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In this paper we propose a clonal selection algorithm (PCSA) to solve a hybrid flow shop scheduling 
(HFS) problem considering the minimization of the sum of the total earliness and tardiness penalties. In 
the view of its non-deterministic polynomial-time hard nature, so we propose the clonal selection 
algorithm to deal with this problem. The performance of our algorithm is tested by numerical 
experiments on a large number of randomly generated problems. By comparison with solutions, 
performance obtained by NEH heuristi (Nawaz et al., 1983) and the HC heuristi (Ho and Chang, 1991) is 
presented. The results show that the proposed approach performs well for this problem. 
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INTRODUCTION 

 
The situation where an operation at a certain stage 
requires more than one machine (‘‘multiprocessor task’’) 
is addressed among others in Oguz et al. (2011) and 
Ying and Lin (2009). Some authors (Sawik, 2002; 
Wardono and Fathi, 2004, 2009) study the case of limited 
buffer capacities between production stages which lead 
to a ‘‘blocking scheduling problem’’ where a completed 
job remains on a machine and blocks it until a 
downstream machine becomes available. Contributions 
on hybrid flow shop (HSF) scheduling under no-wait 
constraints can be found for example Grabowski and 
Pempera (2000) and Wang et al. (2005). We point out 
here that the case of limited-wait constraints has only 
received limited attention: noticeable exceptions can be 
found in Yang and Chern (1995), Su (2003) and 
Akkerman et al. (2007). Finally, HFS with positive set up 
and/or removal times is studied (Low, 2006). However, as 
presented in Ruiz et al. (2008), even if there are several 
articles present in realistic extensions of the HSF 
scheduling, very few papers consider several 
complicating features jointly. Moreover, it can be seen 
from   the   detailed    survey    address    in    Ruiz    and 
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Vazquez-Rodriguez (2010), there seems to be no 
previous attempt in   the operations of literature research 
to solve the variant of the HFS problem studied in the 
present paper, that is, the HFS problem with 
multiprocessor tasks, zero buffer capacity, limited waiting 
time between consecutive operations of a job and 
positive setup and removal times. There is a wide variety 
of solution approaches for the HFS problem. The authors 
of Ruiz and Vazquez-Rodriguez (2010) address a 
classification into three broad classes: exact methods, 
heuristics and metaheuristics. Exact solution approaches 
for the HFS problem mostly rely on problem-specific 
branch and bound algorithms where nodes correspond to 
partial schedules and lower bounds are computed by 
exploiting pacific properties of the HFS problem. But, as it 
can be seen in some surveys addressed in Ruiz and 
Vazquez-Rodriguez (2010), and Kis and Pesch (2010), 
research in this area focus on simplified diversions of the 
problem by considering either problems with a restricted 
number of processing stages (typically 2) or problems 
close to the standard form of the HFS. Moreover, existing 
branch and bound algorithms appear to be limited to 
situations where the objective is to minimize make span 
or mean flow time. In this study, we presented a HFS 
problem involving  a  total  number  of  processing  steps, 
several complicating job  constraints  and  more  complex  
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Figure 1. Gantt chart. 

 
 
 
criterion, namely total weighted tardiness.  
 
 
Problem formulation  
 
The manufacturing environment of the HSF is considered 
as an extension of the classical flow shop. In fact, it 
presents a multistage production process with the 
property that a set of n jobs needs to be processed at all 
the stages in the same order; starting at stage 1 and 
finishing in stage S. Each stage consist of a given 
number  ) of identical parallel machines 

available from time zero, and denoted 
. So each job j needs several 

operations ( …, ), where  has to be processed 

by one machine out of a set of given machines at the  

stage during an uninterrupted  time unit (the 

preemption is not allowed) and can start only after the 
completion of the (i_1) previous operations. The starting 
time and the completion time of an operation are denoted 
by  and , respectively. In this article, we assume that: 

 
1) Setting up times of machines and moving times 
between operations are negligible. 
2) Machines are independent of each other. 
3) Jobs are independent of each other.  
4) At a given time, a machine can only execute one 
operation. 
 
Solving HFS scheduling problem consists of assigning 
operations to machines in each stage (routing problem) 
and sequencing the operations assigned to the same 
machine. The objective is to organize the execution of the 
n jobs on the machines in order to minimize an objective 
function. Defining  as the completion time and as the 

due date of j ob j, we propose to develop schedules for 
the HFS problem that complete each customer order 
(which can be represented by a job j) at or near its due 
date . In this scenario, both the early and tardy 

completion of jobs would be penalized. Earliness and 
tardiness penalties are the cost per unit of time a job is 

completed either earlier or later than requested by the 
customer. For a trivial solution, some jobs will have to be 
finished early and some other will have to be finished late 
(Finke et al., 2007). Consequently, it is suitable to provide 
schedules that minimize the earliness and tardiness 
penalties. These penalties could be different for jobs 
based on their priority importance. The minimization of 
these costs can be translated into the scheduling 
objective of minimizing a weighted sum of job earliness 
and tardiness (ET), which is given by Equation 1. 
 
ET=          (1) 

 
Where    is the max {0, ( _ )} is the earliness of job j; 

 the max {( _ ), 0} is the tardiness of job j;  is the 

penalty weight per unit of time when job j is produced 
early;  is the penalty weight per unit of time when job j 

is produced late. 
To illustrate the problem, let us consider a three-stage 

HFS scheduling problem where a set of n=7 jobs have to 
be processed through three stages. Then number of 
machines in each stage is, respectively, =3, =2and 

=4. A feasible schedule is shown in the Gantt chart 

(Figure 1). 
According to the processing order of the solution, we 

can determine the completion time  of each job j, and 

then calculate their earliness  and tardiness . For 

example if, = =0 for all the jobs except jobs 7 and 5 

where =10 and =5. Then, the objective function value 

of the proposed schedule which is given by Equation 2. 
 
ET= =2 +5 60            (2) 

 
According to the earliness and tardiness penalty weight, 
the schedule of a job j is preferably inserted into the set 
of early jobs if , otherwise, it would preferably 

inserted into the set of tardy jobs. The relative importance 
of the earliness and tardiness penalties has been usually 
related  to  the  tardiness  factor  (Almeida  and  Centeno, 
1998). 
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Figure 2. Basic state transfer flowchart of PCSA. 

 
 
 

But, it is also important to focus on minimizing the 
earliness because satisfying a client’s demand earlier 
than its due date may cause UN wanted inventory or 
product deterioration. Thus, we need to minimize the total 
earliness tardiness of scheduled jobs (M’Hallah, 2007). 
The problem is reduced to the special case of minimizing 
the total un-weighted ET, where  1 for all the 

jobs j which is given by Equation 3. 
 
ET=              (3) 

 
So, this study tackles the HFS scheduling problem to 
minimize the total earliness/tardiness of scheduled jobs. 
 
 
Proposing clonal selection algorithm 
 
PCSA contains three operations, which are cloning, 
mutation, and selection. A set of antibodies are selected, 
which have the best and the highest affinity with antigen 
from the antibodies. The selected antibodies are cloned 
in proportion to their affinity with the antigen (rank based). 
All the copies are mutated. The mutation degree is 
inversely rated to their parent’s affinity. All the copies are 
added to the antibodies. A set of antibodies from all 
antibodies that have the best and the highest affinity with 
the antigen are re-selected. Figure 2 presents the basic 
state transfer flowchart of PCSA. Since clonal selection 
algorithm has the advantage of being simple to 
implement and easy to understand, it has shown 
considerable success in solving a variety of optimization 
problem. Clonal selection algorithm also has been 
reported in scheduling area. For example, Yang et al. 
(2008) proposed a clonal selection-based memetic 
algorithm for solving job shop scheduling problems. 
Kumar et al. (2006) extended the artificial immune 
system approach by proposing a new methodology 
termed as psycho-clonal algorithm to solve m-machine 
no-wait flow shop problem. 
 
 

Encoding 
 
Clonal are corresponding to the solutions of HFS. In our 
coding each Clonal consists of two parts of strings, A-
string and B-string. A-string defines the routing policy of 
the problem, and B-string defines the sequence of the 
operations on each machine. The elements of the strings 
respectively describe a concrete allocation of operations 

to each machine and the sequence of operations on each 
machine.  

Assuming that the total number of operations is l, and 

the  operation can be processed by a machine 

set . The length of A-string is l and it 

can be denoted  as . The  element  is 

an integer between 1 an in and it means that the  

operation is assigned to  the machine  in . 

B-string has a length of l too. It is consisted of a 
sequence of job numbers in which job number j occurs  

Times.  is the number of total operations that the job 

comprises. When decoding a particle, B-string is 
converted to a sequence of operations at first. Then each 
operation is assigned to a processing machine according 
to A-string. At last each operation in the sequence will be 
scheduled in its earliest permitted time. In this way, each 
particle is corresponding to a feasible HFS schedule.  
 
 

Initialization 
 

The initial population of antibodies is randomly selected 
based on uniform distribution probability for all variables 
to cover the entire search space uniformly.  
 
 

Clonal proliferation 
 

The fittest antigen will be cloned (reproduced) 
independently and proportionally to their antigenic 
affinities, the higher the antigenic affinity, the higher the 
clones generated for each of the selected antigens. 
Based on the fact that the fittest antibody will produce 
more clones compared to weaker ones, the following 
equation for adaptive cloning process can be developed. 
The number of clones is generated according to the 
affinity measure or the fitness value using the following 
equation: 
 

No. of clones for each of the antigens =  

 

Here,  = multiplying factor, N = total number of antibody 

and  = selected number of antibodies. 

 
 

Mutation 
 
Binary string is  used  to  represent  the  attributes  of  the 



Akhshabi et al.         5747 
 
 
 

Table 1. Computational results for n=20. 
 

Problem 
Best solution obtained by NEH 

heuristic 
Best solution obtained by HC 

heuristic 
Best solution obtained by 

PCSA 

n S  CPT TIMES (s)  CPT TIMES (s)  CPT TIMES (s) 

20 

2 2236 5.23 2456 6.21 2135 4.45 

2 2489 5.23 2564 6.32 2348 4.65 

2 1846 5.23 2156 6.11 1489 3.87 

2 2135 6.21 2368 5.78 2015 3 

2 2835 6.21 3489 5.64 2751 3 

Average  2308.2 5.62 2606.6 6.01 2147.6 3.79 

        

20 

5 4568 11.2 5236 12.58 4512 9.24 

5 5689 12.68 5489 14.25 3254 8 

5 3568 10.48 4512 13.68 2899 9.27 

5 4896 13.58 6253 10.59 3877 10 

5 4125 14.25 5781 11.65 3018 10 

Average  4569.2 12.44 5454.2 12.55 3512 9.30 

        

20 

8 5028 21 5567 24 4895 18 

8 6212 22.03 7894 25.18 4789 17.54 

8 1028 18.92 8025 23.21 8562 18.69 

8 5689 19.28 1235 19.36 4789 19.24 

8 4781 22 7814 20 3578 20 

Average  4547.6 20.65 6107 22.35 5322.6 18.69 
 
 
 

antibodies. After decoding, each antibody attribute will be 
in a form of pair of real valued vector ( ) 

where  is a strategy parameter. Each 

antibody will go through the mutation process according 
to the expression given by Equations (4) and (5). 
 

= exp ( (N (0, 1) + (0, 1))               (4) 

 

P =P +  (0, 1)                               (5) 

 

Where, N (0, 1) is a normally distributed random number 
with zero mean and standard deviation equal to one. 

(0, 1) is a random number newly generated for every i 

and j. The factors  = ((2( )
 1/ 2

)
1/2

) _1 and  = ((2 )
1/2

) 

_1 are commonly known as learning rates. An offspring 
 is calculated by Gaussian mutation. 

 
 

Selection 
 

When the mutation is over, the new set of antibodies thus 
obtained will satisfy the final storage volume constraints. 
Then the solution with lesser cost, that is, higher affinity 
values or fitness values are replaced by the initial 
population of antibodies. With the members of the next 
generation thus selected, the process repeated until the 
maximum number of generations reaches. It is assumed 
that the highest affinities are sorted in an ascending 

order. In selection, the offsprings produced by mutation 
process are sorted and the best value from the offspring 
and parents is calculated. 
 
 

COMPUTATIONAL EXPERIMENTS AND RESULTS 
 

We show the results of a series of computational 
experiments conducted to test the effectiveness of the 
proposed approach. Our algorithms are coded in C++ 
and all tests are conducted on a laptop with Pentium IV 
Core 2 Duo 2.53 GHz CPU. The computational tests are 
performed on randomly generated benchmark problems. 
The problem sizes are a combination of n= (20,50,100) 
jobs and S=(2,5,8) stages. For each combination of n and 
S, five instances are generated with job processing times 

 uniformly distributed over [1,100] since the processing 

times of most library benchmark problem are generated 
in this range. Then, the number of machines at stage i 

was chosen randomly over [1, 5]. The due date  of 

each job j is determined by the following equation:  
 

           6)  

 
Where c [0-1] 

 
For each problem, a set of 10 replicates is done  and  the 
best objective value of these replications  is  kept.  Tables 
1, 2 and 3 compares the sum  of  the  total  earliness  and 
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Table 2. Computational results for n=50. 
 

Problem 
Best solution obtained by NEH 

heuristic 
Best solution obtained by HC 

heuristic 
Best solution obtained by 

PCSA 

n S  CPT TIMES (s)  CPT TIMES (s)  CPT TIMES (s) 

50 

2 10548 41.25 11525 47.21 8796 38.25 

2 12354 43.56 12358 45 9654 35.71 

2 18425 38.51 8025 44.69 11235 36.24 

2 12296 37.24 12735 47.23 1025 39.86 

2 9548 45 11191 49 9548 41 

Average  12634.2 41.11 13166.8 46.63 8051.6 38.21 

        

50 

5 21458 80.06 24236 89.76 17546 75.03 

5 23568 80 25895 90.49 18212 74 

5 29564 79.28 32569 92.31 17239 73.25 

5 25326 82.86 26356 90 18957 76.54 

5 21478 82 23254 90 19021 78 

Average  24278.8 80.84 26462 90.51 18195 75.36 

        

50 

8 41235 75 45652 86 35652 70 

8 45236 74.23 49865 92.23 36259 69.28 

8 51236 72.03 51228 91.95 35669 74 

8 48965 89 49856 93 34235 75.26 

8 43569 82 46985 93 39875 78.57 

Average  46048.2 78.45 48717.2 91.23 36338 73.42 

 
 
 

Table 3. Computational results for n=100. 

 

Problem 
Best solution obtained by NEH 

heuristic 
Best solution obtained by HC 

heuristic 
Best solution obtained by PCSA 

n S  CPT TIMES (s)  CPT TIMES (s)  CPT TIMES (s) 

100 

2 90458 50.23 100236 51.84 87265 40,21 

2 91235 49.32 89567 50 88568 42 

2 92356 48.25 112365 49.59 90218 43.58 

2 89452 49 98564 52 87562 44.89 

2 88742 50 87965 54,21 89572 47 

Average  90448.6 49.36 97739.4 51.53 88637 43.57 

        

100 

5 114562 70 120365 82 118235 45 

5 120325 71.26 124235 81,23 95628 48.26 

5 124325 72.35 130568 83,26 98657 47.25 

5 118568 73 130589 84.25 102365 42.28 

5 128654 73.51 129658 85 96324 49.25 

Average  121286.8 72.024 127083 83.148 102241,8 46.408 

        

100 

8 170235 90 180235 102 153268 53 

8 152365 89 181235 96 145236 52.99 

8 148956 87.25 164235 95.24 132589 54 

8 175623 86.32 152369 97,54 148523 56.08 

8 175423 84.26 154899 96 133259 51 

Average  164520.4 87.366 166594.6 97.356 142575 53.414 

 



 
 
 
 
tardiness values overall jobs for the best solution 
obtained by the NEH heuristic and the HC heuristic and 
the PCSA method for n=20,50 and 100 consecutively. 

It is clearly shown in those table shows that PCSA 
outperform more than the NEH heuristic and the HC 
heuristic. 

As we expected, the computation time (CPU times in 
seconds) is reasonable. We also observe the increasing 
of the CPU when the problem size increases. CPU times 
for PCSA are better than NEH and HC. 
 
 
Conclusions  
 
In this study, we propose a clonal selection algorithm 
(PCSA) to solve a HSF scheduling problem with regard to 
being NP-hard, the method of PCSA are coded in C++  
and then the quality of the results with their time of 
calculation is compared with the results obtained from 
NEH and HC and the experiments prove that the PCSA 
can be used to solve HFS effectively and the efficiency of 
PCSA has been perfectly shown by the expansion of the 
said model for other state of production such as parallel 
machine series machine more researchers could done for 
future works. 

Other Meta heuristic methods like memetic algorithm, 
GA algorithm forbidden search algorithm could be used 
for the presented models as well. 
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