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Regulating conflicting goals with the usage of all related resources through organization is the main 
work of project management (PM). In this paper, the issue of evaluating the conflicting goals tradeoffs 
of projects was to develop a plan that the decision-maker can use to shorten their total completion time 
and minimize the increasing project total cost. The study showed that the total project cost 
minimization problem and crashing cost minimization problem with reference to direct, indirect cost 
and relevant constraints can be solved simultaneously via the proposed fuzzy multi-objective linear 
programming (FMOLP) method. Next, considering its completion time in a suitable range, we are trying 
to find more efficient ways of utilizing the fuzzy set to solve fuzzy multi-objective PM decision problem, 
and the proposed approach applies the signed distance method to transform fuzzy numbers into crisp 
values. The proposed approach considers the imprecise nature of the input data by implementing the 
minimum operator and also assumes that each objective function has a fuzzy goal. In addition, the 
focus of this approach is minimizing the worst upper bound to obtain an efficient solution which is 
close to the best lower bound of each objective function. Moreover, for attaining our objective, at the 
end of this paper, a detailed numerical example will be presented to illustrate the feasibility of applying 
the proposed approach to actual PM decision problem. Furthermore, it was believed that this approach 
can be utilized to solve other multi-objective decision making problems in practice. 
 
Key words: Project management, fuzzy set, fuzzy multi-objective linear programming. 

 
 
INTRODUCTION 
 
Fundamentally, something like the long period of time, the 
low duplication, the specific contract, the huge investment 
amount, much resources consumption and various kinds 
of work activities are significant characteristics of pro-
jects. Therefore, it is truly important for project managers 
to confirm the project completion that includes quality, 
effectiveness, the specified completion time and the 
allocated cost. Thus, the project managers must handle 
conflicting goals with the usage of all related resources 
through   the   organization   in  real-life  situations. These 

conflicting goals need to be optimized simultaneously by 
project managers in the framework of fuzzy aspiration 
levels. Issues with proportional goal programming and 
fuzzy application have attracted the interest of more 
researchers and there are increasing papers dealing with 
these topics. 

McCahon and Lee (1988) develop a comprehensive 
path analysis method devised in using fuzzy arithmetic 
and a fuzzy number comparison method to determine 
fuzzy   project   completion   time   and   the   degrees   of  
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criticality of each network path. Practically, total costs of 
projects are the sum of direct cost (labor, equipment, 
material and other cost related directly to projected 
activities), indirect cost (administration, depreciation, 
interest and other variable overhead cost) (Wang and 
Liang, 2004). The purpose of evaluating time-cost trade-
offs is to develop a plan which the decision-maker (DM) 
can minimize the increase of project total cost and total 
crashing cost when shortening their total completion time.  

Arikan and Gungor (2001) utilized fuzzy goal 
programming (FGP) approach to solve PM decision 
problems with two objectives: minimizing both completion 
time and crashing cost. Additional work such as Wang 
and Fu (1998) applied fuzzy mathematical programming 
to solve PM decision problems. These models aim to 
minimize total project cost and total crashing cost 
simultaneously. 

In addition, Zadeh (1978) presented the theory of 
possibility, which is related to the theory of fuzzy sets by 
defining the concept of a possibility distribution as a fuzzy 
restriction, which acts as an elastic constraint on the 
values that can be assigned to a variable. Since the 
expression of a possibility distribution can be viewed as a 
fuzzy set, possibility distribution may be manipulated by 
the combination rules of fuzzy sets and more particular of 
fuzzy restrictions (Dubois and Prade, 1988). Accordingly, 
Wang and Liang (2005) formulated a possibilistic 
programming model to solve fuzzy multi-objective project 
management (PM) problems with imprecise objective and 
constraints recently. Related works by Inuiguchi and 
Sakawa (1996), Hussein (1998), Tanaka and Guo (2000) 
on possibilistic programming linear method were applied 
to their decision making problems. Besides, the proposed 
possibilistic programming provides a more efficient way of 
solving imprecise PM problems and additionally, 
preserves the original linear model for all imprecise 
objectives and constraints with the proposed simplified 
weighted average, and fuzzy ranking techniques 
(Buckley, 1988; Lai and Hwang, 1992; Zadeh, 1978). 

Furthermore, many PM decisions problems were 
almost assumed as the total completion time minimized 
with fuzzy linear membership function (Arikan and 
Gungor, 2001; Deporter and Eills, 1990; Wang and Liang, 
2005) or the imprecise time adopted for triangular 
possibility distribution (Liang, 2008). Nevertheless, the 
imprecise project time is suited to the trapezoidal fuzzy 
numbers if the decision maker (DM) hopes to control the 
project completion time in a suitable range. When a 
project is extended beyond its normal completion time, 
the contractual penalty cost will be incurred. On the 
contrary, if a project is completed too fast before its 
completion time under normal conditions, much more 
crashing cost and float time will be incurred. This work 
applies the sign distances method to convert the fuzzy 
number into a crisp number. After the Center of Gravity 
was proposed, it is another new, easy and useful method 
for defuzzification. And its  definition  is  more  exact  than  
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the Center of Gravity (Yao and Wu, 2000). 

In this paper, a fuzzy multi-objective linear pro-
gramming (FMOLP) method is proposed to solve fuzzy 
multi-objective PM decision problems in uncertain 
environments. First, the proposed approach describes 
the problem, details the assumption, and formulates the 
problem. Second, it develops the interactive FMOLP 
model and procedure for solving PM problems. Next, it 
presents an example for applying the proposed approach 
to real PM decisions. And finally, it discusses the results 
of comparison for the practical application of the 
proposed approach and draws the conclusions. 

 
 
FUZZY SET 
 
A fuzzy set is an extension of a crisp set. A crisp set A 
can be define by using the membership method, which 
introduces a zero-one membership function for A, 

described by a characteristic function 𝜇𝐴(𝑥), where, 

 

)(xA =  
1 , 𝑖𝑓 𝑥 ∈ 𝐴
0 , 𝑖𝑓 𝑥 ∉ 𝐴

                                                 (1) (1) 

 
The crisp set A, whose characteristic function 𝜇𝐴(𝑥) is 

given in (1) which indicates x belonging to A and 0 

indicates x do not belong to A, x X, X is universe of set. 

Now a set A was discussed, whose characteristic 
function takes value ranging from 0 to 1 (Klir and Yuan, 
1995). When  𝜇𝐴(𝑥1 )>𝜇𝐴(𝑥2) indicates that the degree of 𝑥1   

belong to 𝐴 is bigger than the degree of 𝑥2   belong to 𝐴. 
Now, the set 𝐴 is a vague element membership relation. 
Then the set 𝐴 is called as “Fuzzy Set” and its 
characteristic function is called as “membership function”. 

The membership function of set A  can be illustrated in 
Equation 2 and expressed by 
 

A
~ ：𝑋 → {0,1} ,  0 ≤ )(~ x

A
 ≤ 1, 𝑥 ∈ 𝑋  

                    (2) (2) 

 

A special fuzzy set A  defined in real line R, which is also 

universe of set X = R, and has three constraints: (1) A  is 
a normal fuzzy set; (2) Aα to all 𝛼 ∈ (0,1) are closed 

intervals; (3) A  has a bounded support (Hsieh, 2005; 
Liang, 2008) are discussed. 

Nowadays, two special types of fuzzy numbers are 
widely used: triangular fuzzy number and trapezoidal 
fuzzy number and are illustrated as follows. 
 
Triangular membership function: 

 

)(x
A

 =  cbax ,,; =

 
 

 
 𝑥−𝑎 

 𝑏−𝑎 
, 𝑖𝑓 𝑎 ≤ 𝑥 < 𝑏 

 𝑐−𝑥 

𝑐−𝑏
, 𝑖𝑓 𝑏 ≤ 𝑥 ≤ 𝑐

 0, 𝑖𝑓 𝑥 > 𝑐 ∨ 𝑥 < 𝑎

                   (3) (3) 
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Trapezoidal membership function: 

 

)(x
A

 =  dcbax ,,,; =

 
 
 

 
 

 𝑥−𝑎 

 𝑏−𝑎 
, 𝑖𝑓 𝑎 ≤ 𝑥 < 𝑏 

   1,       𝑖𝑓 𝑏 ≤ 𝑥 ≤ 𝑐
 𝑑−𝑥 

 𝑑−𝑐  
,   𝑖𝑓 𝑐 < 𝑥 ≤ 𝑑

      0, 𝑖𝑓 𝑥 > 𝑑 ∨ 𝑥 < 𝑎

           (4) (4) 

 
Many ranking methods have been developed to 
transform fuzzy numbers into crisp values (Chen and 
Hwang, 1992). Yao and Wu (2000) proposed the signed 
distance method in A.C. 2000. It is better and more 
sensible than the Center of Gravity method. 

 
 
Property 1 

 
For a triangular fuzzy number A = (a, b, c) ∈ Λ, the signed 

distance from A  to 0 1 is defined as 
 

)0
~

,
~

( 1Ad =
1

4
 a + 2b + c                                           (5) 

 
 
Property 2 

 

For a trapezoidal fuzzy number A =  𝑝, 𝑞, 𝑟, 𝑠  , the 

signed distance from A  to 0 1 is defined as 

 

)0
~

,
~

( 1Ad =
1

4
(p + q + r + s)                                           (6) 

 
 
Example 

 
Let 𝐴  = (1, 6, 8), cuts- , 0 ≤ 𝛼 ≤ 1, then the signed 

distance from 𝐴  to 0 1 is as follows: 

 

)0
~

,
~

( 1Ad =
1

4
 1 + 12 + 8 =

21

4
.
  

 
 
Proof 

 
From Zimmermann (1996), Yao and Wu (2000), for any 
𝑎 ∈ 𝑅, define the signed distance from a to 0 as 
𝑑0 𝑎, 0 = 𝑎. If a >0, then the distance from a to 0 is 
𝑎 = 𝑑0 𝑎, 0 ; if a <0, the distance from a to 0 is −𝑎 =
−𝑑0 𝑎, 0 . This is why 𝑑0 𝑎, 0 

 
 is referred to as the 

signed distance from a to 0. 

Let  be the family of all fuzzy sets 𝐶  defined on R with 

which the α-cut 𝐶 𝛼 = [𝐶𝐿 𝛼 , 𝐶𝑈 𝛼 ] exists for every 
α ∈[0, 1], and both 𝐶𝐿(𝛼) and 𝐶𝑈(𝛼) are continuous 

functions   on   α ∈[0, 1].  Then,  for  any 𝐶 ∈ Λ,  we  have 

 
 
 
 

C
~

=     )(,)( UL CC0<𝛼<1
                       (7) 

 

From this proof, the signed distance of two end points, 

𝐶𝐿(𝛼) and 𝐶𝑈(𝛼), of the α-cut 𝐶 𝛼 = [𝐶𝐿 𝛼 , 𝐶𝑈 𝛼 ] of 𝐶  
to the origin 0 is 𝑑0 𝐶𝐿 𝛼 , 0 = 𝐶𝐿 𝛼  and 𝑑0 𝐶𝑈 𝛼 , 0 =
𝐶𝑈 𝛼 , respectively. The study define the signed distance 
from 0 to the interval [𝐶𝐿 𝛼 , 𝐶𝑈 𝛼 ] to be 
 

  )0,)(),((0  UL CCd =

)0),(([ 0 LCd ]0),((0 UCd /2 =

2/))()((  UL CC 
                                                    (8)         (8) 

 
Since crisp interval [𝐶𝐿 𝛼 , 𝐶𝑈 𝛼 ] has a one-to-one 
correspondence with α-level fuzzy 
interval [𝐶𝐿 𝛼 𝛼 , 𝐶𝑈 𝛼 𝛼 ], it is natural to define the signed 

distance from α-level fuzzy interval [𝐶𝐿 𝛼 𝛼 , 𝐶𝑈 𝛼 𝛼 ] to 0 1 
as 
 

  )0
~

,)(),(( 1 UL CCd =   )0,)(,)((   UL CCd =

2/))()((  UL CC 
                                                    (9) (9)

  
 

Moreover, for C ∈ Λ, since the function (9) is continuous 
on 0 ≤ α ≤ 1, the integration to obtain the mean value of 
the signed distance are as follows can be used: 
 

     dCCd UL )0
~

,)(,)(( 1
1

0
=

1/2   dCC UL ))()(( 
1

0
                                      (10) (10)  

 

Thus, from equations (12) and (15), we have the 
following definition 
 

)0
~

,
~

( 1Cd =      dCCd UL )0
~

,)(,)(( 1
1
0 =

1

2
  dCC UL ))()(( 

1

0

                                           (11)  (11) 

 
 

According to equation (16), we obtain the following 
property 1. 
 
 
PROPOSED METHOD 

 

This section discusses the fuzzy multi-objective linear programming 
(FMOLP) for solving PM decision problems in a fuzzy environment. 
Firstly, it describes the problem, details the assumption and 
formulates the problem. Secondly, the method of fuzzier for 
imprecise cost is triangular possibility distribution whereas for 
imprecise time is trapezoidal fuzzy numbers. Thirdly, this work 
applies the sign distances method (Yao and Wu, 2000) to convert 
the fuzzy number into a crisp number. Finally, this paper will present 

a modified interactive fuzzy mathematic programming approach (El-
Wahed and Lee, 2006) to determine the preferred compromise 
solution for the FMOLP problem. 



 
 
 
 
Problem description, assumptions and notation 
 
Assume that a project has n interrelated activities that must be 
executed in a certain order before the entire task can be completed 
in a fuzzy environment. In general, the environmental coefficients 
and related parameters are uncertain over the planning horizon. 
Accordingly, the incremental crashing costs for all activities, variable 
indirect cost per unit time, specified project completion time, and 
total budget are imprecise or/and fuzzy. 

The problem focuses on the development of an interactive 
FMOLP approach with considering the DM hopes to control the 
project completion time in a suitable range to determining the right 
duration of each activity in the project, given a specified project 

completion time, the crash time tolerance for each activity and 
allocated total budget. The aims of this PM decision are to minimize 
simultaneously total project costs and total crashing costs. The 
original MOLP model proposed in this work is based on the 
following assumptions: 
 
1. All of the objective functions and constraints are linear. 
2. Direct costs increase linearly as the duration of an activity is 
reduced from its normal value to its crash value. 

3. The normal time and shortest possible time for each activity and 
the cost of completing the activity in the normal time and crash time 
are certain over the planning horizon. 
4. The indirect costs comprise two categories, that is, fixed costs 
and variable costs, and the variable cost per unit time is the same 
regardless of project completion time. 
5. The decision maker (DM) has already adopted the pattern of 
triangular possibility distribution to represent the objectives of the 
imprecise total project cost, total crashing cost and related 

imprecise numbers except the specified completion time. It was 
adopted the trapezoidal fuzzy number. 
6. The minimum operator is used to aggregate all fuzzy sets. 
 

Assumptions 1, 2 and 3 imply that both the linearity and certainty 
properties must be technically satisfied in order to represent an 
optimization problem as a LP problem. For the sake of model 
facilitation, Assumption 4 represents that the indirect costs can be 

divided into fixed costs and variable costs. Fixed costs represent 
the indirect costs under normal conditions and remain constant 
regardless of project duration. Meanwhile, variable costs, which are 
used to measure savings or increases in variable indirect costs, 
vary directly with the difference between actual completion and 
normal duration of the project. Assumptions 4 concern the simplicity 
and flexibility of the model formulation and the fuzzy arithmetic 
operations. Assumption 5, addresses the effectiveness of applying 
triangular possibility distribution to represent imprecise objectives 
and related imprecise numbers except the specified completion 
time. In general, the project managers are familiar with estimating 
optimistic, pessimistic and most likely parameters from the use of 
the Beta distributions specified by the class PERT. The pattern of 
triangular distribution is commonly adopted due to ease in defining 
the maximum and minimum limit of deviation of the fuzzy number 
from its central value (Yang and Ignizio, 1991). And it applies 
trapezoidal fuzzy number to represent imprecise completion time 

with considering the specified range (Liang, 2008). Assumptions 5 
and 6 convert the original MOLP problem into an equivalent 
ordinary single-objective LP form that can be solved efficiently by 
the standard simplex method. 

The following notation is used. 

 
(i, j) activity between event i and event j 

1
~
Z

 
total project costs ($) 

2
~
Z

 
total crashing costs ($) 

ijD
 

normal time for activity (i, j) (days) 
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ijd
 

minimum crashed time for activity (i, j) 

𝐶𝐷𝑖𝑗  normal (direct) cost for activity (i, j) ($) 

𝐶𝑑𝑖𝑗  minimum crashed (direct) cost for activity (i, j) ($) 

𝑘 𝑖𝑗  incremental crashing costs for activity (i, 

j)(representing the cost-time slopes) ($/day) 

ijt
 

duration time for activity (i, j) (days)(difference 
between normal time and crash time) 

ijY
 

crash time for activity (i, j) (days)(difference between 
normal time and duration time) 

iE
 

earliest time for event i (days) 

0E
 

project start time (days) 

nE
 

project completion time (days) 

oT
 

project completion time under normal conditions (days) 

T
~

 
specified project completion time (days) 

IC
 

fixed indirect cost under normal conditions ($) 

m~  
variable indirect cost per unit time ($/day) 

b
~

 
total allocated budget ($) 

γ cut level 
 
 
Basic model 

 
Two objective functions with minimizing total project costs and total 
crashing costs are simultaneously considered to develop the 
proposed multiple objectives linear programming (MOLP) model, as 
follows. 
 
 
Minimize total project costs 
 

𝑀𝑖𝑛 1

~
Z =    

DijC𝑗𝑖 +   ijijYk
~

𝑗𝑖 + IC + m~  nE − oT   (12) 

 

Where the terms 

(1)   DijC
~

𝑗𝑖 +   ijijYk
~

𝑗𝑖 : total direct costs including total 

normal cost and total crashing cost, obtained using additional direct 
resources such as overtime, personnel and equipment. 

(2) 
IC + m~ ( nE − oT )

: indirect cost including those of 

administration, depreciation, financial and other variable overhead 
cost that can be avoided by reducing total project time. 

(3) 
ijk

~

= (

~

dijC − DijC )/( ijD − ijd )
: the analysis in this 

problem depends primarily on the cost-time slopes for the various 
activities. 

 
 
Minimize total crashing costs 
 

𝑀𝑖𝑛 2

~
Z =   ijijYk

~
𝑗𝑖                                                                  (13) 

 

The time between event i and event j: 
 

iE + ijt − jE ≤ 0   ∀𝑖 , ∀𝑗
                                                         (14) 

 

ijt = ijD − ijY   ∀𝑖 , ∀𝑗
                                                               (15) 
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Figure 1. Membership function of  

 
 
 
The crash time for activity (i, j): 
 

ijY ≤ ijD − ijd

  

∀𝑖 , ∀𝑗
                                                         (16) 

 
 

The project start time and total completion time is as follows: 
 

0E = 0
                                                                                       (17) 

 

En ≅ T
~

                                                                                    (18) 

 
The total budget: 
 

1

~
Z ≤ b

~
.        

                                                                               (19) 

 
 

Non-negativity constraints on decision variables: 
 

ijt , ijY , iE , jE ≥ 0  ∀𝑖 , ∀𝑗
                                                       (20) 

 
In real-world situations, the incremental crashing costs for all 
activities in equation (12) and (19), the specified completion time for 
the project in equation (13) are often imprecise because some 
relevant information, such as the skills of the workers, law and 
regulations, available resources, and other factors, is incomplete or 
unavailable. 

 
 
Model development 

 
This work assumes that the decision maker (DM) has already 
adopted the pattern of triangular possibility distribution to represent 

the crashing cost, 𝑘 𝑖𝑗 , variable indirect cost per unit time, m
~

, and 

total allocated budget, 𝑏 , in the original fuzzy linear programming 
problem. The primary advantages of the triangular fuzzy number 
are the simplicity and flexibility of the fuzzy arithmetic operations. 
For instance, Figure 1 shows the distribution of the  triangular  fuzzy  

 
 
 
 
number 𝑘 𝑖𝑗 .  

In practical situations, the decision maker (DM) can construct the 

triangular distribution of 𝑘 𝑖𝑗  in objective (12) based on the following 

three prominent data: (1) the most pessimistic value (𝑘𝑖𝑗
𝑝

) that has a 

very low likelihood of belonging to the set of available values 
(possibility degree 0 if normalized); (2) the most likely value (𝑘𝑖𝑗

𝑚 ) 

that definitely belongs to the set of available values (membership 
degree = 1 if normalized); and (3) the most optimistic value (𝑘𝑖𝑗

𝑜 ) 

that has a very low likelihood of belonging to the set of available 
values (membership degree = 0 if normalized). 

Similarly, the fuzzy data, 𝑚  , in objective (12), 𝑏  in constraints 
(19), thus can be modeled using the distribution of triangular fuzzy 

number. Hence, the fuzzy data for  𝑘 𝑖𝑗 , 𝑚  and 𝑏  can be symbolized 

as follows: 
 

ijk
~

  𝐲,  y
ijk   𝐲 ∈ 𝕽 =


 ),,( ,,,

p
ij

m
ij

o
ij kkk

         (21) (21) 

 

m~   𝐲,  ym   𝐲 ∈ 𝕽 =


 ),,( pmo mmm                   (22) (22) 

 

 
b

~
  𝐲,  yb   𝐲 ∈ 𝕽 =


 ),,( pmo bbb                        (23) (23) 

 
And, this work assumes that the decision maker (DM) has already 

adopted the pattern of trapezoidal fuzzy numbers for 𝑇 .  
Figure 2 illustrates the membership function pattern of the 

trapezoidal fuzzy number 𝑇.  The membership function 
 )(yT  

implies that y has only a small likelihood of belonging to the set of 
available values. 

The decision maker (DM) can construct the trapezoidal fuzzy 
number based on the four following prominent data (Liang, 2006): 

(1) the left main value 𝑇: the lower bound that definitely belongs to 

the set of available values (grade of membership=1); (2) the right 

main value 𝑇 : the upper bound that definitely belongs to the set of 
available values (grade of membership=1); (3) the left spread 
𝑇 − 𝛽𝛾 : the lower bound of the set that has very little likelihood of 

belonging to the set of available values (grade of membership=0), 

and (4) the right spread 𝑇 + 𝛽 𝛾 : the upper bound of the set that has 
very little likelihood of belonging to the set of available values 

(grade of membership=0). Hence, the fuzzy data for 𝑇  can be 
symbolized as follows: 
 

T
~

  𝐲,  yT   𝐲 ∈ 𝕽 =
  ),,,(  TTTT    (24) (24) 

 

The membership values
)(yT ,

)(ykij
, 

)(ym , and 
)(yb  

refers to the amount of information of y available to the DM. 

Practically, the DM can specify a cut level 𝛾 such that 
)(yT <γ , 

)(ykij
<γ, 

)(ym <γ, and
)(yb <γ imply that y has only a 

small likelihood of belonging to the set of available values. 
The objective function (12) and (13) in the original MOLP model 

formulated as mentioned have triangular possibility distributions. 
Geometrically, these two imprecise objectives are fully defined by 

two pairs of three prominent points (

oZ1 , 0), (

mZ1 , 1), (

pZ1 , 0), 

and (

oZ2 , 0), (

mZ2 , 1), (

pZ2 , 0). The imprecise objective of 
minimizing  total  project cost can be minimized by moving the three  

 
ijk

~



 
 
 
 

 
 

Figure 2. Membership function of T
~

. 

 
 
 

 
 
Figure 3. The strategy to minimize the imprecise objective 

function (Liang, 2008). 

 
 
 
prominent points toward the left. Using Lai and Hwang‟s (1992) 
approach, the proposed approach substitute simultaneously 

minimizing 

mZ1 , maximizing (

mZ1 -

oZ1 ), and minimizing (

pZ1 -
mZ1 ) for minimizing

mZ1 , 
oZ1 and

pZ1 . And the imprecise objective 

of minimizing total crashing cost is the same. 
The resulting six new objective functions still guarantee the 

declaration of moving the triangular distribution toward the left. 
Figure 3 illustrates the strategy for minimizing the imprecise 
objective function; that is, the auxiliary MOLP problem generated by 

this proposed approach comprises simultaneously minimizing the 

most likely value of imprecise total costs (
mZ1 ), maximizing the 

possibility of obtaining lower total costs (region I of the possibility 

distribution in Figure 3) (
mZ1 -

oZ1 ), and minimizing the risk of 

obtaining higher total costs (region II of the possibility distribution in 

Figure 3) (
pZ1 -

mZ1 ). As indicated in Figure 3, possibility 

distribution 2

~
B  is preferred to possibility distribution 1

~
B . 

Expressions (25) – (27) list the results for  the  three  new  objective  
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functions of total costs in Equation (12). Expressions (28) – (30) list 
the results for the three new objective functions of total crashing 
cost in Equation (13). 
 

𝑀𝑖𝑛 
11Z =

mZ1 =   
DijC𝑗𝑖 +   ij

m

ij Yk𝑗𝑖 +
 

IC +

mm  nE − oT                                                                          (25) 
(25) 

 

𝑀𝑖𝑛 
12Z = )( 11

om ZZ  =
 
  

DijC𝑗𝑖 +   ij

o

ij

m

ij Ykk )( 𝑗𝑖  +

 
                                                                                                   

(26)  

  
IC + )( om mm   nE − oT  

                                              (26) 

 

𝑀𝑖𝑛 13Z = )( 11

mp ZZ  =

 
  

DijC𝑗𝑖 +   ij

m

ij

p

ij Ykk )( 𝑗𝑖 +               (27)                                

  

IC + )( mp mm   nE − oT  
  

 (27) 

 

𝑀𝑖𝑛 21Z =
mZ2 =   ij

m

ij Yk𝑗𝑖                                                 (28) (28) 

 

𝑀𝑖𝑛 22Z = )( 22

om ZZ  =   ij

o

ij

m

ij Ykk )( 𝑗𝑖                    (29) (29) 

 

𝑀𝑖𝑛 23Z = )( 22

mp ZZ  =   ij

m

ij

p

ij Ykk )( 𝑗𝑖                   (30) (30) 

 

Recalling equation (18) from the original MOLP model; T
~

is fuzzy 
and has trapezoidal distribution. It can be substituted by: 
 

En R
~

T
~

                                                                                (31) (31) 

 

En R
~

T
~

                                                                         (32) (32) 

 

This work applies the signed distance method to convert T
~

 into a 
crisp number. If the minimum acceptable membership degree, γ, is 
given, the auxiliary crisp inequality constraints can be presented as 

follows: 
 

En R
~

4/)]([  TTTT                                 (33) (33) 

 

En R
~

4/])[( TTTT 


                            (34) (34) 

 

Recalling equation (19) from the original MOLP model; ijk
~

, m~ , b
~

are fuzzy and have triangular distribution. This work applies the 

signed distance method to convert ijk
~

, m~ , b
~

into crisp number. If 

the minimum acceptable membership degree, γ, is given, the 
auxiliary crisp inequality constraints can be presented as follows: 
 

   
DijC𝑗𝑖 +  (

p

ij

m

ij

o

ij kkk  ,,, 2 

4𝑖 ) ijY + IC   
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+

 

 
 

pmo mmm   2

4

 

 
 

 nE − oT  ≤ (

pmo bbb   2

4
)  (35) 

  
The original MOLP model designed above is developed based on 
the fuzzy mathematical programming methods of Zimmermann 
(1976, 1978), Slowinski (1986), and signed distance method. The 
minimum operator presented by Bellman and Zadeh (1970) is used 
to aggregate fuzzy sets, and the original MOLP problem is then 
converted into an equivalent ordinary LP form.  

Based on Bellman and Zadeh's concepts, fuzzy goals (G), fuzzy 
constraints (C), and fuzzy decisions (D), the fuzzy decision is 

defined as follows: 

 
𝐷 = 𝐺 ∩ 𝐶                                                                     (36) 

 
Next, this problem is characterized by the following membership 
function: 

 

))(),(()()()( xxMinxxx CGCGD  
        (37) 

 
Furthermore, the corresponding linear membership functions of the 
fuzzy objective functions of the auxiliary MOLP problem are defined 
by 

 

))(( 1111 xZ

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

1
,

if

PISZxZ 1111 )( 

)(1111 xZZ NIS 
PISNIS ZZ 1111 

,
if

NISPIS ZxZz 111111 )( 

0
,

if

NISZxZ 1111 )( 

 

(38) 

 

))(( 2121 xZ

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

1
,
𝑖𝑓

PISZxZ 1212 )( 

NISZxZ 1212 )( 
NISPIS ZZ 1212 

,
𝑖𝑓

PISNIS ZxZz 121212 )( 

0
,
𝑖𝑓

NISZxZ 1212 )( 

 

(39) 

 

The linear membership functions ))(( 1313 xZ  is similar to

))(( 1111 xZ . And The linear membership functions 

))(( 2121 xZ , ))(( 2222 xZ and ))(( 2323 xZ are similar to

))(( 1111 xZ , ))(( 1212 xZ and ))(( 1313 xZ . 

Accordingly, the positive ideal solutions (PIS) and negative ideal 

solutions (NIS) of the six objective functions of the auxiliary MOLP 
problem can be specified as follows, respectively. And, a payoff 
table (Table 1) is constructed by using the solutions of single 

objective FMOLP model where kZ is the original MOLP objective 

function k;
 

f

kqZ  is the value of six new objective function kq at 

solution vector f, k=1, and 2; q=1,2, and 3;f=1, 2 and 3. 

 

.3,2,1),( 11  fZMinMinZZ f

kf

m

k

PIS

k  
                    (40a) 

 
 
 
 

 .3,2,1),( 11  fZMaxMaxZZ f

kf

m

k

NIS

k

                 (40b) 

 

.3,2,1),()( 12  fZMaxZZMaxZ f

kf

o

k

m

k

PIS

k

    (41a) 

 

.3,2,1),()( 12  fZMinZZMinZ f

kf

o

k

m

k

NIS

k

     (41b) 

 

.3,2,1),()( 13  fZMinZZMinZ f

kf

m

k

p

k

PIS

k

     (42a) 

 

.3,2,1),()( 13  fZMaxZZMaxZ f

kf

m

k

p

k

NIS

k

    (42b) 

 
Finally, the complete FMOLP model for solving PM decision 
problems can be formulated as follows: 
Max β 

 

s.t
 
𝛽 ≤ ))(( 11 xZ qq  q=1,2,3 

      𝛽 ≤ ))(( 22 xZ qq  q=1,2,3 

 
Equations (14)-(17), and (33)-(35) 

 

ijt , ijY , iE , jE ≥ 0  ∀i , ∀j
 

 
Where the auxiliary variable β is represent the overall degree of 
decision maker (DM) satisfaction with determined goal values.  

After solving the single-objective LP problem to yield a 
compromise solution, the decision maker (DM) who is not satisfied 
with the initial solution can use modified El-Wahed and Lee's (2006) 
approach to change the model until a set of preferred satisfactory 
solution is found. In this paper, membership functions are 

determined for each objective function with considerable feedback 
(Table 1) in order to get the optimal solution which may lead to a 
preferred compromise solution corresponding to these aspiration 
levels. 
  

(1) Let the optimal solution of objective functions of kqZ , k=1, and 

2; q=1 and 3 be
*

kqZ , k=1, and 2; q=1 and 3. Compare each
*

kqZ

with the existing 
NIS

kqZ  and apply the following rules to update the 

aspiration levels. 

(1) If 
*

kqZ  <
NIS

kqZ , then replace 
NIS

kqZ by
*

kqZ . 

(2) If 
*

kqZ  =
NIS

kqZ , then keep these aspiration levels as they are. 

(3) If 
*

kqZ  =
PIS

kqZ , then replace 
PIS

kqZ by
*

kqZ  and keep it/them 

until the solution procedure is terminated. 
 

(2) Let the optimal solution of objective functions of kqZ , k=1, and 

2; q=2 be
*

kqZ , k=1, and 2; q=2.  

Compare each
*

kqZ with the existing 
PIS

kqZ  and apply the 

following rules to update the aspiration levels. 



 
 
 
 

(1) If 
*

kqZ  <
PIS

kqZ , then replace 
PIS

kqZ by
*

kqZ . 

(2) If 
*

kqZ  =
PIS

kqZ , then keep these aspiration levels as they are. 

(3) If 
*

kqZ  =
NIS

kqZ , then replace 
NIS

kqZ by
*

kqZ  and keep it/them 

until the solution procedure is terminated. 
Furthermore, by considering these rules, the membership values 

and aspiration levels are updated to generate another optimal 
solution, and so on. The solution process terminates whenever one 
of the following criteria is satisfied: 

 
(1) The decision maker (DM) accepts the modified solution and 

considers it the preferred compromise solution. 
(2) The updated overall degree of decision maker (DM) satisfaction 
with determined goal value is lower than which the DM can accept. 
(3) There is no significant improvement in the objective function 
values after additional modifications. 

(4) The modification of the 
PIS

kqZ or
 

NIS

kqZ  leads to infeasible 

solution. 
The solution procedure of the proposed interactive FMOLP 

approach for solving PM problems is as follows. 
 
Step 1: Formulate the original MOLP model for solving project 
management (PM) decision problems according to equations (12) - 
(20). 
Step 2: Model the fuzzy data using triangular and trapezoidal fuzzy 
numbers using equations (21) – (24). 
Step 3: Develop the six new crisp objective functions of the auxiliary 

MOLP problem for the imprecise goal using Equations (25) – (30).  
Step 4: Specify the inequality for the fuzzy constraints. 
Step 5: Give the α-cut level, and then convert the imprecise 
constraints into crisp ones using signed distance method according 
to equations (33) – (35). 
Step 6: Specify the linear membership functions for the six new 
objective functions, and then convert the auxiliary MOLP problem 
into an equivalent LP model using the minimum operator to 

aggregate fuzzy sets. 
Step 7: Solve the ordinary LP model to deliver a set of compromise 
solutions. If the decision maker (DM) is dissatisfied with the initial 
solutions, the model must be modified until a set of preferred 
satisfactory solutions is obtained. 

 
 
An example  
 

Daya Technology Corporation was used as a case study 
demonstrating the practicality of the proposed methodology (Liang, 
2008). Daya is the leading producer of precision machinery and 
transmission components in Taiwan. Currently, the deterministic 
CPM approach used by Daya suffers from the limitation owing to 
the fact that a decision maker (DM) does not have sufficient 
information related to the model inputs and related parameters. 
Alternatively, the proposed fuzzy multi-objective linear programming 

approach introduced by Daya can effectively handle vagueness and 
imprecision in the statement of the objectives and related para-
meters by using simplified triangular and trapezoidal distributions to 
model imprecise data.  

The project management (PM) decision of Daya aims to 
simultaneously minimize total project cost and total crashing cost 
with considering control the project completion time between a 
suitable date in terms of direct costs, indirect costs, activity 
duration, and budget constraints. Table 2 lists the basic data of the 

real industrial case. Other relevant data are as follows: fixed indirect 
costs $12,000, saved daily variable indirect costs ($144, $150, 
$154),   total   budget   ($40,000,   $45,000,  $51,000),  and  project  
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completion time under normal conditions 125 days. The project start 
time ( ) is set to zero. The α-cut level for all imprecise numbers is 
specified as 0.5. The specified project completion time is set to 
(106, 112, 120, 123) days based on contractual information, 
resource allocation and economic considerations, and related 
factors. Figure 4 shows the activity on-arrow network. The critical 
path is 1 – 5 – 6 – 7 – 9 – 10 – 11. 

The solution procedure using the proposed PLP approach for the 
Daya case is described as follows. First, formulate the original 
multi-objective FMOLP model for the PM decision problem 
according to Equations (12) to (20). Second, develop the six new 
objective functions of the auxiliary MOLP problem for the imprecise 
objective function (12) and (13) using Equations (25) to (30), and as 

follows: 
 

 𝑀𝑖𝑛 
11Z =

24400 +

(  56410241512 300130120180150 YYYYY   

1011910897967 10015012550150 YYYYY  ) +

150 11E − 18750                                                                         (43) (43) 

𝑀𝑖𝑛 
12Z =

(  796756410241512 16142018181618 YYYYYYY
  

101191089 203014 YYY  ) + 6 11E − 750.
                            (44) (44) 

𝑀𝑖𝑛 
13Z =

(  796756410241512 816241081814 YYYYYYY
  

101191089 81014 YYY  ) + 4 11E − 500
                                (45) (45) 

 
The Equations (28) to (30) are the same step. 

Third, formulate the auxiliary crisp constraints using Equations 
(33) to (35) at γ = 0.5. The results are 
 

11E R
~

75.1164/]123120112112[                   (46) 

 

11E R
~

5.1144/]120120112106[        (47) 

 

24400 +

6756410241512 25.1505.30012975.11825.1805.149( YYYYYY 
  

)5.985.14712549 10119108979 YYYY  .452505.186875.14912000 11  E
 (48) 

                                                                                                     (48) 
 
According to Equations (38) and (39), the corresponding linear 
membership functions of the six new objective functions can be 

defined. Additionally, specify the PIS and NIS of the imprecise/fuzzy 
objective functions with a payoff table (Table 3) in the auxiliary 
MOLP problem with Equations (40a) – (42b). Consequently, the 
equivalent ordinary LP model for solving the PM decision problem 
for the Daya case can be formulated using the minimum operator to 
aggregate fuzzy sets. Run this ordinary LP model by using Lingo 
computer software. The initial solutions are (37040.10, 37359.73, 
37519.86), (1828.10, 2197.23, 2390.36), and the completion time is 
116.75 days. Besides, if the DM is dissatisfied with the initial 

solutions, he may try to modify the results by adjusting the related 
parameters (PIS, NIS) until a set of preferred satisfactory solution is 
found. And,  the  decision  maker  (DM)  hopes  the  updated overall  
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Figure 4. The project network of the Daya case (Liang, 2008). 

 
 
 

 
 
Figure 5. The triangular distribution of the total project costs. 

 
 
 

degree of decision maker (DM) satisfaction with determined goal 
value which is not lower than 0.8. Hence, the improved solutions 
are (35779.52, 35901.90, 35939.52), (567.52, 739.40, 810.02), and 
the improved completion time is the same. 

From the graphical representation in Figure 5, it is observed that 

the most optimistic value (
oZ1 ), the most possible value (

mZ1 ), 

and the most pessimistic value (
pZ1 ) of total project cost gradually 

decrease and converge toward their ideal solutions 
*
1Z  with the 

modifications of PIS and NIS. And, the graphic variation of total 

crashing cost (
2Z ) is the same. In summary, Table 4 lists initial 

and improved PM plans for the Daya case with the proposed 
FMOLP approach based on current information.  

 
 
RESULTS OF COMPARISON 
 
Several significant management implications regarding 
the practical application of the proposed approach are as 
follows. From Table 5 applying LP-1 to minimize the total 
project cost, the optimal value of total project cost and 
crashing  were  $35,900   and  $1,075.  Applying  LP-2  to 

minimize the total crashing cost, the optimal value of total 
project cost and crashing were $39,322.5 and $0. 
Alternatively, using the PLP model developed by Liang 
with linear membership function to simultaneously mini-
mize total project cost and completion time obtains total 

project cost,
 1Z  = (35868.00, 36012.50, 36057.50) and 

total crashing cost,
 2Z = (656.00, 850.00, 928.00), and 

the overall degree of decision maker (DM) satisfaction is 
0.8325. It reveals that the proposed FMOLP solutions are 
a set of more efficient solutions, by comparison with the 
optimal objective value obtained by the ordinary single-
objective LP model and Liang (2008). The most important 
advantage of the proposed FMOLP approach is if the DM 
is dissatisfied with the initial solutions, the model can be 
modified during the solution procedure, until a set of 
preferred satisfactory solutions is obtained. Figure 6 
shows the change in triangular possibility distributions of 

total project costs (
1Z ) for the Daya case. As indicated in 

Figure 6, improved solutions are preferred to initial solu-
tions. Besides, Table 6 reveals that conflicts exists among 
results of sensitivity  analysis  of  minimizing  total  project  

 
 

 
 

denotes critical path 
denotes an activity 
denotes an dummy activity 
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Figure 6. The triangular distribution of the total project costs. 

 
 
 
 

 
 
Figure 7. The most likely value of objectives of analyzing sensitivity for varying the project 

completion time. 

 
 
 
cost and minimizing project completion time for varying 
project completion time. Accordingly, while project com-
pletion time increases, the project total cost increases 
because total indirect cost increase significantly. Figure 7 
plots the most likely value of total project cost and total 
crashing cost versus the project completion time. In 
practice, the crashing cost such as overtime, personnel 
and equipment will decrease when the project completion 
time increases.   

Table 7 compares the fuzzy multi-objective linear pro-
gramming (FMOLP) model presented in this work to the 
FLP, FGP, MFOLP, and MFGP models. To summarize, 
several significant characteristics distinguish the pro-
posed model from the other models. Firstly, the proposed 
model meets the requirements for actual application 
because it simultaneously minimizes total project cost 

and total crashing cost. Secondly, the proposed approach 
yields a preferred efficient solution and the DM‟s overall 
levels of satisfaction. If the solution is L=1, then all of the 
fuzzy objective and constraints are fully satisfied; if 
0<L<1, then all of the fuzzy objective and constraints are 
satisfied at the given L; if L=0, then none of the fuzzy 
objective and constraints is satisfied. Thirdly, the 
proposed model sets up a systematic framework that 
facilitates the decision-making process, enabling the DM 
interactively to modify the membership grades of the 
objectives until a set of preferred satisfactory solutions is 
obtained. Finally, the proposed model yields more wide-
ranging decision information than other models. It 
provides more information on alternative crashing strate-
gies in terms of direct cost, indirect cost, specified project 
completion time and allocated total budget. 
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Table 1. The corresponding PIS and NIS for the fuzzy objective functions. 
 

Objective 
functions 

Min 

11
Z =

mZ
1

 

Max 

12
Z = )(

11

om ZZ   

Min 

13
Z = )(

11

mp ZZ   

Min 

21
Z =

mZ
2

 

Max 

22
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22
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Min 

23
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22

mp ZZ   
(PIS, NIS) 
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11
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Z  

3
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,
NISZ

12
) 
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Z  1

13
Z  
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13
Z  

3

13
Z  --- --- --- (

PISZ
13

,
NISZ

13
) 

21
Z  --- --- --- 

1

21
Z  

2

21
Z  

3

21
Z  (

PISZ
21

,
NISZ
21

) 

22
Z  --- --- --- 

1

22
Z  

2

22
Z  

3

22
Z  (

PISZ
22

,
NISZ
22

) 

23
Z  --- --- --- 

1

23
Z  

2

23
Z  

3

23
Z  (

PISZ
23

,
NISZ
23
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Data source: This research reorganization. 

 
 
 

Table 2. Summarized data n the Daya case (in US dollar). 

 

(i, j) ij
D (days) 

ij
d (days) 

Dij
C ($) 

dij
C ($) 

ij
k ($/days) 

1-2 14 10 1000 1600 (132, 150, 164) 

1-5 18 15 4000 4540 (164, 180, 198) 

2-3 19 19 1200 1200 --- 

2-4 15 13 200 440 (112, 120, 128) 

4-7 8 8 600 600 --- 

4-10 19 16 2100 2490 (112, 130, 140) 

5-6 22 20 4000 4600 (280, 300, 324) 

5-8 24 24 1200 1200 --- 

6-7 27 24 5000 5450 (136, 150, 166) 

7-9 20 16 2000 2200 (34, 50, 58) 

8-9 22 18 1400 1900 (111, 125, 139) 

9-10 18 18 700 1150 (120, 150, 160) 

10-11 20 18 1000 1200 (80, 100, 108) 
 

Data source: Liang (2008). 

 
 
 

Table 3. The corresponding PIS and NIS for the fuzzy objective functions. 

 

Objective 
functions 

Min 
11

Z  Max 
12

Z  Min 
13

Z  Min 
21

Z  Max 
22

Z  Min 
23

Z  (PIS, NIS) 

11
Z  35900*

 
39332.5

 
35900

 
--- --- --- (35900, 39332.5)

 

12
Z  86

 
492.5*

 
122

 
--- --- --- (492.5, 86)

 

13
Z  51

 
353

 
37.5*

 
--- --- --- (37.5, 353)

 

21
Z  --- --- --- 737.5*

 
4170

 
737.5

 
(737.5, 4170)

 

22
Z  --- --- --- 135.5

 
542*

 
171.5

 
(542, 135.5)

 

23
Z  --- --- --- 84

 
386

 
70.5*

 
(70.5, 386)

 

 

Note: „*‟ denotes the optimal value with the single goal LP model.  

),,( *

13

*

11

*

11

*

12

*

11

*

1
ZZZZZZ  ; ),,( *

23

*

21

*

21

*

22

*

21

*

2
ZZZZZZ   
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Table 4. FMOLP solutions for the Daya case. 
 

Initial solutions   

ij
Y (days) 

ij
t (days) 

i
E (days) 

12
Y =4,

15
Y =0,

23
Y =0,

24
Y =2,

47
Y =0, 

410
Y =3,

56
Y =0,

58
Y =0,

67
Y =0,

79
Y =4, 

89
Y =0.94,

910
Y =3,

1011
Y =2 

(PIS, NIS) 

12
t =10,

15
t =18,

23
t =19,

24
t =13,

47
t =8,

410
t

=16,
56

t =22,
58

t =24,
67

t =27, 

79
t =16,

89
t =21.06,

910
t =15,

1011
t =18 

Objective values 

1
E =0,

2
E =10,

3
E =59, 

4
E =59,

5
E

=18,
6

E =40, 
7

E =67,
8

E =61.94,
9

E

=83,
10

E =98, 

11
E =116.75 

   

11
Z =(35900, 39332.50), 

12
Z =(492.50, 86), 

13
Z =(37.50, 353), 

21
Z =(737.50, 4170), 

22
Z =(542, 135.50),

23
Z =(70.50, 386) 


1

~
Z (37040.10, 37359.73, 37519.86) 


2

~
Z (1828.10, 2197.23 , 2390.36) 

Completion time = 116.75 days. 

β = 0.5747 

   

Improved solutions   

ij
Y (days) 

ij
t (days) 

i
E (days) 

12
Y =0,

15
Y =0,

23
Y =0,

 24
Y =0,

47
Y =0, 

410
Y =0,

56
Y =0,

58
Y =0,

67
Y =0,

79
Y =4,

89
Y =0,

910
Y =2.27,

1011
Y =1.99 

(PIS, NIS) 

12
t =14,

15
t =18,

23
t =19,

24
t =15, 

47
t =8,

410
t =19,

56
t =22,

58
t =24,

67
t =27,

79
t

=16,
89

t =22,
910

t =15.73,
1011
t =18.01 

Objective values 

1
E =0,

2
E =14,

3
E =59, 

4
E =59,

5
E =18,

6
E =40,

7
E =67,

8
E

=61,
9

E =83,
10

E =98.73,
11

E =116.75 

   

11
Z =(35900,35920.49), 

12
Z =(126.10, 86.00),

13
Z =(37.50, 38.78),

21
Z =(737.5, 758.00) 

22
Z =( 175.60, 135.50),

23
Z =(70.50, 71.78) 


1

~
Z (35779.52, 35901.90, 35939.52) 


2

~
Z (567.52, 739.40, 810.02) 

Completion time = 116.75 days. 

β = 0.9072 

 

Note: ),,(
~

13111112111
ZZZZZZ  ; ),,(

~
23212122212

ZZZZZZ 
. 

 
 
 

Table 5. Comparison of solutions. 

 

Item LP-1 LP-2 Liang (2008) 
The proposed FMOLP 

approach 

Objective function
 

Min
1

Z  Min
2

Z  Max β Max β 

β 100% 100% 83.25% 90.72% 

1

~
Z ($) 35900.00 35900.00 (35868.00, 36012.50, 36057.50) (35779.52, 35901.90, 35939.52) 

2

~
Z ($) 1075.00 737.50 (656.00, 850.00, 928.00) (567.52, 739.40, 810.02) 

Completion time (days) 114.50 116.75 116.75 116.75 

 
 
 
CONCLUSIONS 
 
This work presents a fuzzy multi-objective linear pro-
gramming (FMOLP) approach for solving project 
management (PM) decision problems in a fuzzy 

environment. It provides a systematic framework that 
facilitates decision making, enabling a decision maker 
(DM) to interactively modify the imprecise data and 
parameters until a set of satisfactory compromise solution 
is  obtained.  Presenting   a   fuzzy   multi-objective  linear  
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Table 6. Results of sensitivity analysis for varying the project completion time. 
 

Item Run 1 Run 2 Run 3 Run 4 Run 5 

nE (days) 
107 

114 121 126 132 

β 0.5459433 0.4824047 0.3258309 0.1583232 
      

1

~
Z ($) Infeasible 

(36378.12, (37369.05, (37928.14, (38529.20, 

37046.05, 37676.65, 38214.09, 38789.06, 

37206.21) 37821.67) 38341.17) 38909.66) 

      

2

~
Z ($) Infeasible 

(1922.12, (1545.05, (1096.13, (689.20, 

2296.05, 1876.65, 1364.09, 889.06, 

2500.21) 2037.67) 1497.17) 969.66) 

 
 
 

Table 7. The comparisons of five PM decision models. 
 

Factor 
FLP (Wang and Fu, 
1998) 

FGP (Arikan and 
Gungor, 2001) 

MFOLP (Liang, and 
Wang, 2003) 

MFGP (Wang and 
Liang, 2004) 

The proposed FMOLP 

approach 

Objective function Single Multiple Multiple Multiple Multiple 

Objective property Fuzzy Fuzzy Fuzzy Fuzzy Fuzzy 

Constraint property Deterministic / Fuzzy Deterministic Deterministic Deterministic Deterministic / Fuzzy 

DM’s overall level of satisfaction Not considered Considered Considered Considered Considered 

Main consideration Cost Time / cost Time / cost / resource Time / cost Time / cost 

Decision parameter Deterministic / Fuzzy Deterministic Deterministic Deterministic Fuzzy 

Direct and crashing cost Not considered Considered Considered Considered Considered 

Indirect cost Not considered Not considered Considered Considered Considered 

Specified completion time Not considered Not considered Not considered Not considered Considered 
 

Data source: This research reorganization. 
 

 
 

programming methodology with considering completion 
time in a suitable range for multi-objective project 
management (PM) decisions is the main contribution. It is 
critical that the objective values which are satisfied 
should often be imprecise as the cost coefficients and 
parameters are imprecise and such imprecision always 
exists in real-world PM decisions.  

Computational methodology developed here can easily 
be extended to any other situations and can handle the 
realistic PM decisions. Future research may apply the 
time value of money to project total cost, direct cost, 
indirect cost, crashing cost and allocated budget, etc. 
Finally, this case only involves about hundreds of 
decision variables and parameters in model test, the 
decision maker can formulate this proposed approach in 
solving large scale project management (PM) problems 
of industrial cases. 
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