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The traditional EOQ (Economic Ordering Quantity) inventory model has three basic assumptions (A), 
(B) and (C) to be summarized as follows: (A) The retailer must be paid for the items as soon as the 
items are received; (B) The replenishment rate is infinite; (C) The inventories are stored by a single 
warehouse with unlimited capacity. Few inventory models with generalizing assumptions (A), (B) and 
(C) together have been found in the literature. This paper tries to incorporate the above concepts to 
consider the inventory model with the trade credit, finite replenishment rate and limited storage 
capacity to relax assumptions (A), (B) and (C) simultaneously to establish a new economic production 
quantity model. The mathematical model and the solution procedure are developed and numerical 
examples are provided to illustrate them. 
 
Key words: Economic ordering quantity, permissible delay in payments, trade credit, limited storage capacity, 
finite replenishment rate. 

 
 
INTRODUCTION 
 
The traditional EOQ (Economic Ordering Quantity) has 
three basic assumptions (A), (B) and (C) to be 
summarized as follows: 
 
a) The retailer must be paid for the items as soon as the 
items are received; 
b) The replenishment rate is infinite; 
c) The inventories are stored by a single warehouse with 
unlimited capacity. 
 
In practice, the above three assumptions are unrealistic. 
In general, the supplier will offer the retailer a trade credit 
period in paying for the amount of purchasing cost to 
promote their commodities. Secondly, the replenishment 
rate depends on the production rate is always not infinite. 
Finally, as we all know, the capacity of any  warehouse  is  
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limited. In fact, there exist many practical cases that force 
inventory managers to hold more items than can be 
stored in their own warehouse. Chung and Huang (2006, 
2007) relax assumptions (A) and (C) to consider an EOQ 
model when the delay in payment is permitted and the 
capacity of own warehouse is limited. Ker et al. (2001); 
Pakkala and Achary (1992) further generalize assump-
tions (B) and (C) to develop the two-warehouse model for 
deteriorating items with finite replenishment rate and 
shortages. Recently, Chung and Huang (2003), Huang 
(2007) extend assumptions (A) and (B) to discuss an 
economic production quantity (EPQ) model under finite 
replenishment rate and permissible delay in payments. 
However, few inventory models generalizing assumptions 
(A), (B) and (C) together have been found in the 
literature. To make the inventory system to be discussed 
closes to the real situation. Based on Chung and Huang 
(2003), this paper tries to present an inventory model to 
incorporate concepts of the trade credit, limited storage 
capacity and finite replenishment rate to relax assump-
tions (A), (B) and (C) simultaneously  to  establish  a  new 
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economic production quantity model. Consequently, the 
inventory model in this paper is more close to a real world 
than the traditional EOQ model. Of course, this paper 
extends Chung and Huang (2003), Chung (1998) and 
Goyal (1985). Many related articles about the trade 
credit, finite replenishment rate and limited storage 
capacity can be found in Benkherouf (1997), Bhunia and 
Maiti (1998), Chu et al. (1998), Goswami and Chaudhuri 
(1992), Hariga (1998), Hartely (1976), Jamal et al. 
(2000), Liao (2000), Sarker et al. (2000), Sarma (1987), 
Yang (2004), Zhou and Yang (2005) and their references. 
 
 
MODEL FORMULATION 
 
Notation 
 

D  demand rate per year 
P  replenishment rate per year, P D>  
A  cost of placing one order 

ρ  1 0
D
P

= − >  

s  unit selling price per item,  
c           unit purchasing price per item, s c≥  
h  unit stock-holding cost per item per-year in 
owned warehouse excluding interest charges 
k  unit stock-holding cost per item per year in rented 
warehouse, k h≥  

kI  interest charges per $ investment in inventory per 
year 

eI  interest which can be earned per $ per year, 

k eI I≥  

M  permissible delay period 
T  the cycle time 
W  storage capacity of owned warehouse 

( )TVC T  the total relevant cost per unit time when 

0T >  
tw1  the point in time when the inventory level 
increases to W  during the production period 

2tw  the point in time when the inventory level 
decreases to W  during the production cease period 

2 1tw tw−  the time of rented warehouse 

,     if  

0,                                       if  

DT W DT W
DT W

P D D
DT W

ρ ρ ρ

ρ

− −� + >�= −�
� ≤�

 

*T  the optimal solution of ( )TVC T  
 
 
Assumptions 
 
(1) Demand rate, D  , is known and constant. 
(2) Replenishment rate, P , is known and constant. 

 
 
 
 
(3) Shortages are not allowed. 
(4) Time period is infinite. 
(5) ,  ,  .k eI I k h s c≥ ≥ ≥  
(6) During the time the account is not settled, generated 
sales revenue is deposited in an interest-bearing 
account. When T M≥ , the account is settled at M  and 
we start paying for the interest charges on the items in 
stock. When T M≤  the account is settled at M  and we 
do not need to pay any interest charge. 
(7) When the ordering quantity is more than the limited 
storage capacity of owned warehouse, the retailer will 
store the excess stock in a rented warehouse. When the 
demand produces, the stock of rented warehouse will be 
consumed first. 
 
 
The annual total relevant cost 
 
The annual total relevant cost consists of the following 
elements: 
 
1. Annual ordering cost A

T
�  

2. Annual stock-holding cost (including owned warehouse 
and rented warehouse) 
 
i) Two cases to occur in costs of rented warehouse 
 
a) DT Wρ ≤ , shown in Figures 1 or 2. 

Annual stock-holding cost in rented warehouse 0=  
b) DT Wρ > , shown in Figures 3 or 4. 
Annual stock-holding cost in rented warehouse 

2( )
2 ( )

Pk DT W
DT P D

ρ −=
−

 

 
ii) Two cases to occur in costs of owned warehouse 
 
a) DT Wρ ≤ , shown in Figures 1 or 2.  

Annual stock-holding cost in owned warehouse
2

DThρ=  

b) DT Wρ > , shown in Figures 3 or 4. 
Annual stock-holding cost in owned 
warehouse

2

2 ( )
PW h

Wh
DT P D

= −
−

 

3. There are three cases to occur in costs of interest 
charges for the items kept in stock per year: 
 

i) 
PM

M T
D

≤ ≤ , shown in Figure 5. 

Annual interest payable

2 2

2 2k

DT PM
cI

T

ρ� �
−� �

	 
=  
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�

DT
t

P
= TM

maxL

DT

W

max ( )
DT

L P D DT
P

DT W

ρ

ρ

= − =

≤

 
 

Figure 1.  and 
PM

DT W M T
D

ρ ≤ ≤ ≤ . 

 
 
 

�

DT
t

P
= TM

maxL

DT

W

max ( )
DT

L P D DT
P

DT W

ρ

ρ

= − =

≤

 
 

Figure 2.  and 
PM

DT W M T
D

ρ ≤ ≤ ≤ . 

 
 
 

ii) 
PM

M T
D

≤ ≤ , shown in Figure 6. 

Annual interest payable

( )2

2k

D T M
cI

T

� �−
� �
� �
	 
=  

iii) T M≤ . 
Annual interest payable 0=  
 
4. There are three cases to occur in interest earned per 
year: 

i) PM
M T

D
≤ ≤ , shown in Figure 5. 

Annual interest earned

2

2e

DM
sI

T

� �
� �
	 
=  

 

ii) PM
M T

D
≤ ≤ , shown in Figure 6. 

Annual interest earned 

2

2e

DM
sI

T

� �
� �
	 
=  
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�

DT
t

P
= TM

maxL

DT

W

max ( )
DT

L P D DT
P

DT W

ρ

ρ

= − =

>

1tw 2tw

 
 

Figure 3.  and 
PM

DT W M T
D

ρ > ≤ ≤ . 

 
 
 �

DT
t

P
= TM

maxL

DT

W

max ( )
DT

L P D DT
P

DT W

ρ

ρ

= − =

>

1tw 2tw
 

 

Figure 4.  and 
PM

DT W M T
D

ρ > ≤ ≤ . 

 
 
 

iii) T M≤ , shown in Figure 7. 

Annual interest earned

2

( )
2e

DT
sI DT M T

T

� �
+ −� �

	 
=  

 
From the above arguments, the annual total relevant cost 
for the retailer can be expressed as ( )TVC T = ordering 
cost + stock-holding cost + interest payable − interest 
earned. Three situations arise: 
 

(1) ,
W

M
Dρ

≥  

(2)  and 
W PM W

M
D D Dρ ρ

> ≥  (That is equivalent to 

PM W
M

D Dρ
≥ > ), 

 

(3)  and 
W W PM

M
D D Dρ ρ

> ≥  (That is equivalent to 

W PM
M

D Dρ
≥ > ) 

 
 

Case I: W
M

Dρ
≥  

 
We show that the annual total relevant cost, ( )TVC T , is 
given by 
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DT P TM

maxL

DT

max ( )( )

      

L P D DT P

DT ρ
= −
=

 
 

Figure 5. The total accumulation of interest payable when PM D T≤ . 
 
 
 

�

DT P TM

maxL

DT

 
 

Figure 6. The total accumulation of interest payable when M T PM D≤ ≤ . 

 
 
 
 

5

6

4

( )       if     0                                                             (1a)

( )      if                                                               (1b) 
( )

( )    

W
TVC T T

D
W

TVC T T M
DTVC T

TVC T

ρ

ρ

< ≤

≤ ≤
=

2

  if                                                               (1c)

( )      if                                                                      (1d)

PM
M T

D
PM

TVC T T
D

�
�
�
�
��
�
� ≤ ≤�
�
� ≥
��

 

 
Where 

2

5

( )
2

( ) ,                                                           (2)
2

e

DT
sI DT M T

A DTh
TVC T

T T
ρ

� �
+ −� �

	 
= + −    

 

2 2

6

( )
( ) ,            (3)

2 ( ) 2 ( )
A P k D T W P W h

T V C T W h
T D T P D D T P D T

ρ −= + + − −
− − 

2

2 2
( )

2
( ) ,            (3)

2 ( ) 2 ( )

e

D T
sI D T M T

A P k D T W P W h
T V C T W h

T D T P D D T P D T

� �
+ −� �

	 
= + + − −
− −   (3) 

 

   

2 2

4

( )
( ) ,   (4 )

2 ( ) 2 ( )
A P k D T W P W h

TV C T W h
T D T P D D T P D T T

ρ −= + + − + −
− −  

2 2( )
2 2

( ) ,   (4)
2 ( ) 2 ( )

k e

D T M D M
cI sI

A Pk D T W PW h
T D T P D D T P D T T

� � � �−
� � � �
	 
 	 
= + + − + −

− −                   (4) 
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T M

maxL

DcT

 
 

Figure 7. The total accumulation of interest payable when T M≤ . 
 
 
 

2 2

2

( )
( ) .  (5)

2 ( ) 2 ( )
A Pk DT W PW h

TVC T Wh
T DT P D DT P D T T

ρ −= + + − + −
− −  

2 2 2

2 2 2
( ) .  (5)

2 ( ) 2 ( )

k e

DT PM DM
cI sI

A Pk DT W PW h
T DT P D DT P D T T

ρ � � � �
−� � � �

	 
 	 
= + + − + −
− −              (5) 

 

Case II: PM W
M

D Dρ
≥ >  

 

We show that the annual total relevant cost, ( )TVC T , is 
given by 
 

5

3

4

( )       if     0                                                               (6a)

( )       if                                                               (6b) 

( )
( )   

TVC T T M

W
TVC T M T

D
TVC T

TVC T

ρ

< ≤

≤ ≤

=

2

    if                                                           (6c)

( )       if                                                                      (6d)

W PM
T

D D
PM

TVC T T
D

ρ

�
�
�
�
�
�

≤ ≤�
�
�

≥��

 

 
Where 
 

2 2

3

( )
2 2

( )
2

k e

D T M DM
cI sI

A DTh
TVC T

T T T
ρ

� � � �−
� � � �
	 
 	 
= + + −   (7) 

 

Case (III): 
W PM

M
D Dρ

> >  

 

We show that the annual total relevant cost, ( )TVC T , is 
given by 

5

3

1

( )       if     0                                                                (8a)

( )       if                                                               (8b) 

( )
( )  

TVC T T M

PM
TVC T M T

D
TVC T

TVC T

< ≤

≤ ≤

=

2

     if                                                            (8c)

( )       if                                                                       (8d)

PM W
T

D D
W

TVC T T
D

ρ

ρ

�
�
�
�
�
� ≤ ≤
�
�
� ≥
��

 
Where, 

2 2 2

1

2 2 2
( )

2

k e

DT PM DM
cI sI

A DTh
TVC T

T T T

ρ
ρ

� � � �
−� � � �

	 
 	 
= + + −  (9) 

 
Equations (2)-(5), (7) and (9) yield 
 

2 2

1 2

2 ( )
( )

2 2
k e k kA DM cI sI PM cI h cI

TVC T D
T

ρ+ − − +� �′ = − + � �
	 


 (10) 

 
2 2

1 3

2 ( )
( ) k e kA DM cI sI PM cI

TVC T
T

+ − −′′ =     (11) 

 

( )
2

2 2

2 2

( )
2 ( )

( )( )
2 2

k e k
k

W P k h
A DM cI sI PM cI

k cID P D
TVC T D

T
ρ

−+ − − +
+− � �′ = − + � �

	 


 
                                                                                     (12) 
 

( )
2

2 2

2 3

( )
2 ( )

( )
( )

k e k

W P k h
A DM cI sI PM cI

D P D
TVC T

T

−+ − − +
−′′ =       

                                                                                     (13) 
 



 
 
 
 

2

3 2

2 ( )
( )

2 2
k e kA DM cI sI h cI

TVC T D
T

ρ+ − +� �′ = − + � �
	 
    (14) 

 
2

3 3

2 ( )
( ) k eA DM cI sI

TVC T
T

+ −′′ =
                  (15) 

 
2

2

4 2

( )
2 ( )

( )( )
2 2

k e
k

W P k h
A DM cI sI

k cID P DTVC T D
T

ρ
−+ − +

+− � �′ = − + � �
	 
  (16) 

 
2

2

4 3

( )
2 ( )

( )( )
k e

W P k h
A DM cI sI

D P DTVC T
T

−+ − +
−′′ =

  (17) 
 

5 2( )
2

eh sIA
TVC T D

T
ρ +� �′ = − + � �

	 
             (18) 
 

5 3

2
( ) 0

A
TVC T

T
′′ = >

                                (19) 
 

2

6 2

( )
2

( )( )
2 2

e

W P k h
A

k sID P DTVC T D
T

ρ
−+

+− � �′ = − + � �
	 
       (20) 

 
2

6 3

( )
2

( )( ) 0

W P k h
A

D P D
TVC T

T

−+
−′′ = >

                                (21) 
 

Equations (19) and (21) reveal that 5 ( )TVC T  and 

6 ( )TVC T  are convex on 0T > . 
 
 
THE DETERMINATION OF THE OPTIMAL CYCLE 
TIME T* 

 

The determination of the optimal cycle time 
*T  can be 

divided into three cases: 
 

Case I:  

W
M

Dρ
≥

, 
 

Case II: 

PM W
M

D Dρ
≥ >

, and 
 

Case III: 

W PM
M

D Dρ
≥ >

. 

Chung et al.               2631 
 
 
 
For convenience, the domains of all 

( ) ( 1,  2,  3,  4,  5 and 6)iTVC T i =  can be treated as 
0T > . Also, let                         

 
2

2 2 ( )
2 ( )

( )k e k

W P k h
A DM cI sI PM cI

D P D
α −= + − − +

−   (22) 
  

2
2 ( )

2 ( )
( )k e

W P k h
A DM cI sI

D P D
β −= + − +

−    (23)              
  

22 ( )k eA DM cI sIγ = + −         (24)                                  
 
and 
 

2 22 ( )k e kA DM cI sI PM cIχ = + − −                       (25) 
 
Then, we have 
 
β γ χ> >                                                                   (26)  
 
β α χ> ≥                                                              (27)  
 
and 
 

.γ χ>                                                                     (28)  
 

Furthermore, let 
*

iT  denote the solution of equation (29) 
 

( ) 0iTVC T =                                                          (29) 
 

for all 1,  2,  3,  4,  5 and 6i = . Then 
 

2 2
*

1

2 ( )
    if   0

( )
k e k

k

A DM cI sI PM cI
T

D h cI
χ

ρ
+ − −= >

+        (30)
  

2
2 2

*
2

( )
2 ( )

( )     if   0
( )

k e k

k

W P k h
A DM cI sI PM cI

D P D
T

D k cI
α

ρ

−+ − − +
−= >

+   (31) 
 

2
*

3

2 ( )
    if   0

( )
k e

k

A DM cI sI
T

D h cI
γ

ρ
+ −= >

+
           (32)  

 
 

2
2

*
4

( )
2 ( )

( )     if   0
( )

k e

k

W P k h
A DM cI sI

D P DT
D k cI

β
ρ

−+ − +
−= >

+    (33)  



2632               Afr. J. Bus. Manage. 
 
 
 

*
5

2
( )e

A
T

D h sIρ
=

+                                          (34)  
 
and 

2

*
6

( )
2

( )
( )e

W P k h
A

D P D
T

D k sIρ

−+
−=

+
                           (35) (35) 

 
If *

iT  exists, then ( )iTVC T  is convex on 0T > . We also 
have 

*

*

0    if                                                                              (36a)

( ) 0    if                                                                              (36b
i

i i

T T

TVC T T T

< <
′ = = =

*

)

0    if                                                                              (36c)iT T

�
�
�
�> >�

 

 
Equations 36 (a, b, c) imply that ( )iTVC T  is decreasing 

on ( *0, iT ��  and increasing on )*,iT ∞�  for  

 
all 1,  2,  3,  4,  5 and 6i = . 
 

Case I: ρ
W

M
D

≥≥≥≥
 

 
In this case, equations 1(a, b, c, d) 

imply
2 4

PM PM
TVC TVC

D D
� � � �=� � � �
	 
 	 
,  

 

4 6( ) ( )TVC M TVC M=  and  
 
 

6 5

W W
TVC TVC

D Dρ ρ
� � � �=� � � �
	 
 	 
. So, ( )TVC T  is continuous 

and well-defined. Furthermore, we have 
 

1
2 4 2

2

PM PM
TVC TVC

D D PM
D

∆� � � �′ ′= =� � � �
	 
 	 
 � �

� �
	 
             (37)  
2

4 6 2( ) ( ) ,  
2

TVC M TVC M and
M
∆′ ′= =

          (38)  
 

3
6 5 2

2

W W
TVC TVC

D D W
D

ρ ρ
ρ

� � � � ∆′ ′= =� � � �
	 
 	 
 � �

� �
	 
 ,                 (39)  

 
where 
 

 
 
 
 

( )
2 2

2 2 2
1

( )
2 ( ) ( )

( )k e

M W P k h
A P P D k cI P D D sI

D D P D
−∆ = − + − + − + −

−  
                                                                            (40) 
 

( )
2

2
2

( )
2

( )e

W P k h
A DM k sI

D P D
ρ −∆ = − + + −

−
                      (41) 

 
and 
 

2

3 2
( )

esI
PW h

A
D P D

ρ
� �+� �
	 
∆ = − +

−
.                                           (42) 

 
Then, we have 
 

1 2 3  since .
W

M
Dρ

� �∆ > ∆ ≥ ∆ ≥� �
	 


                                        (43) 

 
So, we obtain the following results. 
 

Lemma 1. (A) If 0β ≤ , then ( )TVC T  is convex on 

( ]0, M
 and concave on [ ),M ∞ . Furthermore, we have 

2 ( ) 0TVC T′ >  and 4 ( ) 0TVC T′ > . So 2 ( )TVC T  and 
4 ( )TVC T  are increasing on 0T > .(B) If 0α ≤  and 
0β > , then ( )TVC T  is convex on 0,

PM
D

� �
� �	 �

 and concave 

on 
,

PM
D

 �∞ ��� 


.   Furthermore, 

 

2 ( ) 0TVC T′ >  and 2 ( )TVC T  is increasing on 0T > . 

(C) If 0α > , then ( )TVC T  is convex on (0, )∞ . 
 
Appendix A1 shows Proof. 
 

Lemma 2.  Suppose 

W
M

Dρ
≥

 and 0β ≤ . Hence, 

(A) If 3 0∆ > , then 
* *

5T T= . 

(B) If 3 0∆ ≤ , then 
* *

6T T= . 
Appendix A2 shows Proof. 

Lemma 3. Suppose    

W
M

Dρ
≥

, 0β >  and 0α ≤ . 
 

(A) If 3 0∆ > , then 
* *

5T T= . 

(B) If 2 0∆ >  and 3 0∆ ≤ , then 
* *

6T T= . 

(C) If 2 0∆ ≤ , then 
* *

4T T= . 
 
Appendix A3 shows Proof. 



 
 
 
 

Lemma 4. Suppose W
M

Dρ
≥ , 0α > . Hence, 

(A) If 3 0∆ > , then * *
5T T= . 

(B) If 2 0∆ >  and 3 0∆ ≤ , then * *
6T T= . 

(C) If 1 0∆ >  and 2 0∆ ≤ , then * *
4T T= . 

(D) If 1 0∆ ≤ , then * *
2T T= . 

Appendix A4 shows Proof. 
 
Combining all arguments of Lemmas 2-4 constitutes the 
complete proof of the following theorem. 

Theorem 1: Suppose that 
W

M
Dρ

≥ . Hence, 

(A) If 3 0∆ > , then 
* *

5T T= . 

(B) If 2 0∆ >  and 3 0∆ ≤ , then * *
6T T= . 

(C) If 1 0∆ >  and 2 0∆ ≤ , then 
* *

4T T= . 

(D) If 1 0∆ ≤ , then * *
2T T= . 

 
Case II:  

ρ
PM W M
D D

≥ >≥ >≥ >≥ >
 

 
In this case, equations 6(a, b, c, d) imply 

2 4

PM PM
TVC TVC

D D
� � � �=� � � �
	 
 	 


, 
4 3

W W
TVC TVC

D Dρ ρ
� � � �=� � � �
	 
 	 


 and 

3 5( ) ( )TVC M TVC M= . So, ( )TVC T  is continuous and 
well-defined. Furthermore, we have 
 

1
2 4 2

2

PM PM
TVC TVC

D D PM
D

∆� � � �′ ′= =� � � �
	 
 	 
 � �

� �
	 
     (44) 

4
4 3 2

2

W W
TVC TVC

D D W
D

ρ ρ
ρ

� � � � ∆′ ′= =� � � �
	 
 	 
 � �

� �
	 
   (45) 

and 

5
3 5 2( ) ( )TVC M TVC M

M
∆′ ′= =

,                   (46)                      
where 

2

2
4 2 ( ) ,  

( )

k

k e

cI
PM h

A DM cI sI and
D P D

ρ
� �+� �
	 
∆ = − − − +

− (47) 
2

5 2 ( )eA DM h sIρ∆ = − + + .                               (48) 
                                 
Then, we have 
 

1 4 5  since .
PM W
D Dρ

� �∆ ≥ ∆ > ∆ ≥� �
	 
                         (49) 
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Equations (26) and (27) imply that β γ>  and β α> . 
Then we have the following results. 
 
Lemma 5.  
(A) If 0β ≤ , then ( )TVC T  is convex on ( ]0, M  and 

concave on [ ),M ∞ . Furthermore, we have 2 ( ) 0TVC T′ > , 

3( ) 0TVC T′ >  and 4 ( ) 0TVC T′ > . So 2 ( )TVC T , 

3 ( )TVC T  and 4 ( )TVC T  are increasing on 0T > . 

(B) If 0α < , 0β >  and 0γ ≤ , then ( )TVC T  is 

convex on ( ]0, M  and concave on ,
W

M
Dρ

 �
� �
� �

, convex on 

,
W PM
D Dρ
 �
� �
� �

 and concave on ,
PM
D

 �∞ ��� 


. Furthermore, we 

have 2 ( ) 0TVC T′ >  and 3 ( ) 0TVC T′ > . So, 2 ( )TVC T  

and 3 ( )TVC T  are increasing on 0T > . 

(C) If 0α < , 0β >  and 0γ > , then ( )TVC T  is 

convex on 0,
PM
D

� �
� �	 �

 and concave on ,
PM
D

 �∞ ��� 

. 

Furthermore, we have 2 ( ) 0TVC T′ > . So, 2 ( )TVC T  is  

increasing on 0T > . 
(D) If 0α ≥  and 0γ ≤ , then ( )TVC T  is convex on 

( ]0, M , concave on ,
W

M
Dρ

 �
� �
� �

 and concave on ,
W
Dρ
 �∞ ��
� 


. 

Furthermore, we have 3( ) 0TVC T′ > . So, 3 ( )TVC T  is 

increasing on 0T > . 
(E) If 0α ≥  and 0γ > , then ( )TVC T  is convex on 

(0, )∞ . 
 
Appendix A5 shows Proof. 
 

Lemma 6. If 

PM W
M

D Dρ
≥ >

 and 0β ≤ , then 
* *

5T T= . 
 
Appendix A6 shows Proof. 
 

Lemma 7. If 

PM W
M

D Dρ
≥ >

, 0α > , 0β >  and 0γ ≤ , 

then 
* *

5T T= . 
Appendix A7 shows Proof . 
 

Lemma 8. Suppose 

PM W
M

D Dρ
≥ >

, 0α > , 0β >  and 
0γ > . Hence, 

(A) If 5 0∆ > , then 
* *

5T T= . 

(B) If 4 0∆ > , and 5 0∆ ≤ , then 
* *

3T T= . 
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(C) If 4 0∆ ≤ , then * *

4T T= . 
Appendix A8 shows Proof. 
 

Lemma 9 If PM W
M

D Dρ
≥ > , 0α ≥  and 0γ ≤ , then 

* *
5T T= . 

Appendix A9 shows Proof. 
 

Lemma 10. Suppose PM W
M

D Dρ
≥ > , 0α ≥  and 

0γ > . Hence, 

(A) If 5 0∆ > , then * *
5T T= . 

(B) If 4 0∆ > , and 5 0∆ ≤ , then * *
3T T= . 

(C) If 1 0∆ > , and 4 0∆ ≤ , then * *
4T T= . 

(D) If 1 0∆ ≤ , then * *
2T T= . 

 
Appendix A10 shows Proof. 
 
Combining all arguments of Lemmas 6-10 constitutes the 
complete proof of the following theorem. 
 

Theorem 2: Suppose PM W
M

D Dρ
≥ > . Hence, 

(A) If 5 0∆ > , then * *
5T T= . 

(B) If 4 0∆ >  and 5 0∆ ≤ , then * *
3T T= . 

(C) If 1 0∆ >  and 4 0∆ ≤ , then * *
4T T= . 

(D) If 1 0∆ ≤ , then * *
2T T= . 

 
Case (III:)  

ρ
W PM

M
D D

≥ >≥ >≥ >≥ >
 

 
In this case, equations 8(a, b, c, d) imply 

2 1

W W
TVC TVC

D Dρ ρ
� � � �=� � � �
	 
 	 


,  
1 3

PM PM
TVC TVC

D D
� � � �=� � � �
	 
 	 


 and 

3 5( ) ( ).TVC M TVC M=  So, ( )TVC T  is continuous and 
well-defined. Furthermore, we have 
 

6
2 1 2

2

W W
TVC TVC

D D W
D

ρ ρ
ρ

� � � � ∆′ ′= =� � � �
	 
 	 
 � �

� �
	 


                            (50) (50) 

 

7
1 3 2

2

PM PM
TVC TVC

D D PM
D

∆� � � �′ ′= =� � � �
	 
 	 
 � �

� �
	 


                            (51) (51) 

and 
 

2

3 5 2

2 ( )
( ) ( )

2
eA DM h sI

TVC M TVC M
M

ρ− + +′ ′= =     (52) (52) 

 
 
 
 
Furthermore, we let 
 

2
2 2

6

( )
2 ( ) ,  

( )
k

k e k

PW h cI
A DM cI sI PM cI and

D P D
+∆ = − − − + +

−
  (53) 

 

( )
2

2 2 2
7 2 ( ) ( )k e

M
A P P D h cI P D D sI

D
∆ = − + − + − +  (54) 

 
Then, we have 
 

6 7 5  since .
W PM

M
D Dρ

� �∆ > ∆ > ∆ > >� �
	 


                   (55) 

 
Equations (27) and (28) imply that γ χ>  and α χ≥ . 
Then we have the following results. 
 
Lemma 11. 
 
(A) If 0α ≤  and 0γ ≤ , then ( )TVC T  is convex on 

( ]0, M  and concave on [ ),M ∞ . Furthermore, we have  

1( ) 0TVC T′ > , 2 ( ) 0TVC T′ >  and 3 ( ) 0TVC T′ > . So, 

1( )TVC T , 2 ( )TVC T  and 3 ( )TVC T  are increasing on 

0T > . 
(B) If 0α ≤  and 0γ ≤ , then ( )TVC T  is convex on 

0,
PM
D

� �
� �	 �

 and concave on ,
PM
D

 �∞ ��� 

. Furthermore, we have 

1( ) 0TVC T′ >  and 2 ( ) 0TVC T′ > . So, 1( )TVC T  and 

2 ( )TVC T  are increasing on 0T > . 

(C) If 0α >  and 0γ ≤ , then ( )TVC T  is convex on 

( ]0, M  and concave on ,
W

M
Dρ

 �
� �
� �

 and convex on 

,
W
Dρ
 �∞ ��
� 


. Furthermore, we have 1( ) 0TVC T′ >  and 

3 ( ) 0TVC T′ > . So, 
1( )TVC T  and 3( )TVC T  are increasing 

on 0T > . 
(D) If 0α > , 0χ ≤  and 0γ > , then ( )TVC T  is 
convex on 

0,
PM
D

� �
� �	 �

, concave on 
,

PM W
D Dρ

 �
� �
� �

 and convex on 

,
W
Dρ
 �∞ ��
� 


. Furthermore, we have 
1( ) 0TVC T′ > . So, 1( )TVC T  is  

increasing on 0T > . 

(E) If 0χ > , then ( )TVC T  is convex on ( )0,∞ . 
 

Appendix A11 shows Proof. 
 
Lemma 12. If W PM

M
D Dρ

> > , 0α ≤  and 0γ ≤ , then 

* *
5T T= . 



 
 
 
 
Appendix A12 shows Proof. 
 
Lemma 13. Suppose W PM

M
D Dρ

> >
, 0α ≤  and 0γ > . 

Hence, 
 

(A) If 5 0∆ > , then * *
5T T= . 

(B) If 5 0∆ ≤ , then * *
3T T= . 

 

Appendix A13 shows Proof. 
 

Lemma 14. If W PM
M

D Dρ
> >

, 0α >  and 0γ ≤ , then 

* *
5T T=  

 

Appendix A14 shows Proof. 
 

Lemma 15. Suppose W PM
M

D Dρ
> > , 0α > , 0χ ≤  and 

0γ > . Hence, 
 

(A) If 5 0∆ > , then * *
5T T= . 

(B) If 5 0∆ ≤ , then * *
3T T= . 

 

Appendix A15 shows Proof. 
 

Lemma 16. Suppose W PM
M

D Dρ
> >

 and 0χ > . Hence, 

 

(A) If 5 0∆ > , then * *
5T T= . 

(B) If 
7 0∆ >  and 5 0∆ ≤ , then * *

3T T= . 

(C) If 6 0∆ >  and 7 0∆ ≤ , then * *
1T T= . 

(D) If 6 0∆ ≤ , then * *
2T T= . 

 

Appendix A16 shows Proof. 
 

Combining all arguments of Lemmas 12-16 constitutes 
the complete proof of the following theorem. 
 
Theorem 3. Suppose W PM

M
D Dρ

> > . Hence, 

 

(A) If 5 0∆ > , then * *
5T T= . 

(B) If 7 0∆ >  and 
5 0∆ ≤ , then * *

3T T= . 

(C) If 6 0∆ >  and 7 0∆ ≤ , then * *
1T T= . 

(D) If 6 0∆ ≤ , then * *
2T T= . 

 
 
SPECIAL CASES 
 
(1) When h k=  and s c= , then equations 1(a, b, c, 
d), 6(a, b, c, d) and 8(a, b, c, d) will also be reduced as 
follows: 
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3

2

1

( )      if   0                                                       (56a)

( ) ( )      if                                                    (56b)

( )      if            

TVC T T M

PM
TVC T TVC T M T

D
PM

TVC T T
D

< ≤

= ≤ ≤

≥                                                 (56c)

�
�
�
�
�
�
�
��

 

 

Where 
 

2 2 2

1

2 2 2
( )

2

k e

DT PM DM
cI cI

A DTh
TVC T

T T T

ρ
ρ

� � � �
−� � � �

	 
 	 
= + + −  

 
2 2

2

( )
2 2

( )
2

k e

D T M DM
cI cI

A DTh
TVC T

T T T

ρ
ρ

� � � �−
� � � �
	 
 	 
= + + −  

 
2

3

( )
2

( ) .
2

e

DT DT M T
cI

A DTh
TVC T

T T
ρ

� �+ −
� �
	 
= + −  

 

Equations 56(a, b, c) will be consistent with equations (7), 
(8) and (9) in Chung and Huang (2003), respectively. So, 
this paper generalizes Chung and Huang (2003). 
 

(2) When h k= , s c=  and P → ∞ , equations 1(a, 
b, c, d), 6(a, b, c, d) and 8(a, b, c, d) will also be reduced 
as follows: 
 

2

1

( )      if   0                                                       (57a)
( )

( )      if                                                                (57b)

TVC T T M
TVC T

TVC T M T

� ≤ ≤�= �
≤��

�
�

�

 

 

where 
 

2 2

1

( )
2 2

( )
2

k e

D T M DM
cI cI

A DTh
TVC T

T T T

� � � �−
� � � �
	 
 	 
= + + −�  

 
2

2

( )
2

( ) .
2

e

DT
cI DT M T

A DTh
TVC T

T T

� �
+ −� �

	 
= + −�  

 

Equations 57(a, b) will be consistent with Equations (1) 
and (4) in Goyal (1985). Hence, Goyal (1985) will be a 
special case of this paper. Similarly, Chung (1998) is a 
special case of this paper as well. 
 
 
NUMERICAL EXAMPLES 
 
Twenty-nine numerical examples are used to explain all 
results in this paper. The necessary parameters and the 
optimal solutions of the twenty-nine examples are 
presented in Tables 1 and 2, respectively. All dimensions 
of parameters involved in Table 1 are the same as those 
of Huang (2006). Examples 1-9 concern (Lemmas 2-4 
and Theorem 1) related to Case (I): W

M
Dρ

≥
. Examples 10-

19  concern  all  results  (Lemmas  6-10  and  Theorem 2) 
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Table 1. Given parameters values. 
 

Example D P c s h k Ie Ik A M W 
1 7300 25000 10 210 5 7 0.13 0.15 2000 0.15 700 
2 7000 25000 50 300 5 7 0.13 0.15 1500 0.15 500 
3 7000 25000 50 265 5 7 0.13 0.15 2500 0.15 700 
4 7000 25000 50 300 5 7 0.13 0.15 3000 0.15 700 
5 7000 25000 50 300 5 7 0.13 0.15 3500 0.15 600 
6 5000 14000 50 600 5 30 0.13 0.15 3800 0.14 440 
7 5000 14000 50 600 5 30 0.13 0.15 4000 0.14 440 
8 5000 14000 50 600 5 30 0.13 0.15 4100 0.14 440 
9 5000 10000 50 600 5 10 0.13 0.15 6700 0.15 350 

10 7000 25000 10 170 5 7 0.13 0.15 1500 0.15 700 
11 7000 25000 10 255 5 7 0.13 0.15 2400 0.15 1000 
12 7000 25000 50 265 5 7 0.13 0.15 2500 0.15 1000 
13 7000 25000 50 300 5 7 0.13 0.15 3500 0.15 1000 
14 7000 25000 50 300 5 7 0.13 0.15 4100 0.15 1000 
15 7000 15000 10 160 5 25 0.13 0.15 1500 0.15 1000 
16 8000 16000 50 300 5 9 0.13 0.15 3700 0.15 1000 
17 7000 25000 50 300 5 7 0.13 0.15 4400 0.15 1150 
18 7000 25000 50 300 5 7 0.13 0.15 4400 0.15 1000 
19 6000 15000 50 300 5 7 0.13 0.15 7000 0.15 600 
20 15000 25000 9 100 5 7 0.13 0.15 1910 0.15 1600 
21 20000 25000 50 100 5 7 0.13 0.15 2800 0.15 800 
22 20000 25000 180 200 5 7 0.13 0.15 6500 0.15 800 
23 22000 25000 10 150 15 30 0.13 0.15 4450 0.15 2200 
24 15000 25000 50 300 5 7 0.13 0.15 6700 0.15 2200 
25 14000 25000 50 300 5 7 0.13 0.15 6500 0.15 2200 
26 15450 16000 20 300 5 7 0.13 0.15 6800 0.15 2200 
27 14000 19000 50 300 5 7 0.13 0.15 6600 0.15 2200 
28 12000 18000 50 300 5 7 0.13 0.15 7100 0.15 2200 
29 12000 18000 50 300 5 7 0.13 0.15 7400 0.15 1000 

 
 
 
related to Case (II): PM W

M
D Dρ

≥ >
. Finally, Examples 20-29 

concern all results (Lemmas 12-16 and Theorem 3) 
related Case (III): W PM

M
D Dρ

> > . Table 2 reveals the 

following observations: 
 
Case (I): W

M
Dρ

≥  

 

Observation (A): * * *
5 5  if  0

W
T T T

Dρ
= < ≤  

 

Observation (B): * * *
6 6  if  

W
T T T M

Dρ
= ≤ ≤  

Observation (C): * * *
4 4  if  

PM
T T M T

D
= ≤ ≤  

Observation (D): * * *
2 2  if  

PM
T T T

D
= ≤  

Case (II): PM W
M

D D ρ
≥ >  

 

Observation (E): * * *
5 5  if  0T T T M= < ≤  

Observation (F): * * *
3 3  if  

W
T T M T

Dρ
= ≤ ≤  

 

Observation (G): * * *
4 4  if  

W PM
T T T

D Dρ
= ≤ ≤  

 

Observation (H): * * *
2 2  if  

PM
T T T

D
= ≤  

 

Case (III): W PM
M

D Dρ
> >  

 

Observation (I): * * *
5 5  if  0T T T M= < ≤  

 

Observation (J): * * *
3 3  if  

PM
T T M T

D
= ≤ ≤  
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Table 2. The optimal solutions. 
 

Example Case Lemma Theorem α  β  γ  χ  1∆  2∆  3∆  4∆  5∆  6∆  7∆  *
1T  

*
2T  *

3T  
*

4T  
*

5T  
*

6T  *T  

1 (I) 2(A) 1 <0 <0 - - >0 >0 >0 - - - - - N - N (*) Y 0.13329 
2 (I) 2(B) 1 <0 <0 - - >0 >0 <0 - - - - - N - N Y (*) 0.10027 
3 (I) 3(A) 1 <0 >0 - - >0 >0 >0 - - - - - N - Y (*) Y 0.13701 

4 (I) 3(B) 1 <0 >0 - - >0 >0 <0 - - - - - N - Y Y (*) 0.14175 
5 (I) 3(C) 1 <0 >0 - - >0 <0 <0 - - - - - N - (*) Y Y 0.15765 

6 (I) 4(A) 1 >0 >0 - - >0 >0 >0 - - - - - Y - Y (*) Y 0.13681 
7 (I) 4(B) 1 >0 >0 - - >0 >0 <0 - - - - - Y - Y Y (*) 0.13979 

8 (I) 4(C) 1 >0 >0 - - >0 <0 <0 - - - - - Y - (*) Y Y 0.14451 
9 (I) 4(D) 1 >0 >0 - - <0 <0 <0 - - - - - (*) - Y Y Y 0.30336 

10 (II) 6 2 <0 <0 <0 - >0 - - >0 >0 - - - N N N (*) - 0.12914 

11 (II) 7 2 <0 >0 <0 - >0 - - >0 >0 - - - N N Y (*) - 0.13660 

12 (II) 8(A) 2 <0 >0 >0 - >0 - - >0 >0 - - - N Y Y (*) - 0.13701 

13 (II) 8(B) 2 <0 >0 >0 - >0 - - >0 <0 - - - N (*) Y Y - 0.16198 
14 (II) 8(C) 2 <0 >0 >0 - >0 - - <0 <0 - - - N Y (*) Y - 0.20351 

15 (II) 9 2 >0 >0 <0 - >0 - - >0 >0 - - - Y N Y (*) - 0.13514 
16 (II) 10(A) 2 >0 >0 >0 - >0 - - >0 >0 - - - Y Y Y (*) - 0.14930 

17 (II) 10(B) 2 >0 >0 >0 - >0 - - >0 <0 - - - Y (*) Y Y - 0.22227 

18 (II) 10(C) 2 >0 >0 >0 - >0 - - <0 <0 - - - Y Y (*) Y - 0.21966 

19 (II) 10(D) 2 >0 >0 >0 - <0 - - <0 <0 - - - (*) Y Y Y - 0.37639 
20 (III) 12 3 <0 - <0 <0 - - - - >0 >0 >0 N N N - (*) - 0.13030 

21 (III) 13(A) 3 <0 - >0 <0 - - - - >0 >0 >0 N N Y - (*) - 0.14142 

22 (III) 13(B) 3 <0 - >0 <0 - - - - <0 >0 >0 N N (*) - Y - 0.15498 
23 (III) 14 3 >0 - <0 <0 - - - - >0 >0 >0 N Y N - (*) - 0.13781 

24 (III) 15(A) 3 >0 - >0 <0 - - - - >0 >0 >0 N Y Y - (*) - 0.14761 
25 (III) 15(B) 3 >0 - >0 <0 - - - - <0 >0 >0 N Y (*) - Y - 0.15054 
26 (III) 16(A) 3 >0 - >0 >0 - - - - >0 >0 >0 Y Y Y - (*) - 0.14991 
27 (III) 16(B) 3 >0 - >0 >0 - - - - <0 >0 >0 Y Y (*) - Y - 0.16296 

28 (III) 16(C) 3 >0 - >0 >0 - - - - <0 >0 <0 (*) Y Y - Y - 0.23054 
29 (III) 16(D) 3 >0 - >0 >0 - - - - <0 <0 <0 Y (*) Y - Y - 0.25453 

 

Case: Which Case is discussed?; Lemma: Which Lemma is applied?;  Theorem: Which Theorem is applied? N: Does not exist; Y: Exists; (*): The optimal solution; � : Does 
not relate to this example. 
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Observation (K): * * *

1 1  if  
PM W

T T T
D Dρ

= ≤ ≤  

 

 

Observation (L): * * *
2 2  if  

PM
T T T

D
= ≤  

 
Furthermore, Table 2 can also reveal situations of 
existences and interrelations of all *( 1, 2,3, 4,5,6)iT i = . 
Basically, Table 2 is rather informative and meaningful. 
 
 
CONCLUSIONS 
 
This paper establishes a new economic production model 
with trade credit, finite replenishment rate and limited 
storage capacity to generalize some existing articles. 

There are three cases: (1) W
M

Dρ
≥ , (2) PM W

M
D Dρ

≥ >  

and (3) W PM
M

D Dρ
> >  to be discussed throughout the 

whole paper. Three main theorems are used to 
characterize the optimal solutions and provide three 
easy-to-use criterions to find the optimal replenishment 
cycle times under various circumstances. Several 
numerical examples are given to verify the theoretical 
results. 

Recently, Chang et al. (2008) present a review of the 
advances in inventory literature under conditions of 
permissible delay in payments since 1985. They classify 
all related articles into five categories based on: (a) with-
out deterioration, (b) with deterioration, (c) with allowable 
shortage, (d) linked to order quantity, and (e) with 
inflation. Our model can be extended to more supply 
chain systems by incorporating one or more of the above 
(a)-(e). In fact, deteriorating items and the order quantity 
as a function of trade credit period will be considered in 
the proposed model in the future works. 
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Appendix 
 
Appendix A1: Proof of Lemma 1 
 
Proof. 
 
(A) Equation (19) and (21) reveal that 5 ( ) 0TVC T′′ >  and 

6 ( ) 0TVC T′′ >  for all 0T > . Equations 1(a, b) imply that 

( )TVC T  is convex on ( ]0, M . If 0β ≤ , then 

2 ( ) 0TVC T′′ <  and 4 ( ) 0TVC T′′ ≤  for all 0T > . 

Equations 1(c, d) imply that ( )TVC T  is concave on 

[ ),M ∞ . Furthermore, equations (12) and (16) imply that 

2 ( ) 0TVC T′ > and 4 ( ) 0TVC T′ > . So, 2 ( )TVC T  and 

4 ( )TVC T  are increasing on 0T > . 



 
 
 
 
(B) If 0β > , then equations (17), (19) and (21) 

reveal that 5 ( ) 0TVC T′′ > , 6 ( ) 0TVC T′′ >  and 

4 ( ) 0TVC T′′ >  for all 0T > . Equations 1(a, b, c) imply 

that ( )TVC T  is convex on 0,
PM
D

� �
� �	 �

. Furthermore, if 

0α ≤ , then 2 ( ) 0TVC T′′ ≤  for all 0T > . Equation (1d) 

implies that ( )TVC T  is concave on ,
PM
D

 �∞ ��� 

. 

Furthermore, equation (12) implies 2 ( ) 0TVC T′ > . So, 

2 ( )TVC T  is increasing on 0T > . 

(C) If 0α > , equations (13), (17), (19) and (21) reveal 
that 5 ( ) 0TVC T′′ > , 6 ( ) 0TVC T′′ > , 4 ( ) 0TVC T′′ >  and 

2 ( ) 0TVC T′′ > . Equations 1(a, b, c, d) imply that 

( )TVC T  is convex on (0, )∞ . 
 
Combining all arguments of (A)-(C), we have completed 
the proof of Lemma 1. 
 
Appendix A2: Proof of Lemma 2 
 
Proof. If 0β ≤ , then 0α < . Equation (40) and (41) 

reveal that 1 2 0∆ > ∆ > .   

(A) If 3 0∆ > , with Lemma 1, we have  
 

(i) 5 ( )TVC T  is decreasing on ( *
50,T ��  and increasing on 

*
5 ,

W
T

Dρ
 �
� �
� �

. 

(ii) 6 ( )TVC T  is increasing on ,
W

M
Dρ
 �
� �
� �

. 

(iii) 4 ( )TVC T  is increasing on ,
PM

M
D

 �
� �� �

. 

(iv) 2 ( )TVC T  is increasing on ,
PM
D

 �∞ ��� 

. 

 
Combining equations 1(a, b, c, d) and (i)-(iv), we 
conclude that ( )TVC T  is  decreasing on ( *

50,T ��  

and increasing on )*
5 ,T ∞� . So, * *

5T T= . 

(B) If 3 0∆ ≤ , with Lemma 1, we have 

(v) 5 ( )TVC T  is decreasing on 0,
W
Dρ

� �
� �
	 �

. 

(vi) 6 ( )TVC T  is decreasing on *
6,

W
T

Dρ
 �
� �
� �

 and  
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increasing on *
6 ,T M �� � . 

(vii) 4 ( )TVC T  is increasing on ,
PM

M
D

 �
� �� �

. 

(viii) 2 ( )TVC T  is increasing on ,
PM
D

 �∞ ��� 

. 

 
Combining equations 1(a, b, c, d) and (v)-(viii), we 

conclude that ( )TVC T  is  decreasing on ( *
60,T ��  

and increasing on )*
6 ,T ∞� . So, * *

6T T= . 

Incorporating the above arguments, we have completed 
the proof of Lemma 2. 
 
Appendix A3: Proof of Lemma 3 
 
Proof. If 0α ≤ , equation (40) implies 1 0∆ > . 
 
(A) If 3 0∆ > , the proof of (A) is the same as that of 
Lemma 2(A). 
(B) If 2 0∆ >  and 3 0∆ ≤ , the proof of (B) is the same as 
that of Lemma 2(B). 
(C) If 2 0∆ ≤ , with Lemma 1, we have  
 

(i) 5 ( )TVC T  is decreasing on 0,
W
Dρ

� �
� �
	 �

. 

(ii) 6 ( )TVC T  is decreasing on ,
W

M
Dρ
 �
� �
� �

. 

(iii) 4 ( )TVC T  is decreasing on *
4,M T �� �  and increasing 

on *
4 ,

PM
T

D
 �
� �� �

. 

(iv) 2 ( )TVC T  is increasing on ,
PM
D

 �∞ ��� 

. 

 
Combining equations 1(a, b, c, d) and (i)-(iv), we 
conclude that ( )TVC T  is  decreasing on ( *

40,T ��
 

and increasing on )*
4 ,T ∞� . So, * *

4T T= . 

Incorporating the above arguments, we have completed 
the proof of Lemma 3. 
 
Appendix A4: Proof of Lemma 4 
 
Proof. 
 

(A) If 3 0∆ > , the proof of (A) is the same as that of 
Lemma 2(A). 
(B) If 2 0∆ >  and  3 0∆ ≤ ,  the  proof  of  (B)  is  the  
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same as that of Lemma 2(B). 
(C) If 1 0∆ >  and 2 0∆ ≤ , the proof of (C) is the 
same as that of Lemma 3(C). 
(D) If 1 0∆ ≤ , then 1 2 30 ≥ ∆ > ∆ > ∆ . With Lemma 
1, we have 
  

(i) 5 ( )TVC T  is decreasing on 0,
W
Dρ

� �
� �
	 �

. 

(ii) 6 ( )TVC T  is decreasing on ,
W

M
Dρ
 �
� �
� �

. 

(iii) 4 ( )TVC T  is decreasing on ,
PM

M
D

 �
� �� �

. 

(iv) 2 ( )TVC T  is decreasing on *
2,

PM
T

D
 �
� �� �

. 

 
Combining equations 1(a, b, c, d) and (i)-(iv), we 

conclude that ( )TVC T  is  decreasing on ( *
20,T ��  

and increasing on )*
2 ,T ∞� . So, * *

2T T= . 

Incorporating the above arguments, we have completed 
the proof of Lemma 4. 
 
 
Appendix A5: Proof of Lemma 5 
 
Proof. 
 
(A) If 0β ≤ , then 0γ <  and 0α < . Equations (13), 

(15), (17) and (19) reveal that 2 ( ) 0TVC T′′ < , 

3 ( ) 0TVC T′′ < , 4 ( ) 0TVC T′′ ≤  and 5 ( ) 0TVC T′′ >  for all 

0T > . Equations 6(a, b, c, d) imply that ( )TVC T  is 

convex on ( ]0, M  and concave on [ ),M ∞ . 

Furthermore, equations (12), (14) and (16) imply that 
2 ( ) 0TVC T′ > , 3( ) 0TVC T′ >  and 

4 ( ) 0TVC T′ > . So, 2 ( )TVC T , 

3( )TVC T  and 4 ( )TVC T  are increasing on 0T > . 

(B) If 0α < , 0β >  and 0γ ≤ , then equation (13), 

(15), (17) and (19) reveal that 2 ( ) 0TVC T′′ < , 

3( ) 0TVC T′′ ≤ , 4 ( ) 0TVC T′′ >  and 5 ( ) 0TVC T′′ >  for all 

0T > . Equation 6(a, b, c, d) imply that ( )TVC T  is 

convex on ( ]0, M  and concave on 
,

W
M

Dρ
 �
� �
� �

, convex on 

,
W PM
D Dρ
 �
� �
� �

 and concave on 
,

PM
D

 �∞ ��� 


. Furthermore, we have 

2 ( ) 0TVC T′ >  and 3 ( ) 0TVC T′ > . So, 2 ( )TVC T  and 

3( )TVC T  are increasing on 0T > . 

(C) If 0α < , 0β >  and 0γ > , then equations (13),  

 
 
 
 
(15), (17) and (19) reveal that 2 ( ) 0TVC T′′ < , 

3 ( ) 0TVC T′′ > , 4 ( ) 0TVC T′′ >  and 5 ( ) 0TVC T′′ >  for all 

0T > . Equations 6(a, b, c, d) imply that ( )TVC T  is 

convex on 0,
PM
D

� �
� �	 �

 and concave on 
,

PM
D

 �∞ ��� 


. 

Furthermore, we have 2 ( ) 0TVC T′ > . So, 2 ( )TVC T  is 

increasing on 0T > . 
(D) If 0α ≥ , then 0β > . So, we have 0α ≥ , 0β >  

and 0γ ≤ . Equations (13), (15), (17) and (19) reveal that 

2 ( ) 0TVC T′′ ≥ , 3( ) 0TVC T′′ ≤ , 4 ( ) 0TVC T′′ >  and 

5 ( ) 0TVC T′′ >  for all 0T > . Equations 6(a, b, c, d) imply 

that ( )TVC T  is convex on ( ]0, M  and concave on 

,
W

M
Dρ

 �
� �
� �

 and concave on 
,

W
Dρ
 �∞��
� 


. Furthermore, we have 

3 ( ) 0TVC T′ > . So, 
3( )TVC T  is increasing on 0T > . 

(E) If 0α ≥ , then 0β > . So, we have 0α ≥ , 

0β >  and 0γ > . Equations (13), (15), (17) and (19) 

reveal that 2 ( ) 0TVC T′′ ≥ , 3 ( ) 0TVC T′′ > , 4 ( ) 0TVC T′′ >  and 

5 ( ) 0TVC T′′ >  for all 0T > . Equations 6(a, b, c, d) imply 

that ( )TVC T  is convex on ( )0,∞ . 

Combining all arguments of (A)-(E), we have completed 
the proof of Lemma 5. 
 
Appendix A6: Proof of Lemma 6 
 
Proof. Lemma 5(A), equations (40), (47) and (48) reveal 
that 1 4 5 0∆ ≥ ∆ > ∆ > . Then we have 

(i) 5 ( )TVC T  is decreasing on ( *
50,T ��

 and increasing 

on *
5 ,T M �� � . 

(ii) 3 ( )TVC T  is increasing on 
,

W
M

Dρ
 �
� �
� �

. 

(iii) 4 ( )TVC T  is increasing on ,
W PM
D Dρ
 �
� �
� �

. 

(iv) 2 ( )TVC T  is increasing on ,
PM
D

 �∞ ��� 

. 

Combining equations 6(a, b, c, d) and (i)-(iv), we 

conclude that ( )TVC T  is decreasing on ( *
50,T ��  and 

increasing on )*
5 ,T ∞� . So, * *

5T T= . 

This completes the proof of Lemma 6. 
 
Appendix A7: Proof of Lemma 7 
 
Proof. Lemma 5(B), equations (40), (47) and (48) reveal 
that 1 4 5 0∆ ≥ ∆ > ∆ > . Then, the proof of Lemma 7 is the 
same as that of Lemma 6. 



 
 
 
 
Appendix A8: Proof of Lemma 8 
 
Proof. Lemma 5(C) and equation (40) reveal 1 0∆ > .  
Then, we have 
 
(A) If 5 0∆ > , then 1 4 5 0∆ ≥ ∆ > ∆ > . The proof of 
(A) is the same as that of Lemma 6. 
(B) If 4 0∆ >  and 5 0∆ ≤ , with Lemma 5(C), we 
have 
 

(i) 5( )TVC T  is decreasing on ( ]0, M . 

(ii) 3 ( )TVC T  is decreasing on *
3,M T �� �  and increasing 

on *
3 ,

W
T

Dρ
 �
� �
� �

. 

(iii) 4 ( )TVC T  is increasing on ,
W PM
D Dρ
 �
� �
� �

. 

(iv) 2 ( )TVC T  is increasing on ,
PM
D

 �∞ ��� 


. 

 
Combining equations 6(a, b, c, d) and (i)-(iv), we 

conclude that ( )TVC T  is  decreasing on ( *
30,T ��  

and increasing on )*
3 ,T ∞� . So, * *

3T T= . 

(C) If 4 0∆ ≤ , with Lemma 5(C), we have 

(v) 5 ( )TVC T  is decreasing on ( ]0, M . 

(vi) 3 ( )TVC T  is decreasing on ,
W

M
Dρ

 �
� �
� �

. 

(vii) 4 ( )TVC T  is decreasing on *
4,

W
T

Dρ
 �
� �
� �

 and 

increasing on *
4 ,

PM
T

D
 �
� �� �

. 

(viii) 2 ( )TVC T  is increasing on ,
PM
D

 �∞ ��� 

. 

 
Combining equations 6(a, b, c, d) and (v)-(viii), we 

conclude that ( )TVC T  is  decreasing on ( *
40,T ��  

and increasing on )*
4 ,T ∞� . So, * *

4T T= . 

Incorporating the above arguments, we have completed 
the proof of Lemma 8. 
 
Appendix A9: Proof of Lemma 9 
 
Proof. Lemma 5(D) and equations (47) and (48) reveal 
that 1 4 5 0∆ ≥ ∆ > ∆ > . So, the proof of Lemma 9 is the 
same as Lemma 6. 
 
Appendix A10: Proof of Lemma 10 
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Proof. 
 

(A) If 5 0∆ > , then 1 4 5 0∆ ≥ ∆ > ∆ > . With Lemma 5(E),  
 
 
 
 
the proof of (A) is the same as that of lemma 6. 
(B)  If 

4 0∆ >  and 5 0∆ ≤ , with Lemma 5(E), the proof of 
(B) is the same as that of Lemma 8(B). 
(C) If 1 0∆ >  and 4 0∆ ≤ , with lemma 5(E), the proof of 
(C) is the same as that of Lemma 8(C). 
(D) If 1 0∆ ≤ , with Lemma 5(E), we have 
 
(i) 5 ( )TVC T  is decreasing on ( ]0, M . 

(ii) 3 ( )TVC T  is decreasing on ,
W

M
Dρ

 �
� �
� �

. 

(iii) 4 ( )TVC T  is decreasing on ,
W PM
D Dρ
 �
� �
� �

. 

(iv) 2 ( )TVC T  is decreasing on *
2,

PM
T

D
 �
� �� �

 and 

increasing on )*
2 ,T ∞� . 

 
Combining equations 6(a, b, c, d) and (i)-(iv), we 
conclude that ( )TVC T  is decreasing on ( *

20,T ��
 and 

increasing on )*
2 ,T ∞� . So, * *

2T T= . 

Incorporating the above arguments, we have completed 
the proof of Lemma 10. 
 
Appendix A11: Proof of Lemma 11 
 
Proof. 
 

(A)  If 0α ≤  and 0γ ≤ , then 0χ ≤ . Equations 

(11), (13), (15) and (19) reveal that 1( ) 0TVC T′′ ≤ ,  

2 ( ) 0TVC T′′ ≤ , 3( ) 0TVC T′′ ≤  and 5 ( ) 0TVC T′′ >  for all 

0T > . Equations 8(a, b, c, d) imply that ( )TVC T  is 

convex on ( ]0, M  and concave on [ ),M ∞ . 

Furthermore, equations (10), (12) and (14) imply that 

1( ) 0TVC T′ > , 2 ( ) 0TVC T′ >  and 3( ) 0TVC T′ > . So, 

1( )TVC T , 2 ( )TVC T  and 3( )TVC T  are increasing on 

0T > . 
(B) If 0α ≤  and 0γ > , then 0χ ≤ . Equations (11), 

(13), (15) and (19) reveal that 1( ) 0TVC T′′ ≤ , 

2 ( ) 0TVC T′′ ≤ , 3( ) 0TVC T′′ >  and 5 ( ) 0TVC T′′ >  for all 

0T > . Equations 8(a, b, c, d) imply that ( )TVC T  is  
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convex on 0,
PM
D

� �
� �	 �

 and concave on ,
PM
D

 �∞ ��� 

. 

Furthermore, equations (10) and (12) imply that 

1( ) 0TVC T′ >  and 2 ( ) 0TVC T′ > . So, 1( )TVC T  and 

2 ( )TVC T  are increasing on 0T > . 

(C) If 0γ ≤ , then 0χ ≤ . Equations (11), (13), (15) 

and (19) reveal that 1( ) 0TVC T′′ ≤ , 2 ( ) 0TVC T′′ > , 

3 ( ) 0TVC T′′ ≤  and 5( ) 0TVC T′′ >  for all 0T > . Equations 

8(a, b, c, d) imply that ( )TVC T  is convex on ( ]0, M , 

concave on ,
W

M
Dρ

 �
� �
� �

 and convex on ,
W
Dρ
 �∞ ��
� 


. Furthermore, 

equations (10) and (14) imply that 1( ) 0TVC T′ >  and 

3 ( ) 0TVC T′ > . So, 1( )TVC T  and 3( )TVC T  are 

increasing on 0T > . 
(D) If 0α > , 0χ ≤  and 0γ > . Equations (11), 

(13), (15) and (19) reveal that 1( ) 0TVC T′′ ≤ , 2 ( ) 0TVC T′′ > , 

3 ( ) 0TVC T′′ >  and 5 ( ) 0TVC T′′ >  for all 0T > . Equations 

8(a, b, c, d) imply that ( )TVC T  is convex on 0,
PM
D

� �
� �	 �

, 

concave on ,
PM W
D Dρ

 �
� �
� �

 and convex on ,
W
Dρ
 �∞��
� 


. 

Furthermore, equations (10) implies that 1( ) 0TVC T′ > . 

So, 1( )TVC T  is increasing on 0T > . 

(E) If 0χ > , 0α >  and 0γ > . Equations (11), (13), 

(15) and (19) reveal that 1( ) 0TVC T′′ > , 2 ( ) 0TVC T′′ > , 

3( ) 0TVC T′′ >  and 5 ( ) 0TVC T′′ >  for all 0T > . Equations 

8(a, b, c, d) imply that ( )TVC T  is convex on ( )0,∞ . 

Combining all arguments of (A)-(E), we have completed 
the proof of Lemma 11. 
 
Appendix A12: Proof of Lemma 12 
 
Proof. Lemma 11(A), equations (53), (54) and (48) 
reveal that 6 7 5 0∆ > ∆ > ∆ > . We have 
 
(i) 5( )TVC T  is decreasing on ( *

50,T ��
 and increasing on 

*
5 ,T M �� � . 

(ii) 3( )TVC T  is increasing on ,
PM

M
D

 �
� �� �

. 

(iii) 1( )TVC T  is increasing on ,
PM W
D Dρ

 �
� �
� �

. 

(iv) 2 ( )TVC T  is increasing on ,
W
Dρ
 �∞ ��
� 


. 

Combining equations 8(a, b, c, d) and (i)-(iv), we  
 

 
 
 
 
conclude that ( )TVC T  is decreasing on ( *

50,T ��
 and 

increasing on )*
5 ,T ∞�

. Consequently, * *
5T T= . 

This completes the proof of Lemma 12. 
 
Appendix A13: Proof of Lemma 13 
 
Proof. Lemma 11(B), equations (53) and (54) reveal that  

6 7 0∆ > ∆ > . 
 
(A) If 5 0∆ > , we have 6 7 5 0∆ > ∆ > ∆ > . The proof of 
(A) is the same as that of Lemma 12. 
(B) If 5 0∆ ≤ , with Lemma 11(B), we have 
 
(i) 

5 ( )TVC T  is decreasing on ( ]0, M . 

(ii) 
3( )TVC T  is decreasing on *

3,M T �� �
 and increasing on 

*
3 ,

PM
T

D
 �
� �� �

. 

(iii) 1( )TVC T  is increasing on ,
PM W
D Dρ

 �
� �
� �

. 

(iv) 2 ( )TVC T  is increasing on ,
W
Dρ
 �∞��
� 


. 

Combining equations 8(a, b, c, d) and (i)-(iv), we 

conclude that ( )TVC T  is  decreasing on ( *
30,T ��  

and increasing on )*
3 ,T ∞�

. Consequently, * *
3T T= . 

Incorporating the above arguments, we have completed 
the proof of Lemma 13. 
 
Appendix A14: Proof of Lemma 14 
 
Proof. Lemma 11(C), equations (53), (54) and (48) 
reveal that 6 7 5 0∆ > ∆ > ∆ > . So, the proof of Lemma 14 
is the same as that of Lemma 12. 
 
Appendix A15: Proof of Lemma 15 
 
Proof. Lemma 11(D), equations (53) and (54) reveal that 

6 7 0∆ > ∆ > . 
 
(A) If 5 0∆ > , the proof of (A) is the same as the proof of 
Lemma 12. 
(B) If 5 0∆ ≤ , the proof of (B) is the same as the proof of 
Lemma 13(B). 
 
Appendix A16: Proof of Lemma 16 
 
Proof. 
 

(A) If 5 0∆ > , then 6 7 5 0∆ > ∆ > ∆ > . With Lemma 
11(E), the proof of (A) is the same as that of Lemma 12. 



 
 
 
 
(B) If 7 0∆ >  and 5 0∆ ≤ , with Lemma 11(E), the proof 
of (B) is the same as that of Lemma 13(B). 
(C) If 6 0∆ >  and 7 0∆ ≤ , with Lemma 11(E), we have 

(i) 5 ( )TVC T  is decreasing on ( ]0, M . 

(ii) 3 ( )TVC T  is decreasing on ,
PM

M
D

 �
� �� �

. 

(iii) 1( )TVC T  is decreasing on *
1,

PM
T

D
 �
� �� �

  and  increasing 

on *
1 ,

W
T

Dρ
 �
� �
� �

. 

(iv) 2 ( )TVC T  is increasing on ,
W
Dρ
 �∞ ��
� 


. 

Combining equations 8(a, b, c, d) and (i)-(iv), we 

conclude that ( )TVC T  is  decreasing on ( *
10,T ��  

and increasing on )*
1 ,T ∞� . Consequently, * *

1T T= . 

(D) If 6 0∆ ≤ , with Lemma 11(E), we have 

(v) 
5 ( )TVC T  is decreasing on ( ]0, M . 

(vi) 
3( )TVC T  is decreasing on ,

PM
M

D
 �
� �� �

. 

(vii) 1( )TVC T  is decreasing on ,
PM W
D Dρ

 �
� �
� �

. 
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(viii) 2 ( )TVC T  is decreasing on *
2,

W
T

Dρ
 �
� �
� �

 and increasing 

on )*
2 ,T ∞� . 

Combining equations 8(a, b, c, d) and (v)-(viii), we 
conclude that ( )TVC T  is  decreasing on ( *

20,T ��  

and increasing on )*
2 ,T ∞�

. Consequently, * *
2T T= . 

Incorporating the above arguments, we have completed 
the proof of Lemma 16. 
 


