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Inventory management is often very unreliable because of the variability of the demand and the 
uncertainty of the forecast. Taking human subjective into consideration, the collection of historical data 
and the inaccuracy of linguistic hedges, recently fuzzy theory has been applied to construct the 
uncertain factors in an inventory which was hard to describe before. This paper is an extension of the 

paper by Hsieh, published in Information Sciences 146 (2002) 29−−−−40 which examined a production 
inventory model under a fuzzy environment. This paper purposes three major points. Firstly, we 
provided a patchwork to improve Hsieh’s approach to show that the application of Taha’s algorithm of 
the extended Lagrangean method results in a tedious iterative computation. Secondly, we generalize 
the Graded Mean Integration Representation method to a weighted average operation. Thirdly, we 
studied the consistency between two arithmetic defuzzifications to obtain the final minimum crisp 
estimation under a fuzzy environment. Numerical examples are provided to illustrate our findings. 
 
Key words: Fuzzy production inventory, function principle, graded mean integration representation, fuzzy 
optimization. 

 
 
INTRODUCTION 
 
A common problem that arises in the management of an 
inventory is demand uncertainty. It is difficult to predict 
the future demand of a new seasonal product because of 
insufficient historical data. To cope with these kinds of 
problems, managers use linguistics to express the 
uncertain demand, such as very high, approxi-
mate...etc. Similarly, human factors will also make the 
production rate uncertain in the manufacturing procedure. 
Fuzzy theory can effectively resolve the problems that 
come up in cases where uncertain linguistics is present. 
The decision makers develop a fuzzy model with proper 
membership functions and then defuzzy the fuzzy 
objective function to a deterministic objective function to 
obtain the optimal solution. 

Inventory models considering fuzzy conditions have 
been studied extensively in recent papers. Campos et al. 
(2006) proposed two different criteria to obtain robust 
solutions for linear optimization problems when the 
objective function coefficients are modeled with possibility 
distributions. Xie et al. (2006) presented a new hierar-
chical two-level approach for inventory management and 
control in supply chains. Li et  al.  (2006)  considered  two  

defuzzifying approaches (Graded Mean Integration 
Representation and the Median rule) and two fuzzy 
numbers (the triangle and trapezoidal fuzzy numbers) for 
depicting the fuzzy inventory model with backorder. Zhu 
(2006) applied an ant colony optimization algorithm to 
solve a continuous optimization problem of fuzzy 
inventory model. Dutta et al. (2007) considered a 
continuous review inventory system where fuzziness and 
randomness appear simultaneously in an optimization 
setting. Yao et al. (2007) constructed three different inter-
vals to include the average demand per unit of time, the 
relative duration of setup, and the unit cost of production, 
respectively, which are fuzzified by triangular fuzzy num-
bers to derive fuzzy total cost. They applied the signed 
distance and centroid method for defuzzification to obtain 
the final fuzzy total cost. Panda et al. (2008) developed a 
mathematical model for a single period multi-product 
manufacturing system of stochastically imperfect items 
with continuous stochastic demand under budget and 
shortage constraints. Chen and Chang (2008) considered 
fuzzy production inventory model with defective produc-
tions  that  are  not repairable.  They used  the   Function 



 

 
 
 
 
Principle and Graded Mean Integration Representation 
method to find the most economically advantageous 
production quantity with fuzzy inventory model. Vijayan 
and Kumaran (2009) studied an inventory models in 
which the time period of the sales was a decision variable 
considered in fuzzy environments. Dutta and Chakraborty 
(2010) analyzed a fuzzy inventory model based on 
single-period productions when the opportunity for 
product substitution was taken into consideration. We 
continued research on this subject with inventory models 
in fuzzy conditions. In this article will point out that Hsieh 
(2002) did not fully apply the convex property of objective 
functions, causing his approach to become lengthy and 
tedious.  
 
 
REVIEW OF HSIEH’S METHOD 
 
Hsieh (2002) considered how to extend a crisp produc-
tion inventory model to a fuzzy production inventory 
model, using two different approaches. For the first 
extension, he assumed that all parameters are genera-
lized as trapezoidal fuzzy numbers, but the variable, 
production quantity, was still a crisp number. In his 
second extension, the variable, production quantity, also 
became a trapezoidal fuzzy number. He adopted the 
Function Principle (Chen, 1985, 1985a) to construct his 
fuzzy production inventory model, and then applied the 
Graded Mean Integration Representation method (Chen, 
1999) to defuzzify a fuzzy problem into a classical 
mathematical optimization problem. For a single variable 
problem, he used calculus to find the optimal solution. As 
for a multi-variable problem, he considered the Taha’s 
algorithm of the extended Lagrangean method (Taha, 
1997) to solve the optimization problem with multiple 
variables with inequality constraints.  

Hsieh (2002) first considered a production inventory 

model so that the average cost , ( )pC Q , is expressed as 
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where production quantity ( pQ ), inventory cost (A), yearly 

demand (D), setup cost (T), daily demand rate (R), daily 
production rate (P), are all crisp values and the optimal 
production quantity is denoted as 
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Hsieh (2002) used the Function Principle (Chen, 1985, 
1985a) to extend his proposed crisp production inventory 
model to a fuzzy production inventory model in two 
different    approaches.    In    his    first    extension,    the  
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parameters are fuzzy numbers and the variable is still a 
crisp number. The inventory cost (A), yearly demand (D), 
setup cost (T), daily demand rate (R), daily production 
rate (P) are all generalized to trapezoidal fuzzy numbers. 
Hence, he considered the following fuzzy parameters: 

( )1 2 3 4
, , ,A a a a a=% , ( )1 2 3 4

, , ,D d d d d=% , ( )1 2 3 4
, , ,T t t t t=% , 

( )1 2 3 4
, , ,P p p p p=%  and ( )1 2 3 4

, , ,R r r r r=%  to be 

nonnegative trapezoidal fuzzy numbers. Under the 
Function Principle (Chen, 1985, 1985a), he derived the 

trapezoidal fuzzy number for average cost, say 
1

C% : 
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.    (3) 

 
To defuzzify the fuzzy average production cost of 
Equation (3) proposed by trapezoidal fuzzy number, 
Hsieh (2002) applied the Graded Mean Integration 
Representation method (Chen, 1999) to adopt a grade as 
the degree of importance of each point of support set of 
generalized fuzzy number. For a trapezoidal fuzzy 

number, ( )1 2 3 4
, , ,B b b b b=% , the Graded Mean 

Integration Representation of B% , say ( )P B%  is then 

represented as 
 

( ) 1 2 3 4
2 2

6

b b b b
P B

+ + +
=% .                               (4) 

 
Then Hsieh (2002) used the Graded Mean Integration 
Representation method (Chen, 1999) to defuzzify 
Equation (3) as follows 
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For Equation (5), he found 
( )1

p

P C

Q
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 and then solved 
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( )1
0

p

P C

Q
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 to derive the optimal production quantity 

 

( )1 1 2 2 3 3 4 4*
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For his second extension, Hsieh (2002) considered the 
fuzzy inventory model with fuzzy production quantity, with 
a nonnegative trapezoidal fuzzy number, 

( )
1 2 3 4
, , ,p p p p pQ q q q q=%  under the condition 

1 2 3 4
0 p p p pq q q q< ≤ ≤ ≤ . According to the Function 

Principle (Chen, 1985, 1985a), he obtained the 

trapezoidal fuzzy number for average cost 
2

C%  
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He applied the Graded Mean Integration Representation 
method (Chen, 1999) to defuzzify Equation (7) as follows 
 

( )2

1

6
P C =%

1 2

4 3

1 2 31 1 4 2 2

1 2

22
1 1

2 2

p p

p p

a q a q rd t r d t

q p q p

    
+ − + + −    

    
 

 

3 4

2 1

3 43 3 2 4 4 1

3 4

22
1 1

2 2

p p

p p

a q a qd t r d t r

q p q p

   
+ − + + −    

   
,(8) 

 
under the constraint 
 

1 2 3 4
0 p p p pq q q q< ≤ ≤ ≤ .                           (9) 

 
Next, Hsieh (2002) decided to apply Taha’s algorithm of 
the extended Lagrangean method (Taha, 1997) to solve 
fuzzy production quantity with inequality constraints. Now, 
we recall Taha’s (1997) algorithm iteratively to convert 
inequality constraints into equality constraints. We also 
recall that the Lagrangean method was applied to solve 
the optimum solution of nonlinear programming problems 
with  equality   constraints.   The   extended   Lagrangean 

 
 
 
 
method was used to find the optimum solution under 
inequality constraints. 
Suppose that the problem is given by 
 

Minimize ( )y f x=  

 

Subject to: ( ) 0ig x ≥ , 1,2,...,i m= .               (10) 

 

The negative constraints 0x ≥ , if any, are included in 
the m  constraints. Then we briefly introduce the 

extended Lagrangean method of Taha (1997) that 
involves the following steps. 
Step 1. Solve the unconstrained problem 
 

Minimize ( )y f x= .         (11) 

 

If the resulting optimum satisfies all the constraints, then 
we have derived the optimal solution. Otherwise, set 

1k =  and go to Step 2. 

Step 2. Activate any k  constraints (i.e. convert them into 

equality) and optimize ( )f x  subject to the k  active 

constraints by the Lagrangean method. If the resulting 
solution is feasible with respect to the remaining 
constraints, then it is a local optimum. Otherwise, activate 

another set of k  constraints and repeat the step. If all 
sets of taking k active constraints are considered without 
encountering a feasible solution, then we will go to Step 3. 

Step 3. If k m= , stop; no feasible solution exists. 

Otherwise, set 1k k= +  and go to Step 2. 
In the following, we briefly demonstrate that according to 
the extended Lagrangean method Hsieh (2002) solved 
the optimal problem of Equation (8), under constraint (9). 

First, Hsieh (2002) solved 
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respectively. However, Equations (12) and (13) yield that 
 

1 2 3 4p p p pq q q q≥ ≥ ≥                                        (14) 

 
In general, the results in Equation (14) will violate the 
constraint of Equation (9) unless  
 

1 2 3 4
d d d d= = = , 

1 2 3 4
t t t t= = = , 

1 2 3 4
a a a a= = = , 

1 2 3 4
r r r r= = = , 

 

and 
1 2 3 4

p p p p= = = .                                  (15) 

 
It means that all trapezoidal fuzzy numbers are 
degenerated to crisp numbers. Hence, under the fuzzy 
environment, the results of Equations (12) and (13) 
cannot be accepted. Therefore, according to Step 2 of 
the extended Lagrangean method of Taha (1997), Hsieh 
(2002) considered changing one inequality, for example, 

from 
2 1

0p pq q− ≥ , into an equality as 
2 1

0p pq q− =  so 

that he could solve the Lagrangean function 
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However, Equations (17) and (18) yield that 

 

1 2 3 4p p p pq q q q= ≥ ≥                                     (19) 

 
In general, the results in Equation (19) still violate the 
constraint of Equation (9) unless Equation (15) is 
satisfied. It means that all trapezoidal fuzzy numbers 
degenerate to crisp numbers so that the meaning of fuzzy 
production inventory model is lost. There are two other 
ways to change an inequality into equality. If we consi-

der
2 3p pq q= , then it will imply that 

1 2 3 4p p p pq q q q≥ = ≥ . 

On the other hand, if we consider 
3 4p pq q= , then it will 

yield 
1 2 3 4p p p pq q q q≥ ≥ = . Those results will not satisfy 

Equation (9) under the fuzzy environment. 
Following Taha’s approach (1997) of the extended 

Lagrangean method, Hsieh (2002) considered changing 

two    inequalities,    fo r  example,     
3 2

0p pq q− ≥     and  
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2 1
0p pq q− ≥ , into equalities as 

3 2
0p pq q− =  and 

2 1
0p pq q− =  so that he could try to solve the following 

Lagrangean function 
 

( ) ( ) ( ) ( )
1 2 3 4 2 1 3 2, , , , 1 2 2 1 2

,
p p p p p p p p

L q q q q P C q q q qλ λ λ λ= − − − −% . (20) 

 

to derive that  

( )
( )( ) ( )( ) ( )( )1 2 3

2 2 3 3 4 4

1 4 1 2 3 2 3 2 3

2 2 2

1 2 1 2 1
p p p

d t d t d t
q q q

a r p a r p a r p

+ +
= = =

− + − + −

,    (21) 
 

and  
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−
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However, from Equations (21) and (22), it yields that 
 

1 2 3 4
.p p p pq q q q= = ≥                        (23) 

 

In general, the results in Equation (23) will not satisfy the 
constraint of the Equation (9) unless Equation (15) is 
satisfied.  

There are two other choices to change two inequalities 

into equalities. If we consider 
2 3 4p p pq q q= = , then it will 

imply that 
1 2 3 4p p p pq q q q≥ = = . On the other hand, if we 

consider 
1 2p pq q= and 

3 4p pq q= , then it will yield 

1 2 3 4p p p pq q q q= ≥ = . Those results will not satisfy 

Equation (9) under the fuzzy environment. Therefore, 
Hsieh (2002) considered changing these three 

inequalities, for example, 
4 3

0p pq q− ≥ ,
3 2

0p pq q− ≥  

and 
2 1

0p pq q− ≥ , into equalities as 
4 3

0p pq q− = , 

3 2
0p pq q− =  and 

2 1
0p pq q− =  so that he considered  
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 ,   (24) 

 

to imply that; 
 

1 2 3 4p p p pq q q q= = =
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After iterative replacement from inequalities  to  equalities, 
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Hsieh (2002) finally derived Equation (25).  

In the next section, we will provide our proposed 
approach to directly prove the result of Equation (25). It 
will demonstrate that Hsieh (2002) applied Taha’s 
approach (1997), which is a lengthy and tedious 
procedure. 
 
 
OUR IMPROVEMENT FOR HSIEH’S APPROACH 
 
We will show that to apply Taha’s method (1997) is 
unnecessary for solving Equation (8) under the constraint 
(9). We rewrote Equation (8) as follows 
 

( ) ( ) ( ) ( ) ( )( )
1 2 3 42 1 2 3 4

1

6
p p p pP C f q f q f q f q= + + +% ,(26) 

 

where ( )
1 1
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1
1 1p p
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f q q
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α
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2

2
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f q q
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α
β

 
= +  

 
, ( )

3 3

3

3
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2p p

p

f q q
q

α
β

 
= + 

 
 

, 

and  
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4 4

4

4
4 4p p

p

f q q
q

α
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1 4 4
d tα = , 

2 3 3
d tα = , 

3 2 2
d tα = , 

4 1 1
d tα = , 1 4

1

1

1
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a r
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32
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1
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p
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3 2
3

3

1
2

a r

p
β

 
= − 

 
, and 4 1

4

4

1
2

a r

p
β

 
= − 

 
 such that the 

solution satisfies the constraint of Equation (9) . 
 

Those ( )i
f x  are the same type as  

 

( )f x x
x

α
β= +                                      (27) 

 
that is a convex function so that the minimum point 

occurs at x α β= , and this fact has already been 

discovered by Hsieh (2002). However, Hsieh (2002) did 
not use the full power of convex functions. 

In the following, we will further examine the convex 

property of ( )i
f x . We assume that the solutions of 

Equation  (25)  are  
#

1
q ,  

#

2
q ,  

#

3
q   and  

#

4
q   for   functions 

 
 
 
 

( )1 1 ,f q  ( )2 2 ,f q  ( )3 3f q  and ( )4 4f q , respectively, 

under the condition 
# # # #

1 2 3 4
q q q q≤ ≤ ≤ . Our goal is to 

verify that 
# # # #

1 2 3 4
q q q q= = = . Before we prove the main 

result, we need the following two lemmas. Lemma 1 will 
provide a pair of lower bound and upper bound. 
 
 
Lemma 1 
 

#

1 1i
q α β≤  and 

#

4 4 i
qα β ≤ , for 1, 2,3, 4.i =  

 
Proof of Lemma 1 
 

We know for a fact that without constraint, ( )i
f x  has a 

minimum at 
i iα β  for 1,2,3,4,i =  where 

4 4
α β ≤

3 3
α β ≤ 2 2

α β ≤
1 1

α β , owing to 

4 3 2 1
α α α α≤ ≤ ≤  and 

1 2 3 4
β β β β≤ ≤ ≤ . 

If #

1 1 1qα β < , then we evaluate ( )i
f x  for 1,2,3,4,i =  

at 
1 1α β . 

According to # # # #

1 2 3 4
q q q q≤ ≤ ≤ , it yields that: 

 

 ( ) ( )#

1 1 1 1 1f f qα β < , and for 2,3, 4i =   

 

( ) ( ) ( )#

1 1i i i i i if f f qα β α β≤ <  then 

 

( )
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#1 1 1 1
1 2 3 4

11 1 1 1

i i

i

f f f f f q
α α α α

β β β β =

       
+ + + <              

       
∑ , (28) 

 

with 1 1 1 1

1 1 1 1

α α α α

β β β β
≤ ≤ ≤  satisfies Equation (9), so 

that #

1
q , #

2
q , #

3
q  and #

4q  are not minimum solutions of 

Equation (8). It is a contradictive situation.  

Hence, we have obtain #

1 1 1
q α β≤ . After 

#

1 1 1
q α β≤ , we begin to prove that 

#

2 1 1
q α β≤ . If 

#

1 1 2qα β < , then we know that:  

 

( ) ( )
4

#

1 1 1 1

2

i

i

f q f α β
=

+∑  ( )
4

#

1

i i

i

f q
=

<∑                 (29) 

 
where: 

  
# 1 1 1

1

1 1 1

q
α α α

β β β
≤ ≤ ≤

 satisfies Equation (9), to derive a 

contradiction, then it yields that 
#

2 1 1
q α β≤ . 

By the same argument, we  can  finish  the  rest  o f the  



 

 
 
 
 
assertion of Lemma 1. 
 

Lemma 2. 
# #

1 2
q q=  and 

# #

3 4
q q= . 

 

Proof of Lemma 2. If 
# #

1 2
q q< , since 

# #

1 2 1 1
q q α β< ≤ , 

it follows that  
 

( ) ( )
4

# #

1 2

2

i i

i

f q f q
=

+∑ ( )
4

#

1

i i

i

f q
=

<∑ ,                    (30) 

 

where 
#

4

#

3

#

2

#

2
qqqq ≤≤=  satisfies Equation (9), to 

obtain a contradiction to imply that 
# #

1 2
q q= . Similarly, we 

hold that 
# #

3 4
q q= . 

 
 
Theorem 1 
 

# #

1 2
q q= = # #

3 4q q= . 

 
 
Proof of Theorem 1 

 
We assumed that # #

1 2
q q= < # #

3 4q q= , and so the problem 

was divided into two cases: (a) 
# #

4 4 1 2 2 2q qα β α β≤ = ≤ and (b) 

# #

2 2 1 2 1 1q qα β α β≤ = ≤ . We further divide Case (a) into 

(a1) # #

3 4 2 2
q q α β= ≤ , and (a2) # #

2 2 3 4
q qα β < = . 

For Case (a1), it yields that ( )
4

#

3

1

i

i

f q
=

∑  has a smaller 

value, and for case (a2), ( ) ( )
2 4

#

1 2 2

1 3

i i

i i

f q f α β
= =

+∑ ∑  has 

a smaller value to imply that case (a) does not hold. 

For case (b), it follows that ( )
4

#

1

1

i

i

f q
=

∑  has a smaller value 

to imply that case (b) does not hold. Hence, both cases 
(a) and (b) do not hold. 

Based on Theorem 1, we have showed that the 
constraint optimization problem ( )2

P C%  can be reduced to 

the unconstraint optimization problem, ( )1P C%  such that it 

has the expression of Equation (27) so the results of 
Equation (25) can be obtained. By our proposed 
approach, we have provided an alternative method for 
the solution procedure. 
 
 

NUMERICAL EXAMPLE 
 

We     recall    another     arithmetic    defuzzification    for 

trapezoidal fuzzy numbers,  ( )1 2 3 4
, , ,B b b b b=% ,  with  the  

Yang          2341 
 
 
 

median rule (1987) then the result, say ( )m B% , is 

expressed as 
 

( ) 1 2 3 4

4

b b b b
m B

+ + +
=% .                                 (31) 

 

The Graded Mean Integration Representation method 
(Chen, 1999) and the median rule (Park, 1987) are two 
popular arithmetic defuzzifications to defuzzify 
trapezoidal fuzzy numbers into crisp numbers.  

Before we developed our generalized discussion, we 
tried to provide some numerical examples proposed by 
Hsieh (2002) that would explain the problem that we want 
to discuss in the following sections. In Hsieh’s numerical 
example, Brown Manufacturing produces commercial 
refrigeration units in batches. The firm’s estimated 
demand for the year is greater or less than 10,000 units. 
The setup cost is about $100, and the inventory cost is 
about $0.5 per unit per year. Once the production 
process has been set up, greater or less than 80 
refrigeration units can be manufactured daily. The 
demand during the production period is about 60 units 
each day. Hence, the trapezoidal fuzzy number of yearly 
demand, 

( )1 2 3 4, , , (9000,9500,10,500,11,000)D d d d d= =% , the 

fuzzy setup cost, ( )1 2 3 4, , , (95,100,100,105)T t t t t= =% , 

the fuzzy inventory cost, ( )1 2 3 4, , ,a a a a a=%  

(0.475,0.5,0.5,0.525)= , fuzzy production rate, 

( )1 2 3 4, , , (72,76,84,88)P p p p p= =% , and fuzzy 

production quantity ( )
1 2 3 4
, , ,p p p p pQ q q q q=%  with 

1 2 3 4
0 p p p pq q q q< ≤ ≤ ≤ . Hsieh (2002) used the Graded 

Mean Integration Representation method (Chen, 1999) to 

consider the minimization of ( )2P C%  then he derived that: 

 

( )*
4028.77,4028.77,4028.77, 4028.77pQ =% ,      (32) 

 
and 

 

( )*

2
331.8277, 447.8445,548.3947,659.2347C =% . (33) 

 
After we find the trapezoidal fuzzy number for average 
cost in Equation (33), the next step is to convert this 
fuzzy number into a crisp number so that the derived 
crisp number will provide the estimation for the decision 
maker regarding how much of the budget should be used 
to support this production inventory model. 

Based on Equation (33), if we use the Graded Mean 
Integration Representation method (Chen, 1999), it yields:  
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( )( )* *

2
497.2568

p
P C Q =% % .                              (34) 

 

On the other hand, if we apply the median rule (1987), 
then it implies that  
 

( )( )* *

2
496.8254

p
m C Q =% % .                             (35) 

 

From Equations (34) and (35), we may observe that two 
different arithmetic defuzzifications will derive very close 
results. It may indicate that researchers can arbitrarily 
select any arithmetic defuzzification to estimate the 
average cost. However, in the following, we will provide a 
detailed examination to consider the best arithmetic 
defuzzification to select. 
 
 
OUR GENERALIZATION TO A WEIGHTED AVERAGE 
OPERATION 
 
We will generalize the Graded Mean Integration Repre-
sentation method (Chen, 1999) to a weighted arithmetic 
method. For example, the Graded Mean Integration 
Representation method (Chen, 1999) is a special case 

with weight ( )1 6,2 6,2 6,1 6 . 

In fact, there are two defuzzifications in the solution’s 
procedure for fuzzy production inventory models: (a) 
before the fuzzy average cost is obtained, for example, 
from Equation (7) to Equation (8), and (b) after the fuzzy 
average cost is obtained, for example, from Equation (33) 

to ( )( )* *

2
496.8247.

p
m C Q =% %  Hence, we need two 

arithmetic defuzzifications, respectively. 
Assuming there are two arithmetic defuzzifications with 

two weights ( )1 2 3 4
, , ,υ υ υ υ  and ( )1 2 3 4, , ,w w w w  with 

4

1

1i

i

υ
=

=∑ , and 0
i

υ ≥  for 1,2,3, 4= , and 
4

1

1i

i

w
=

=∑ , and 

0
i

w ≥  for 1,2,3, 4=  such that  

 

( ) 1 1 2 2 3 3 4 4
K k k k kυ υ υ υΛ = + + +% ,                     (36) 

 
and 
 

( ) 1 1 2 2 3 3 4 4
W K w k w k w k w k= + + +% ,                  (37) 

 

with ( )1 2 3 4
, , ,K k k k k=%  is a fuzzy trapezoid number. 

( )KΛ %  and ( )W K%  are both used to transfer a fuzzy 

trapezoid cost into a crisp cost. ( )KΛ %  is used before 

finding   the   fuzzy   average   cost   under   condition   of  

 
 
 
 

Equation (9), and ( )W K%  is applied after the fuzzy 

average cost is found.  
Therefore,   we   use    ( )KΛ %   to   transfer   the   fuzzy 

objective function of Equation (7) into a classical 
analytical problem: 

 

( )2 1C υΛ =%

1 2

4 3

1 2 31 1 4 2 2

2

1 2

1 1
2 2

p p

p p

a q a q rd t r d t

q p q p
υ
     

+ − + + − +     
         

 

3 4

2 1

3 43 3 2 4 4 1

3 4

3 4

1 1
2 2

p p

p p

aq a qd t r d t r

q p q p
υ υ
      

+ − + + −      
        

. (38) 

 
Similarly, based on the convexity property of the objective 
functions, we still obtain that the optimal solution for 

( )
2

~
CΛ  which will occur at 

 

 
1 2 3 4p p p p

q q q q= = =                                       (39) 

 
such that   
 

1 2 3 4p p p pq q q q= = =

( )1 1 1 2 2 2 3 3 3 4 4 4

34 2 1
1 1 2 2 3 3 4 4

1 2 3 4

2

1 1 1 1

d t d t d t d t

rr r r
a a a a

p p p p

υ υ υ υ

υ υ υ υ

+ + +
=

      
− + − + − + −      

      

.(40) 

 
To simplify the expression, we assumed that the optimal 

fuzzy average cost is ( ) ( )4321

**

2 ,,,
~~

VVVVVqC == , where 














−+=

−

j

jjjj

j
p

rqa

q

td
V

5

*

*
1

2
 for 4,..,1=j , and 

1

*

pqq =  in Equation (40). We then applied ( )W V%  to 

transfer the optimal fuzzy average cost into a crisp cost, 

 

( )
4

1

i i

i

W V wV
=

=∑% .                         (41) 

 
Now, we will prepare an example for our abstract 
approach. When we consider the Graded Mean 
Integration Representation method (Chen, 1999), the 
solution is under the condition 
 

( )1 2 3 4

1 2 2 1
, , , , , ,

6 6 6 6
υ υ υ υ

 
=  
 

,                  (42) 



 

 
 
 
 
for   Equation   (34)   with   the  Graded  Mean  
Integration Representation method (Chen, 1999), 
 

( )1 2 3 4
, , ,w w w w = 1 2 2 1

, , ,
6 6 6 6

 
 
 

,                  (43) 

 
and for Equation (35) with the median rule (Park, 1987), 
 

( )1 2 3 4
, , ,w w w w = 1 1 1 1

, , ,
4 4 4 4

 
 
 

.                  (44) 

 
We point out that our previous approach implicitly raised 
the following minimization problem: given 

( )1 2 3 4, , ,w w w w , how is the best ( )1 2 3 4
, , ,υ υ υ υ selected. 

It was overlooked by previous researchers and so no one 
has ever analyzed the relation between two arithmetic 
defuzzifications. It means that the decision maker first 
decides how to defuzzy the final optimal fuzzy average 
cost into a crisp value, but then how does one select an 
arithmetic defuzzification for the original fuzzy inventory 
model to obtain the minimum final result ?  

We express our problem in the following. For a 

predetermined weighting vector, say ( )1 2 3 4, , ,w w w w  to 

defuzzify ( )* *

2C q V=% %  where 
*q  is the feasible solution 

derived   by   defuzzifying   ( )*

2C q%   under  the  arithmetical  
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operation of ( )( )*

2C qΛ %  with the 

condition ( )
4

1 2 3 4

1

, , ,
i i

i

k k k k kυ
=

Λ = ∑ , then how is 

( )1 2 3 4
, , ,υ υ υ υ selected as to minimize 

 

( )
1 2 3 4( , , , )
min W V

υ υ υ υ

% .                                          (45) 

 

To solve the minimum of ( )
2

~
CΛ , similar to Equation (26), 

we derive: 
 

 
4321 pppp

qqqq === 1 4 2 3 3 2 4 1

1 1 2 2 3 3 4 4

υ α υ α υ α υ α

υ β υ β υ β υ β

+ + +
=

+ + +
,     (46) 

 

with 
1 4 4

d tα = , 
2 3 3

d tα = , 
3 2 2

d tα = , 
4 1 1

d tα = ,  

 

1 4

1

1

1
2

a r

p
β

 
= − 

 
, 32

2

2

1
2

ra

p
β

 
= − 

 

, 3 2

3

3

1
2

a r

p
β

 
= − 

 

,  

 

and 4 1
4

4

1
2

a r

p
β

 
= − 

 

 

.  

On the other hand, we rewrite ( )W V%  as follows: 

 

( )W V =%  
34

1 1 2 2w q w q
q q

αα
β β

   
+ + +   

   
 

2 1
3 3 4 4w q w q

q q

α α
β β

   
+ + + +   

   
    (47) 

 
 
 and then it was further simplified as 
 

( )W V q
q

α
β= +% ,          (48) 

 

with 1 4 2 3 3 2 4 1
w w w wα α α α α= + + +  and 

1 1 2 2 3 3 4 4w w w wβ β β β β= + + + . From the expression of 

Equation (48), it is apparent that the minimum will occur 
at 
 

1 4 2 3 3 2 4 1

1 1 2 2 3 3 4 4

w w w w
q

w w w w

α α α αα

β β β β β

+ + +
= =

+ + +
.     (49) 

 
Hence, if we compare Equations (46) and (49), the 
minimum problem of Equation (45) will attain its minimum 
if 

 

1 4 2 3 3 2 4 1

1 1 2 2 3 3 4 4

υ α υ α υ α υ α

υ β υ β υ β υ β

+ + +

+ + +

1 4 2 3 3 2 4 1

1 1 2 2 3 3 4 4

w w w w

w w w w

α α α α

β β β β

+ + +
=

+ + +
              (50) 

 

is satisfied. For a predetermined weight ( )1 2 3 4, , ,w w w w , 

there may be many solutions for ( )1 2 3 4
, , ,υ υ υ υ . For 

example, in a special case where 
1 2 3 4

α α α α= = =  and 

1 2 3 4
β β β β= = = , then  

1 4 2 3 3 2 4 1

1 1 2 2 3 3 4 4

υ α υ α υ α υ α

υ β υ β υ β υ β

+ + +
=

+ + +
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( )
( )

1 2 3 4 1 1

1 2 3 4 1 1

υ υ υ υ α α

υ υ υ υ β β

+ + +
=

+ + +
,            (51) 

 
and 
 

1 4 2 3 3 2 4 1

1 1 2 2 3 3 4 4

w w w w

w w w w

α α α α

β β β β

+ + +
=

+ + +
 

( )
( )

1 2 3 4 1

1 2 3 4 1

w w w w

w w w w

α

β

+ + +
=

+ + +

1

1

α

β
.             (52) 

 
Therefore, any weighted vector will imply the same result. 

It points out that the solution of ( )1 2 3 4
, , ,υ υ υ υ  for 

Equation (50) is not unique. However, we may take a 
feasible solution 
 

( )1 2 3 4
, , ,υ υ υ υ ( )1 2 3 4

, , ,w w w w=              (53) 

 
so that Equation (50) is valid. 

In the following, we will demonstrate our findings by an 
example. From the results of Equation (53), if we select 

( )1 2 3 4

1 2 2 1
, , , , , ,

6 6 6 6
w w w w

 
=  
 

 in the beginning, then 

among all possible selections of ( )1 2 3 4
, , ,υ υ υ υ , the 

choice of 
 

( )1 2 3 4
, , ,υ υ υ υ 1 2 2 1

, , ,
6 6 6 6

 
=  
 

                          (54) 

 
will ensure that the minimum value for the final crisp 
estimation is attained. 

We discovered that there is a consistent relationship 
between two arithmetic defuzzifications in the solution 
procedure for fuzzy production inventory models. It 
provides a reasonable managerial explanation that the 
two arithmetic defuzzifications, before and after, should 
be the same. Therefore, our findings may be the first step 
towards future studies of the selection of different 
weighted average operations. 
 
 

Conclusion 
 

We have studied the fuzzy production inventory to show 
that applying the convexity property can improve the 
lengthy solution procedure proposed by Hsieh (2002). 
We then generalize the Graded Mean Integration Repre-
sentation method to a  weighted  average  operation.  We  
 
 

 
 
 
 
have pointed out that there are two arithmetic defuzzifica-
tions in the solution process and then discovered a 
consistent relation between the two operations to ensure 
the minimum of the final crisp estimation.  
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