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This paper develops a two-echelon inventory model with mutual beneficial pricing strategy with 
considering fuzzy annual demand; single vendor and multiple buyers in this model. The beneficial 
pricing strategy can benefit the vendor more than multiple buyers in the integrated system, when price 
reduction is incorporated to entice the buyers to accept the minimum total cost. Negotiation factors is 
very important in the in fuzzy model, it can balance the cost saving between the players. A numerical 
example with sensitivity analysis is provided to demonstrate the theory. Finally, this paper can prove 
that the price reduction mechanism is a mutual beneficial strategic partnership between the vendor and 
buyers. 
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INTRODUCTION 
 
In the supply chain management today, JIT requires 
cooperation between the buyer and the vendor, which is 
very helpful to form a special partnership between the 
buyer and the vendor. When the partnership between the 
buyer and the vendor becomes strong, it is very helpful in 
achieving tangible benefits for each other (Kelle et al., 
2002). An effect supply chain network needs the close 
partnership between the buyers and the vendors. The 
concept of serial multi-echelon structures to determine 
the optimal policy was presented by Clark and Scarf 
(1960). Banerjee (1968) derived a joint economic lot size 
model for a single vendor and single buyer system where 
the vendor has a finite replenishment rate. Goyal (1988) 
generalized Banerjee’s (1968) model by relaxing the 
assumption of the lot-for-lot policy of the vendor and 
showed that quantity per cycle being an integer multiple 
of the buyer’s purchase quantity provides a lower or 
equal joint total relevant cost as compared to Banerjee’s 
(1968) model.  

One of the early authors who analyzed a vendor-
oriented optimal quantity discount policy that maximized  
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the vendor’s gain was Monahan (1984), but did so at no 
additional cost to the buyer. Lee and Rosenblatt (1986) 
extended Monahan’s (1984) model and developed a new 
algorithm to solve the vendor’s ordering and price dis-
count policy. Lal and Staelin (1984) extended to handle 
variable ordering and shipping costs and situations where 
the seller faces numerous groups of buyers, each having 
different ordering policies. Weng and Wong (1993) 
considered the discount of the vendor’s quantity from the 
perspective of reducing the vendor’s operating cost and 
increasing the buyer’s demand.  

Weng (1995) developed a model for analyzing the 
impact of joint decision policies on channel coordination 
in a system including a supplier and a group of analogous 
buyers. A lot-for-lot joint pricing policy with price-sensitive 
demand was developed by Li et al. (1996). A lot-for-lot 
discount pricing policy for deteriorating items with 
constant demand rate developed by Wee (1998). Wang 
and Wu (2000) derived a combined discount pricing policy 
for a supplier to maximize its quantity discount obtained 
from many different buyers. Lu (1995) and Goyal (1995) 
derived the integrated model between the vendor and the 
buyers with unequal lot size. Looking back on the past 
research, none of them considered the general 
replenishing and pricing policies for an integrated supply 
chain system. 



 
 
 
 

Today, many researches pay much attention on the 
integration of the vendor and the buyers. Although the 
vendor has greater benefits than the buyers do, the 
buyers may have no much interest in cooperating. In 
order to let the buyers order more quantity, some incen-
tive policy like price reduction may be a good policy in the 
integrated system. Most of the related researches 
assumed the average demand per year is fixed constant, 
but it is usually difficult for managers to set the demand 
as crisp values in reality. So, many researchers have 
been applying fuzzy demand theory and techniques to 
develop and solve production inventory problems. For 
example, Park (1987) considered fuzzy inventory costs 
by using arithmetic operations of the extension principle. 
Chen et al. (1996) fuzzified the demand, ordering cost, 
inventory cost, and backorder cost into trapezoidal fuzzy 
numbers in an EOQ model with backorder consideration. 
Mahata et al. (2005) investigated the joint economic lot 
size model as fuzzy values of the economic lot size 
model for purchaser and vendor. They find that the joint 
total relevant cost is slightly higher than in the crisp 
model after defuzzification. Wu and Yao (2003) models 
and investigate an integrated inventory model with 
backorder for fuzzy order quantity and fuzzy shortage 
quantity that these are a normal triangular fuzzy number. 

This paper present a two-echelon fuzzy inventory 
model with mutual beneficial pricing strategy considering 
JIT concept and price reduction to the buyers for ordering 
larger quantity, and this model incorporates the fuzziness 
of annual demand. A numerical example is carried out to 
demonstrate the approach and the significance of 
considering the integration of supply chain network. 

 
 
ASSUMPTIONS AND NOTATIONS 

 
Assumptions 
 
The proposed model in this paper is developed on the 
following assumptions: 
 
(a) The replenishment rate of the buyers is instan-
taneous, but the vendor’s replenishment rate is finite. 
(b) All buyers have constant demand rate. 
(c) All players have complete information between each 
other. 
(d) There are only single vendor and multiple buyers in 
this model. 
(e) Shortage is not allowed. 
(f) The vendor’s cycle time for each buyer is assumed the 
same for decreasing setup times. 
(g) Each buyer demand rate is normal triangular fuzzy 
numbers. 
 
There are three scenarios in this model: 

 
1. The  first  scenario:  we  neglect  integration  and  price  
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reduction. 
2. The second scenario: we consider the integration of 
the vendor and the buyers, but we don’t consider price 
reduction. 
3. The final scenario: we consider the integration and 
price reduction of the vendor and the buyers 
simultaneously. 
 
 
Notations 
 

We defined the common parameters of the vendor and 

the buyers as follow: : Number of buyers; : 

Demand rate for buyer j, j=1, 2, 3...N; : Fuzzy demand 

rate for buyer j, j=1, 2, 3...N; = ; 

: Total demand rate of all buyers; : Total fuzzy 

demand rate of all buyers; ; : Integrated total 

cost of the vendor and the buyers; : Negotiation factor 

of cost saving between vendor and all players; : 
Negotiation factor of cost saving between buyer j and all 
players. 

The parameters of the vendor are as follow: : 

Replenishment rate; : Setup cost, $ per cycle; : 

Fixed cost to process buyer’s order of any size; :Unit 

cost; :Percentage inventory carrying cost per time per 

unit dollar; :Average inventory level with respect to 

buyer j; :Average inventory level in scenario i; 

:Total cost for vendor; :Cost saving of TCv3 with 
respect to TCv1. 

The parameters of the buyers are as follow: : 

Ordering cost for buyer j; : Unit purchased price for 

buyer j to the vendor; : Percentage inventory 

carrying cost for buyer j per year per dollar; : Total 

cost for all buyers; : Cost saving of with 

respect to for buyer j; :Cost saving of  

with respect to for all buyers. 

The decision variables are: : Number of deliveries 

from vendor to buyer j per cycle; : Unit purchased 

price for buyer j to the vendor; : Lot size for buyer j. 
 
 
PROPOSED MODEL WITH FUZZY DEMAND 
 

By using Wee and Yang’s (2007) research, we can get a  
mathematic   model   of   the   buyers   and   the    vendor  
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subscripted thus: The buyer j’s annual total cost ( ) 

and all buyers’ annual total costs ( ) are: 
 

    (1) 
 

   (2) 
 

Since the vendor’s cycle time interval   for each 
buyer is assumed the same for decreasing setup times, 
the relationship between Qbij and Qbi1 is as follows: 
 

                                           (3) 
 

The vendor’s average inventory level,  is: 
 

                  (4) 
 

The vendor’s annual total cost is: 
 

        (5) 
 

Consider the problem with fuzzy annual demand by 

fuzzifying to a triangular fuzzy number , where 

= , ,  

and  are both determined by decision-makers. In 
this case, buyer j’s annual total cost and all buyers’ 
annual total costs with fuzzy demand can be expressed 
as: 
 

               (6) 
 

and 
 

         (7) 
 

Accordingly, the vendor’s average inventory level and the 
vendor’s annual total cost with fuzzy annual demand  can  

 
 
 
 
be expressed as: 
 

 ,  
 

Where, 
 

                                                       (8) 
 
and  
 

    (9) 
 

Where,  
 

 
 
 
Definition 1  
 
From Kaufmann and Gupta (1991), Zimmermann (1996), 

Yao and Wu (2000), for any a and , they define the 

signed distance from a to 0 as . If a > 0, a is 
on the right hand side of origin 0; and the distance from a 

to 0 is . If a < 0, a is on the left hand side of 

origin 0; and the distance from a to 0 is . 

This is the reason why is called the signed 
distance from a to 0. 

Let be the family of all fuzzy sets  defined on R, 

the t of  is A( ) = , 

, and both a  and  are 

continuous functions on . Then, for any , 
we have: 
 

                            (10) 
 

Besides, for every , the -level fuzzy interva 

, has a one-to-one correspondence  
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with the crisp interval that is, 

 is one-to-
one mapping. From Definition 1, the signed distance of 

two end points, and  to 0 are 

 and , 
respectively. Hence, the signed distance of interval 

to 0 can be represented by their 

average of . Therefore, the signed  
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distance of interval  to 0 can be 
represented as: 
 

 

          (11) 
 

Further, because of the 1-level fuzzy point, is mapping 
to the real number 0, the signed distance of 

 to  can be defined as: 
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�
= ( ) ( ) / 2L UA Aα α +    (12) 

 

 
Thus, from (11) and (12), since this function is continuous 

on  for , we can use further equation to 

define the signed distance of  to . 

Next, defuzzify and by using the signed 
distance method. From Definition 1, the signed distance 

of and to  is given by: 
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where , the signed distance of 

fuzzy number  to by Appendix, that is: 
 

 (15) 
 

Substituting the result of (14) into (15) and (13), we have: 
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Where is regard as total cost for all buyers in the i-th 

scenario in the fuzzy sense;  is regard as total cost of 
the vendor in the i-th scenario in the fuzzy sense. 
 
 
DISCUSSION FOR THREE SCENARIOS 
 
We follow Wee and Yang’s (2007) model to make the 
discussion of three scenarios. 
 
Scenario 1: Integration and price reduction are not 
considered   
 
By buyer viewpoint, the buyers have the priority to make 
the first-step decision. The related costs without 
integration are as follows: 
 

               (18) 
 

Subject to                               
 

            (19) 
 
and  
 

                         (20) 
 
Scenario 2: The integration of the vendor and all 
buyers without price reduction 
 
The purchased unit cost for each buyer in scenario 2 is 
assumed to be the same as that in scenario 1. The 
purpose of integration is to minimize the integrated total 
cost through information and profit sharing. The optimal 
value of the integrated total cost in scenario 2 is: 
 

 (21) 
 

Subject to     
 
Scenario 3: The integration of the vendor and all 
buyers with price reduction 
 

The discount price of the j-th buyer, is smaller than 

or . Let buyer j’s cost saving be defined as the  

 
 
 
 

difference between  and , and all buyers’ cost 

saving be the difference between and , one has: 
 

                      (22) 
 

and  
 

                       (23) 
 

Their relationship is defined as: 
 

                       (24) 
 

and   
 

                        (25) 
 

Where and  are the negotiation factors and 

 
 

  (26) 
 

Subject to constraints (3), (24) and (25). Substituting (3) 

into (26), is function of , and . For each 

integer , one can solve by satisfying the 
following condition: 
 

                                      (27) 
 

Substituting  from (27) into (24) and (25), each 
can be derived by solving the simultaneous equations of 

(24) and (25).  is the integrated total cost in 

scenario 3 and a function of variable . The optimal 

solution of can be derived to satisfy the following 
condition: 
 

 (28) 
 

It is noted that the variables ,  and are 
optimized jointly with constraints (3), (24) and (25). 
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Table 1. The optimal solutions in various scenarios. 
 

Scenario i 1 2 3 

Pbi1 25 25 23.264 

Pbi2 25 25 23.221 

ni1 3 1 1 

ni2 4 2 1 

Qbi1 97 302 286 

Qbi2 145 302 572 

TCi 4744 4,304 4,199 

TCi-TC1 --- -440 -545 

TCbi 1,208 1,759 844 

TCbi-TCb1 --- +551 -364 

TCbi1 500 838 318 

TCbi2 708 921 526 

TCvi 3,537 2,546 3,355 

TCvi- TCv1 --- -991 -182 

 
 
 

Thus, we can use the following procedure to find the 
optimal values of Q and n for fuzzy annual demand. 
 
For j= 1, 2, …, N. 
 

Step 1: Obtain and  from the decision-makers. 

Step 2: Use  from (27) to determine and .  

Step 3: Compute  from equation (24) and (25). 

Step 4: Compute by inequality (28). 
 

The  is the optimal joint total 
expected annual cost. 
 
 

NUMERICAL EXAMPLE 
 

The preceding theory can be illustrated by the following 
numerical example. One vendor and two buyers annual 

demand rate  = 250, = 500 units per year, vendor’s 

replenishment rate: = 12,000 units per year; buyers’ 

ordering cost = $ 100, = $ 100; buyers’ 

percentage carrying cost per year per dollar = 0.2,

= 0.2 buyers’ purchased unit price before price 

discount: = = $ 25, = = $ 25 vendor’s 

setup cost = $ 2,000; vendor’s fixed cost to process 

buyer’s order of any size = $ 100;vendor’s 

percentage carrying cost per year per dollar = 0.2 

vendor’s unit cost = $ 20; negotiation factors: = 

1/3,  = 1/3, = 1/3. The optimal solutions in 
various scenarios are discussed in Table 1 (Wee and 
Yang 2007). 
In Table 1, we got the following information: scenario 3 
has the lowest price than scenarios 1 and 2. Scenario 3 
has the highest lot size than scenarios 1 and 2 and 
scenario 3 has the lowest total cost than scenarios 2 and 
1. As such, scenario 3 (the integration and price reduction 
of the vendor and the buyers simultaneously) is the best 
solution in the 3 scenarios. By revising scenario 3, we 
discussed scenario 3 with fuzzy annual demand in this 
paper. For the model proposed in scenario 3, solve for 
the optimal unit purchased price for buyer j in scenario 3:

, and find the optimal lot size for buyer j in 

scenario3: , and number of deliveries from vendor to 

buyer j per cycle in scenario 3: in the fuzzy sense for 

various given sets of , j = 1,2. Note that in 

practical situations,  and  are determined by the 
decision-makers due to the uncertainty of the problem. 
The results are summarized in Tables 2 and 3 and the 
total cost of buyer and vendor are summarized in Table 
4. 

Furthermore, Tables 2 and 3 lists the results of the 
fuzzy case results with those of the crisp one; Table 4 
lists the result of total cost in scenario 3 which is with the 
fuzzy annual demand. The optimal unit purchased price 

for buyer , j = 1, 2 and the optimal lot size for buyer

j = 1,2 can be derived easily from Wee and Yang 
(2007) using the classical optimization technique.  

Consequently, we have = 23.264, = 22.221unit 

price  = 286,  572 and  =.4198.74.  Then 
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Table 2. Optimal solutions for the model with fuzzy demand of the buyer 1. 
 

1d
�

 
*

31b
P  

*

31bQ  
31n  

31
(%)

bP
V  

31
(%)

bQ
V  

(200,250,400) 23.374 298 1 0.0047 0.0420 
(225,250,475) 23.471 310 1 0.0089 0.0839 
(50,250,450) 23.264 286 1 0.0000 0.0000 
(25,250,275) 22.989 258 1 -0.0118 -0.0979 
(100,250,300) 23.138 272 1 -0.0054 -0.0490 

 
 
 

Table 3. Optimal solutions for the model with fuzzy demand of the buyer 2. 
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(475,500,725) 23.320 597 1 0.0043 0.0437 
(450,500,950) 23.406 620 1 0.0080 0.0839 
(50,500,950) 23.221 572 1 0.0000 0 
(50,500,550) 22.974 517 1 -0.0106 -0.0962 
(275,500,575) 23.108 545 1 -0.0049 -0.0472 

 
 
 

Table 4. Total cost in scenario 3. 
 

31bTC  
32bTC  3b

TC  3VTC  *

3
TC  

3
(%)
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341.68 560.33 902.01 3522.15 4424.16 0.0537 
365.68 591.55 957.23 3683.63 4640.86 0.1053 
318.76 526.15 844.91 3353.83 4198.74 0.0000 
268.44 454.73 723.17 3094.63 3817.8 -0.0907 
293.12 490.55 783.67 3085.29 3868.96 -0.0785 

 
 
 

Then, the relative variation between fuzzy case and crisp 
one for the optimal unit purchased price and the optimal 
lot size and the optimal total cost can be measured by

 and 

 j = 1,2;

, respectively , as 
reported in the last two columns of Tables 2 and 3, and 
the last column of Table 4. From Tables 2, 3 and 4, we 
observer that: 
 

(1) when  for j = 1,2, as increase up 

to 0 from 200;  increase up to 0 from 400 

both and  j=1,2 and  , increase 

simultaneously. As  for j = 1, 2 increase,

, ,  increase. 

(2) when , j = 1,2 then we have , 

j = 1,2. In this case,    and 

, and  which 

result in ,  j=1,2 and . Further, 

as the value j = 1,2 decreases, both 

j=1,2 and decrease, which means the smaller 

the difference between   and  the smaller the 
variation of the solutions between fuzzy case and crisp 
case. 

(3) when , ;

,  In this case, the 
solutions of the fuzzy case are identical to those of the 

crisp case, and hence ,  j=1,2 and 

. 
 
From the example, although we can not ascertain which 
of the solution is better, the major advantage of the fuzzy 
model is that the uncertainty of the real situation is 
obtained  well  than  the  crisp  model.   In   addition,   the  
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decision-makers can use the solution which derived from 
the fuzzy model to perform sensitivity analysis, and to 
examine the effects of uncertainties.  
 
 
CONCLUSION 
 
In this paper, we discussed the proposed model with 
fuzzy annual demand. Uncertainties of annual demand 
are interested in real supply chain inventory systems. 
However, we don’t pay much attention to this in past 
study, and it is because there may be a lack of historical 
data to estimate the annual demand. In this situation, 
using a crisp value is not appropriate. The proposed 
model of Wee and Yang (2007) is worthwhile to be 
reconsidered and we provide an alternative approach. 
This paper proposes a fuzzy model for two-echelon 
inventory problem. For the fuzzy model, a method of 
defuzzification, namely the signed distance, is employed 
to find the estimation of total profit per unit time in the 
fuzzy sense and then the corresponding optimal Pb3j and 
Qb3j are derived to minimize the total cost. Additionally, 
the proposed fuzzy model can be reduced to a crisp 
problem and the optimal lot size and price in the fuzzy 
sense can be reduced to that of the classical two-echelon 
inventory model. Although we are not sure the solution 
obtained from the fuzzy model is better than the solution 
of the crisp one, the fuzzy approach has the advantage 
that keeps the uncertainties which always correspond 
with the real situations better than the crisp one does. 
Furthermore, the inventory problem in the real situation 
can be properly solved with this proposed fuzzy model. 
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APPENDIX  
 

For a fuzzy set  and , the of the fuzzy set  is;  
 

, 
 

where and .  

From Definition 1, we obtain the following equation. The signed distance of  to  is defined as: 
 

 
 
So this equation is: 
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