I that also minimizes 
the number of resource types required, we need to 
compute the length of arcs. Take the arc )14,2(  directed 
from node 2 to node 14 for example, we have 

}5,4{/ 214 =SS . As defined above, the length of arc 

)14,2(  is given by 2})5,4({ =R  because task 4 and 

task  5  require  resource  type A and B respectively. After



2056          Afr. J. Bus. Manage. 
 
 
 

Table 2. Arcs generation. 
 

Stage Marked nodes Node Arcs to nodes 
0 0 0 1, 2, 5, 8 
1 1 3, 4, 6, 7, 10, 11, 13, 17, 18, 20 
 2 6, 7, 13, 17, 18, 20, 14, 19, 22, 28, 31 
 5 10, 11, 13, 20, 14, 22 
 

1, 2, 5. 8 

8 13, 20, 14, 22, 31, 23 
2 3 9, 12, 15 
 4 9, 12, 15, 16, 21, 24 
 6 12, 16, 21, 29, 33 
 7 12, 16, 21, 25, 26, 30, 34 
 10 15, 16 
 11 15, 16, 24, 25 
 

3, 4, 6, 7, 10, 11, 13, 17, 18, 20, 14, 19, 
22, 28, 31, 23 

13 16, 25, 33 
  17  
  18 21, 25, 29, 33 
  20  
  14 16, 25, 26, 34 
  19 21, 25, 30, 34, 27 
  22 25, 33 
  28 30, 34, 33, 29, 41, 44 
  31 34, 33, 44 
  23 25, 34, 27 

3 9, 12, 15, 16, 21, 24, 25, 26, 30, 34, 33, 
29, 27, 41, 44 

9 35 

  12 32, 36, 38 
  15 35 
  16 36, 38 
  21 39, 32, 36 
  24 35, 38, 39 
  25 37, 36, 39 
  26 37, 38, 39 
  30 43, 47, 32, 36, 37 
  34 36, 37, 47 
  33 46, 36 
  29 42, 32, 36, 46 
  27 37, 39 
  41 42, 43, 46, 47 
  44 46, 47 

4 35, 32, 36, 38, 39, 37, 43, 47, 46, 42 35  
  32 40, 45, 48, 49 
  36 40, 48, 49 
  38 40 
  39 40 
  37 40, 49 
  43 48, 45, 49 
  47 48, 49 
  46 48 
  42 48, 45 

5 40, 45, 48, 49 40 50, 51 
5  45 50 
5  48 50 
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Table 2. Cont’d. 
 

Stage Marked nodes Node Arcs to nodes 
5  49 50, 51 
6 50, 51 50  
6  51  
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Figure 2. Network diagram of the illustrative example. 

 
 
 
computing the length of all directed arcs, we may apply 
any shortest route algorithm such as Dijkstra (1959) to 
find the shortest  routes  from  node  0  to  the  last  node. 

Computational result is also shown in Figure 2, in which 
there are totally six shortest routes represented in bold 
lines;  the  minimum number of resource types required is  
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given by 6)(
6

1

=�
=i

iAR . Take the route 

51493726710 SSSSSSS →→→→→→  for example 
to show how the result of task assignment can be 
obtained. Tasks assigned to workstations 1 through 6 are 
given by }1{/ 011 == SSA , }4,2{/ 172 == SSA , 

}7,5,3{/ 7263 == SSA , }8,6{/ 26374 == SSA , 

}10{/ 37495 == SSA  and }11,9{/ 49516 == SSA  
respectively, which is the same optimal solution obtained 
in A�pak and Gökçen (2005). Note that, although there 
are five other shortest routes, only one possible different 
task assignment can be obtained (for example, from the 
path 514947341450 SSSSSSS →→→→→→ ): 

}5,1{/ 051 == SSA , }4,2{/ 5142 == SSA , 

}8,6{/ 14343 == SSA , }10{/ 34474 == SSA , 

}7,3{/ 47495 == SSA  and }11,9{/ 49516 == SSA . 
 
 
Conclusion and future research 
 
In this paper we consider type-I assembly line balancing 
problem with resource constraint (RCALBP-I) in which 
the objective is to find the optimal task assignment that 
minimizes not only the number of workstations needed, 
but also the number of resource types required. It is of 
practical importance that the number of resource types 
should be minimized as possible in order to utilize the 
least number of resource requirements.  

We propose a shortest route algorithm in which all 
alternative optimal solutions are enumerated in order to 
find the desired solution of RCALBP-I. Future research 
may include extensions of the proposed algorithm to 
solve different types of assembly line balancing problem 
and the development of efficient algorithms to solve 
practical large-size problems. 
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