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Previous studies in the issue of supply chain models with imperfect quality assumed the defectives 
could be sold at lower unit price by the end of the inspection process and the lot-for-lot delivery policy 
was employed. However, in practice, defective items may have no salvage value but may need 
additional disposal cost to process them. The beginning of the printed circuit board (PCB) industry in 
Taiwan provides a good example of such a situation. Besides, in a just-in-time (JIT) environment, the 
supplier splits the order quantity into small lot size and delivers them over multiple periods to response 
the buyer’s need. Therefore, in this paper, a new mathematical model were developed, in which 
defective items are processed with disposal cost and lot-splitting (single setup, multiple delivers) policy 
is employed, to determine an optimal single-supplier- single-buyer inventory policy. The objective is to 
minimize the total joint annual cost incurred by the vendor and buyer in a JIT environment. A procedure 
free of employing convexity is developed to determine the order quantity, the number of deliveries and 
the shipping quantity. Numerical example was provided to illustrate the effectiveness of the proposed 
model. Based on the numerical example, sensitivity analysis was given to investigate the effects of the 
defective percentage on the optimal solution. 
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INTRODUCTION 
 
Since the advent of just-in-time (JIT) in the early 1980s, 
there have been numerous studies discussing JIT imple-
mentation. Recently researchers have extensively studied 
small lot sizing as a means of implementing successful 
JIT system (Kim and Ha, 2003). Pan and Liao (1989) 
were probably the first to use an economic order quantity 
(EOQ) model that delivered the order in multiple 
shipments to illustrate order splitting in the just-in-time 
(JIT) system. Ramasesh (1990) extended Pan and Liao’s 
model (1989) to consider a multiple-shipment model with 
transportation cost. Kim and Ha (1997) proposed a model 
in which they considered the aggregate total relevant cost 
for both buyers and suppliers for frequent deliveries. Kim 
and Ha (2003) further proposed a new coordinated model 
that enhanced the linkage between the buyer and 
supplier. Van Nieuwenhuyse and Vandaele (2006) 
demonstrated that multiple shipments could  increase  the 

supplier’s delivery reliability. However, one of the unrea-
listic assumptions in the above joint inventory models is 
that all produced units are of good quality. In fact, 
theprocess may deteriorate and thus, produce defects or 
imperfect quality items. Thus, recently, the inventory 
model with imperfect quality or defective has received the 
attention of researchers. 

Although, there are many researchers (for example, 
Salameh and Jaber, 2000; Chan et al, 2003; Chang, 
2004; Wee 2007, Maddah and Jaber, 2008) who focused 
on the imperfect quality issue, all of them optimized only 
one side (buyer) of the inventory pattern and neglected 
the entire inventory system pattern for both buyer and 
supplier. Huang (2004) was probably the first proponent 
to simultaneously consider the flawed items and joint 
buyer-supplier inventory. He pointed out that his 
approach had not been considered in previous  research.  



 
 
 
 
Later, Chung (2008) provided necessary and sufficient 
evidence for the existence of an optimal solution proce-
dure for Huang’s (2004) inventory model. More recently, 
Lin (2009) extended Huang’s model into the case with 
inspection errors and returned cost. He also made a 
sensitivity analysis to investigate the effects of some 
parameters on the optimal solution. Note that all of the 
above papers discussed earlier assumed that the 
imperfect/defective quality item could be sold using a 
salvage value. However, imperfect/ defective items often 
have no salvage value and additional disposal cost must 
be paid to process them in many industries. The 
beginning of the printed circuit board (PCB) industry in 
Taiwan provides a good example. As a known fact, when 
PCB waste materials are burned using an improper 
process, the airborne chemicals and Dioxins will 
grievously harm health of human-beings by polluting the 
environment. Thus, the manufacturer must pay additional 
cost for processing PCB waste substrates by entrusting 
waste disposal to a specialized organization. More 
recently, the eco-conscious trend has garnered great 
concern and thus, the study believes that processing 
these wastes has no salvage value and also has great 
disposal costs. Unlike the traditional EOQ model with 
imperfect quality, this paper develops a model, in which a 
100% screening process is performed, under defective 
item and disposal cost considerations. Based on the 
defective items with disposal cost consideration, this 
paper investigates the effects of a JIT lot-splitting (Single 
setup, multiple delivery) strategy on the integrated total 
relevant buyer- supplier cost by examining the optimal 
order lot size, the number of deliveries and the shipment 
quantity under the defective items with disposal cost 
consideration. An algorithm free of using convexity is also 
developed to determine the optimal solution. 
 
 
NOTATION AND ASSUMPTIONS 
 
Notation 
 
C, supplier’s hourly setup cost; D, annual demand rate for 
buyer; F, fixed transportation cost per trip; HB, holding 
cost /unit/year for buyer; HS, holding cost /unit/year for 
supplier, HB >HS; K, order cost for buyer; M, annual 
production rate for supplier, M>D; N, number of deliveries 
per batch  cycle  (integer  value);  Q,  order   quantity   for  
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buyer; R, unit variable cost for  processing  and  receiving 
per order; S, setup time/setup for supplier; T, planning 
horizon; b, the disposal cost for defective items per unit; 
d, the screening cost per unit;  q,  Delivery size per trip, 
q=Q/N; x, the screen rate, x >D; p, the defective 
percentage in Q; f(p), the probability density function of p. 
 
 
Assumptions 
 
(1) Supply chain system consists of a single supplier and 
a single buyer 
(2) Demand for the item is constant over time 
(3) Production rate is uniform and finite 
(4) Successive shipments are scheduled so that the next 
delivery arrives at the buyer when the stock from the 
previous delivery has just been used up 
(5) The number of perfect items is at least equal to the 
demand during screening time 
(6) Time horizon is assumed to be infinite 
(7) Shortages are not allowed 

 
 
MATHEMATICAL MODEL 
 
Referring to Kim and Ha (2003), the top half of Figure 1 in 
their work shows the buyer’s inventory, while the bottom 
half displays the supplier’s. However, in this paper, 
because defective items exist in each lot, their figure 
should be modified as Figure 1. 

Let TC(Q,N) buyer and TC(Q,N)supplier denote the total 
cost for buyer and supplier, respectively. Note that 
TC(Q,N) buyer is the sum of the order cost, screening cost, 
receiving cost, and holding cost. The holding cost 
contains two parts: (1) the perfect items in each lot (2) 
and the defective items before they are screened out. 
Therefore, the total cost for the buyer can be written as 
follows: 
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Let TC(Q,N)supplier be the sum of the setup cost, 
transportation cost, disposal cost and holding cost. Thus, 
the total cost for the supplier can be written as follows: 
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Where the expression for the holding cost is derived by 
David and Eben-Chaime (2003). Adding Equations (1) 
and (2) leads to the joint annual total cost function for the 
supplier and buyer. Therefore, the average cost per unit 
time can be given as follows: 
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Because the replenishment cycle time is ( ) DpQT −= 1 , 

one can  take  the  expected  value  of   TCU(Q,N)joint  with 
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Figure 1. Time-weighted inventory for vendor and buyer. 

 
 
 

respect to p, leading to: 
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Where [ ]pEE −= 11 , ( )[ ]2

2 1 pEE −= . 

Note that if all items are perfect (that is, no screening 
process is needed and no salvage value occurs), and 
Kim and Ha’s (2003) model is a special case of the study 
model. However, it is not easy to show that the Hessian 
matrix in Equation (4) is positively definite. Therefore, an 
algorithm free of using convexity is developed to 
determine the optimal solution. This algorithm can further 
improve the flaws in Kim and Ha’s (2003) solution 
procedure because they neglected the truth that Q and N 
are “simultaneously” obtained and misused Q, which may 
improperly obtained from Equation (4) in Kim and Ha’s 

paper, as the optimal order quantity for the buyer. 
 
 

THE SOLUTION PROCEDURE 
 

In this section, the study develops a solution procedure, 
which is similar to that of Chung (2008), to find the 
optimal solution. 

Let N be fixed. Taking the derivative of ( )NQETCU ,  

with respect to Q leads to: 
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Equation (6) will yield 
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Equations (7a - c) reveal that ( )NQETCU ,  is 

decreasing on ( )( ]NQ*,0  and increasing on ( )[ )∞,* NQ   

if N is fixed. Therefore, when N is fixed, ( )NQETCU ,  

will have the optimal solution at ( )NQQ *= . 

Substituting Equation (6) into Equation (4) and 
rearranging the result leads to 
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(8) 
 
Ignoring the term independent of N and taking the square 

of ( )NETCU  in Equation (8), minimizing ( )NETCU  is 

equivalent to minimizing the following: 
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If  N  is  treated  as  a   continuous   variable,   taking   the  derivative of ( )Nϕ  with respect to N, the outcome is: 
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Furthermore, taking the derivative of ( )NΨ  with respect 

to N will lead to  
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Since SB HH >  and ( ) 121 <− λE , Eq. (11) is less than 

zero. It implies ( )NΨ  is decreasing on [ )∞,1 , and 
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Further, let 
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Thus, one has 
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Equations (14a - c) imply the following Property holds. 
 

Property 1: ( )Nϕ  is decreasing on ( ]Ω,0  and 

increasing on [ )∞Ω, .  

Now, let:  
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Where,  Ω  is the greatest integer less than or equal to 

Ω . Because the number of deliveries (N) is an integer, 
Property 1 and Equation (12) show that the optimal 

solution (N
*
,Q

*
) of ( )NQETCU ,  can be determined as 

follows: 
 

*

1

* NN =  or 1*

1

* += NN  according to 

( ) ( ) ( ){ }1,min *

1

*

1

* += NNN ϕϕϕ . Further, ( )***
NQQ =   

 

This is then determined by Equation (6)  
 

Furthermore, according to the same procedures 
suggested by Kim and Ha (2003), the minimum order 
quantity can be obtained easily as follows: 
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Therefore, if the order quantity is larger than Qmin, the 
single-setup-multiple- delivery (SSMD) policy  is  superior  
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to a single delivery policy. 

Again, employing the same steps suggested by Kim 
and Ha (2003), the optimal delivery size q*, which 
remains the same over multiple deliveries, is obtained by 
dividing Q

* 
by N

*
, as follows: 
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NUMERICAL EXAMPLE AND SENSITIVITY ANALYSIS 
 
The proceeding developed model and theorem can be 
illustrated using the numerical example modified from 
Kim and Ha (2003). The parameters are as follows: 
 

Production rate: 19200=M units/year, 

Demand rate: 4800=D units/year, 

Setup cost: 20$=C /hour, 

Ordering cost: 25$=K /cycle, 

Holding cost for supplier: 6$=SH /unit/year, 

Holding cost for buyer: 7$=BH /unit/year, 

Transportation cost: 50$=F /trip, 

Receiving cost: 1$=R /unit. 

 
Note that the supplier currently spends 6 hours with five 
workers to set up the production  system.  Thus,  the  one  
 
 

 
 
 
 
time setup cost is $600 ($20/hour × 5 worker × 6 hour). In 
addition, this study set the screening rate x = 87600 
units/year, screening cost d = $0.5/unit, disposal cost 

10$=b /unit, and assume that the defective percentage 
is uniformly distributed with p.d.f. as f(p) = 25,  0 ≤ p ≥ 

0.04.. Then, one has [ ] 02.025
04.0

0
== ∫ ydyYE . Using 

the procedure developed in Section 4, the study have the 
optimal order size Q

*
=1137 and the optimal number of 

deliveries N
*
=3. Thus, the delivery size is 379  

units per trip. The expected total cost per year is $15,577. 
Compared with the results provided by Kim and Ha 
(2003), the smaller the order quantity, the greater cost 
obtained in the study model with the same number of 
shipments. This result illustrates that optimal lot sizes are 
less than those in Kim and Ha (2003) if disposal cost 
occurs. This is because the buyer may spend extra cost 
to process the defective items in each cycle. Notice that, 
using Equation (16), the order quantity must be greater 
than 620 units. Otherwise, a single delivery policy would 
be preferable. 
 
 
Comparison with Kim and Ha’s model 
 
Accounting for the defective quality items alters the 
minimum order lot size and the ratio of the modified 

number of deliveries. As discussed earlier, 
*

N , to Kim 

and Ha’s number of delivers, 
*
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N , is given as: 
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The ratio of the study order quantity discussed earlier, 
*Q , to Kim and Ha’s minimum order quantity, 

*

&HK
Q , is given as: 
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Again, the ratio of our minimum order quantity, 
minQ , to Kim and Ha’s minimum order quantity,

min

&HK
Q , is given as 
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Further, the change in the expected total cost per unit time, Ω , is determined as: 
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Figure 2. The behavior of the ratio of Ψ when the study model compared to Kim and Ha’s 

model for the increase in [ ]pE
. 
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Figure 3. The bahaviour of the ratio θ when the study model compared to Kim and Ha’s model for 
the increase in [ ]pE .

 

 
 
 

Using Equations (20) - (23) the study results of this work 
are different from Kim and Ha’s results. To demonstrate 

the behavior of the relation between 
*

N  and 
*

&HK
N , the 

example shown earlier is repeated for different values for 

[ ]pE  ( [ ] 25.002.0 ≤≤ pE ) in which the values for Ψ  

in Equation (20) are plotted against those for [ ]pE  as 

shown in Figure 2. The values for θ  in Equation (21) are 

calculated and scatted against those for [ ]pE , as shown 

in Figure 3. The values for Φ  in Equation (22), in which 
they demonstrated the behavior of the relation between 

minQ  and 
min

&HK
Q , are computed and plotted for the same  

range of [ ]pE , as shown in Figure 4. The values for Ω  

in Equation (23) are calculated and drawn for the same 

[ ]pE  range, which is shown in Figure 5. From Figure 2, 

the number of shipments is still the same  value  until  the  

expected defective rate becomes greater than 12.25%. 
This indicates that the defect rate has slight sensitivity to 
the number of shipment and if the defective rate is 
greater than the critical value, the number of shipments 
drops to another level. Figure 3 shows the order quantity 
increases as the defective rate increases in the same 
shipments. Note that if the defective rate increases above 

the critical value, the θ  ratio moves sharply down due to 

the fewer number of shipments. As shown in Figure 4, the 
minimum delivery lot size is larger than that in Kim and 
Ha’s model under the same shipments. This implies that 
to achieve the cost savings the supplier must deliver 
more items to satisfy the customer needs if defects occur. 
Furthermore, in Figure 5, the increase in the total 
expected cost per unit time from using the study model is 

intuitively at a high [ ]pE  value. The defect rate is espe-

cially critical for the supplier in this cooperative system. It 
can  be  concluded  that  the  supplier   may   reduce   the  
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Figure 4. The behaviour of the ratio of Ø when the study model compared to Kim and Ha’s model for 

the increase in [ ]pE . 
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Figure 5. The behaviour of the ratio of Ω when the study model compared to Kim and Ha’s model for the 

increase in [ ]pE . 

 
 
number of shipments and increase the delivery size for 
each trip to avoid extra cost if defective items with 
disposal cost occur. 
 
 

Conclusions 
 
This paper developed an inventory model, in which a 
100% inspection process is performed on the received 
lot, for items with defects and disposal cost in a Just-in-
time (JIT) environment. Specially, this  paper  investigated  
the effectives of a JIT lot-splitting shipment strategy on 
the integrated buyer-supplier total relevant cost by 
examining the optimal lot size, number of delivers and 
shipment size under defective items with disposal cost. 
An algorithm free of using convexity was developed to 
determine the optimal solution. Compared with the results 
provided by Kim and Ha (2003), the fewer order lot size 
and greater cost were obtained in our model with the 
same number of shipments. This result may also lead to 
the supplier increasing the delivery size for each trip.  The  

numerical results show that (1) when the expected defect 
rate increases, the order lot size increases under the 
same number of shipments. (2) As the expected defect 
rate increases below the critical value, the number of 
shipments remains at the same level. Alternatively, when 
the expected defect rate increases above the critical 
value, the number of shipments drops down to another 
level. (3) The minimum order quantity increases when the 
expected defect rate increases, except for the critical 
value. Simultaneously, a sharp reduction for the ratio of 
order lot size occurs at the critical point. (4) The total 
expected cost increases when the expected defect rate 
increases. Note that if all items are perfect (that is, there 
are no need for screening and no salvage value), the 
study model reduces to Kim and Ha’s (2003) model. 
 
 
REFERENCES 
 
Chan WM, Ibrahim RN, Lochert PB (2003). A new EPQ model: 

integrating lower pricing rework and reject situations. Prod. Plann. 
Control. 14: 588-595. 



 
 
 
 
Chang HC (2004). An application of fuzzy sets theory to the EOQ model 

with imperfect quality items. Comput. Oper. Res., 31: 2079-2092. 
Chung KJ (2008). A necessary and sufficient condition for the existence 

of the optimal solution of a single-vendor single-buyer integrated 
production-inventory model with process unreliability consideration. 
Int. J. Prod. Econ., 113: 269-274. 

Huang CK (2004). An optimal policy for a single-vendor single-buyer 
integrated production-inventory problem with process unreliability 
consideration. Int. J. Prod. Econ., 91: 91-98. 

Kim SL, Ha D (1997). Implementation of JIT purchasing: An integrated 
approach. Prod. Plann. Control. 8: 152-157. 

Kim SL, Ha D (2003). A JIT lot-splitting model for supply chain 
management: Enhancing buyer–supplier linkage. Int. J. Prod. Econ., 
86: 1-10. 

Lin TY. (2009). Optimal policy for a simple supply chain system with 
defective items and returned cost under screening errors. J. Oper. 
Res. Soc. Jpn., 52: 307-320. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lin          6131 
 
 
 
Maddah B, Jaber MY (2008). Economic order quantity for items with  
    imperfect quality: Revisited. Int. J. Prod. Econ., 112: 808-815. 
Pan AC, Liao C (1989). An inventory model under just-in time 

purchasing agreements. Prod. Invent. Manage., 30: 49-52. 
Ramasesh RV (1990). Recasting the traditional inventory model to 

implement just-in-time purchasing. Prod. Invent. Manage., 31: 71-75. 
Salameh MK, Jaber MY (2000). Economic order quantity model for 

items with imperfect quality. Int. J. Prod. Econ., 64: 59-64. 
Van Nieuwenhuyse I, Vandaele N (2006). The impact of delivery lot 

splitting on delivery reliability in a two-stage supply chain. Int. J. Prod. 
Econ., 104: 694-708. 

Wee HM, Yu F, Chen MC (2007). Optimal inventory model for items with 
imperfect quality and shortage backordering. Omega. 35: 7-11. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


