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This study applied a method of inequality-based multiobjective genetic algorithm (MMGA) for real-time 
airline schedule disruption management in response to the schedule disruption of short-haul, quick 
turnaround flights with an environmental consideration. Empirical study based on a real-world airline 
flight schedule demonstrated that the proposed model can recover a disrupted schedule within about 3 
CPU min which is more sufficient for real-time operation control. Consequently, it can be employed as a 
real-time decision supporting tool for practical complex airline operations to save operation cost, 
increase passengers’ convenience and reduce air pollution. 
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INTRODUCTION 
 
Air travel is nowadays one of the most frequent modes of 
transportation for business, leisure, and tourism. The 
operation of an airline requires the allocation of resources 
and development of schedule plans over complex 
networks. A large airline can operate over a thousand 
flights everyday with several hundred aircraft and 
thousands of flight and cabin crews. Since those 
resources are costly, one of the key challenges for 
airlines is to handle their operations in an efficient way in 
order to lead the market and to maximize their profits and 
services in an increasingly competitive fare environment. 

No matter how superior the schedule plan is, 
unfortunately, airlines frequently encounter various un-
anticipated events called disruptions on daily operations 
that prevent them from operating as planned. These 
disruptions are largely owing to mechanical problems, 
crew unavailability, poor weather, air traffic congestion 
and airport facility restrictions. Therefore, a minor 
perturbation of planned schedules might lead to chain 
reactions that can cause major disruptions throughout the 
whole schedules. Clarke and Smith (2004) points out that 
for a typical airline, approximately ten percent (10%)  of  
its  scheduled  revenue  is   lost   due   to  irregularities  in 

airline operations, with a large percentage being caused 
by severe weather conditions and associated loss of 
airport capacity. An airline’s ability to recover the dis-
rupted fight schedules in a quick and efficient approach 
will be very critical when trying to withstand the 
competition from other airlines. 

Each minute a flight is delayed can result in extra fuel, 
crew time, and aircraft maintenance, delayed flight also 
drive the need for extra gates and ground personnel and 
inflict costs on airline customers in the form of lost pro-
ductivity, wages and goodwill. In addition to the economic 
costs of delay, burning jet fuel during delays emits 
climate-disrupting carbon dioxide and local air pollutants. 
Since delayed aircrafts sat idle at the gate or circled in 
holding patterns, burning fuel during flight delays 
released an additional 7.1 million metric tons of climate-
disrupting carbon dioxide into the atmosphere with 
airlines consuming an additional 740 million gallons of jet 
fuel in 2007 as a result of delays according to the Joint 
Economic Committee’s report (JEC, 2008). 
Consequently, the ability to find efficient alternatives can 
significantly improve an airline’s profitability and enhance 
the protection of environment. 
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The concept of disruption management refers to the 
real-time dynamic adjustment of an operation plan when 
disruptions occur. Due to the dynamic environment, 
disruption management problem in airline industry is 
extremely complex, and is well known as a NP-hard 
problem. Such problems are conventionally solved with 
mathematical modelling techniques, which always require 
precise mathematical models and are hard to define. 
According to Chan et al. (2006), application of a pure 
mathematical optimization approach to determine an 
optimal solution may not be efficient in practice, even in 
classical scheduling problems. On the other hand, 
heuristic approaches, which can obtain a near optimal 
solution in a relatively shorter period, are more 
appreciated and practical. 

This study applies a method of Inequality-based multi-
objective genetic algorithm (MMGA) to generate an 
aircraft routing in response to weather-related schedule 
disruption of short-haul, quick turnaround flights from an 
environmental perspective. The objectives are to discover 
the most appropriate alternative with the least schedule 
disruption to prevent additional cost, reduce emissions 
and minimize the inconvenience of passengers. 
 
 
PROBLEM STATEMENT AND FORMULATION 
 
It is very difficult to specify the objectives of airline 
schedule disruption management. Usually, objectives fall 
into three broad categories: Deliver the customer 
promise, minimize the costs and get back to the original 
plan as soon as possible (Kohl et al., 2007). In multi-
objective optimization problem, a solution does not 
necessarily exist that is best with respect to all objectives 
because of incommensurability and conflicting objectives 
in the case of multiple objectives. A solution may be best 
relative to one objective but worst with respect to another. 
Therefore, for a multiobjective optimization problem, we 
seek a set of non-dominated solutions from which the 
decision-maker can choose one at personal own 
discrimination. 

The airline schedule disruption management problem 
can be briefly stated as: minimize the negative 
consequences of a perturbation that has made it impossi-
ble for one or more flights to depart on their scheduled 
time operated by their originally planned aircraft. The 
negative consequences are of course the (a) delays, (b) 
swaps, (c) cancellations and (d) positioning (ferrying) 
flights needed to solve the problem (Andersson and 
Värbrand, 2004). By the way, aircraft routing usually 
considered must be feasible with respect to the following 
constraints: (a) every flight in each aircraft route must 
depart from the airport where the immediately preceding 
flight arrived (flight connection constraint); (b) a minimum 
ground turnaround time must be enforced between each 
flight arrival and subsequent departure (ground 
turnaround time constraint). 

 
 
 
 
The airline schedule disruption management problem 
 
Aircrafts are the most valuable resources of airlines and 
the efficient utilization of them is an important consi-
deration in airlines operations. In order to minimize cost 
and maximize profits, most commercial airlines operate 
according to a published schedule that typically optimizes 
revenue and with resources allocated within the 
schedule, that is, they assume flight schedules can be 
carried out as planned without any uncertainties. 
However, those well-planned schedules are often sub-
jected to numerous sources of disruption. 

Airline schedule disruption usually arose from a local 
event such as an aircraft malfunction, a flight delay or an 
airport closure. In reality, even a small disruption might 
tend to extend far beyond the events that originated them 
because there is no slack available to accommodate any 
small unexpected events. Therefore, a small delay in the 
morning might trigger a cancellation in the evening if no 
appropriate recovery action taken. Meanwhile, these dis-
ruptions usually lead to lose of passenger revenues and 
induce additional costs. 

This study uses a method of inequality-based multi-
objective genetic algorithm (MMGA), which is proposed 
by Liu et al. (1994), to handle the schedule disruption 
management problem of short-haul and quick turnaround 
flights by optimizing five objective functions involving 
ground turn-around time, flight connection, flight swap, 
total flight delay cost and the flights over 15 min delay. 
Genetic algorithm has been used in help to solve the 
flight scheduling problem in recent years. The basic 
feature of genetic algorithms is the multiple directional 
and global searches, in which a population of potential 
solutions is maintained from generation to generation. By 
dealing simultaneously with a population of possible 
solutions; genetic algorithms allow us to find several 
members of the Pareto optimum set in a single run of the 
algorithm (Lee et al., 2007). Using an illustrative 
application example that obtained from a commercial 
airline, we show that the proposed method is able to 
solve the airline schedule disruption management 
problem efficiently. 
 
 
Formulations 
 

Let α , β , ω , and γ  denote the number of aircrafts, the 

maximum number of flights assigned to each aircraft, the 
number of airports, and the number of daily flights, 
respectively. Suppose that the set of ω  airports is P. The 
timetable, denoted as a set F, consists of γ daily flights. 

All the elements in the set F are determined from the 
market demands, and can be validated using various 
factors, such as the number of aircraft, crew size, the 
laws and regulations. Hence, the value of γ  is bounded 

in the range: βαγ ×≤≤1 . The flight  schedule  can  be  



 
 
 
 

defined as the S denoted as a two-dimensional βα ×  

matrix in equation (1): 
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where 
subscript i : a specific aircraft 
subscript j : a specific flight 

jis , : the j
th
 flight assigned to the i

th
 aircraft 

jin , : flight identification 

jip ,
ˆ : origin of jis , , where P∈jip ,

ˆ  

jip , : destination of jis , , where P∈jip ,  

jit ,
ˆ : departure time from

 jip ,
ˆ

 

jit , : arrival time in jip ,  

jiq , : original duty identification for each aircraft 

0,
ˆ

jit : original departure time from
 jip ,

ˆ
 

 
In this study, we formulate the airline schedule disruption 
management problem as a multiobjective optimization 
problem with many objectives functions, including hard 
objectives and soft objectives. The hard objectives must 
be satisfied by all feasible solutions, and the soft 
objectives are treated as goals to be reached, where the 
overall objective is to get as close as possible to these 
goals. The objectives in this research will be defined as 
(a) ground turnaround time; (b) flight connection; (c) flight 
swap; (d) total flights delay cost and (e) the flights over 
15 min delay. In this research, the soft objectives are to 
minimize the total delay cost, the flights over 15 min 
delay and to make as few swaps as possible. However, 
there is a clear trade-off between these three objectives 
and the quality of a solution to airline schedule disruption 
management is ultimately a matter of preference. 

The ground turnaround time for a short-haul flight is 
defined here as the time for an aircraft to complete full 
off-loading/loading passengers, performing the transit 
check, refuelling, catering and cabin cleaning procedures, 
etc. The ground turnaround time objective ensures that 
each aircraft has adequate ground turnaround time not 
less than the minimum ground turnaround time requested  
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by civil aviation authority, denoted as TGH, to be allowed 
for the subsequent flight. The evaluation function of this 
objective is defined as equation (2): 
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The flight connection objective guarantees that the arrival 

airport of jis ,  is the same as the departure airport of 

1+jis ,  for each aircraft in S, for α≤≤ i1 , 11 −≤≤ βj . 

The attribute jin , of jis ,  and 1+jis ,  stands for the order of 

the practical flights not necessary in sequence. So one 

can exchange jin ,  without effect jis , .  

This objective reduces the extra cost of the ferry flight 

from jip , to 1,
ˆ

+jip . The evaluation function of this 

objective is defined as equation (3): 
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Swapping is to trade flights that have later assignments 
with flights that have earlier broken assignments. 
Swapped flights must be at the same airport where the 
violation occurs. This objective can reduce the unne-
cessary flight duty swaps and the inconvenience for 
crews during the aircraft change. The evaluation function 
of this objective is defined as equation (4): 
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Since domestic flights in Taiwan are mostly short-haul 
flights, over long delay cost might cause extra cost to 
airlines by transferring passenger to other airlines or 
requiring the provision of meals and other services. 

According to estimation of Air Transport Association 
(ATA) (2008), the direct operating cost of aircraft block 
(taxi plus airborne) time is US$60.46 per minute in 2007. 
The total flight delay cost objective minimizes the sum of 
delay cost for each flight.  
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The evaluation function of this objective is defined as 
equation (5): 
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According to the definition of U.S. Bureau of 
Transportation Statistics (BTS), a flight is counted as ‘on 
time’ if it operated less than 15 min later the scheduled 
gate arrival/departure time shown in the carriers’ 
Computerized Reservations Systems (CRS). In other 
words, the flight will be counted as a ‘real’ delay flight if 

the revise departure time jit ,
ˆ  is greater than the original 

departure time 0jit ,
ˆ  plus 15 min. The evaluation function 

of this objective is defined as equation (6): 
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MMGA APPROACH FOR AIRLINE SCHEDULE DISRUPTION 
MANAGEMENT PROBLEM 
 
This study uses a method of inequality-based multiobjective genetic 
algorithm (MMGA), which is first proposed by Liu et al. (1994) in 
control system design, and further developed by Chou et al. (2008) 
in aircraft routing. These algorithm includes the following features: 
(1) a method of inequality to confine a genetic algorithm to search a 
Pareto optimal set in regions of interest with little computing effort; 
(2) an improved rank-based fitness assignment method to 
significantly increase the speed of fitness evaluation; and (3) a 
repairing strategy to relax the infeasible flight schedules to help 
reduce violations of solutions. 

The details of the MMGA algorithm operation will be explained in 
the followings: 
 
 
Input   
 

(1) A set of candidate solutions },,,{
)()(

2
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1

)( t

n

ttt
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population n in generation t. 

(2) Two temporary sets of candidate solutions: 
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'
t

D ,
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E
t
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(3) The admissible bound vector ε . 

 
 
Output 
 

A set of optimal candidate solutions within meeting the 
requirements of admissible bounds. 

 
 
 
 
Step 1: Determine the MMGA parameters: population size n, 

maximum number of generations g, crossover rate ]10[ ,r ∈ , and 

mutation rate 1][0,∈µ . 

Step 2: Determine the admissible bound vector 

][ 521 εεε ,,,ε L= of five objectives. 

Step 3: Let t:=0. Initialize the population D(t).. 
Step 4: Evaluate the auxiliary vector perform index of each 
individual S(t) in entire population n.  
Step 5: Apply improved rank-based fitness assignment method to 
calculate the fitness of each individual S(t). 
Step 6: If the number of current generation t reaches n, or all the 
objectives are satisfied, then stop the algorithm. 
Step 7: Choose two individuals using the rank-based selection 
method. 
Step 8: Perform crossover and mutation operations to generate the 

populations of next generation t+1 in the mating pool 
)(

'D
t

. The 

mutation operation randomly selects two flights in the chromosome 
and exchanges their positions. 
Step 9: Adopt the repairing strategy for the chromosomes in 

)(
'D

t
. 

Step 10: Evaluate the auxiliary performance index vector of each 

individual in 
)(

'D
t

.  

Step 11: 
)()()(

'DDD
ttt ∪=  

Step 12: Adopt improved rank-based fitness assignment method 

again to calculate the fitness of each individual in 
)(

D
t

, and let t: = 

t + 1. Go to Step 7. 

 
This study demonstrates that the flights assigned to each aircraft in 
random sequence by genetic algorithms may produce a temporary 
solution with high violation values, because some flights with earlier 
departure times are arranged after those with later departure time. 
Such a solution could be repaired to reduce the number of 
violations on the ground turnaround time objective. Hence, the 
repairing strategy is adopted to reorder all flights according to their 
departure times for each aircraft. For example, a flight with 
departure time 10:40 may be misplaced after a flight with arrival 
time 10:00. These conditions strongly violate the computed 
objective functions. Performing a repairing procedure, that is, 
ordering the flights according to their departure time, can help 
decrease the violations on the ground turnaround objective. The 
violations of the solution can be partially repaired after performing 
the repair procedure. Additionally, the Pareto optimal set of the 
flight schedules can be obtained easily. 

 
 
EMPIRICAL RESULTS 
 
Temporary closure of any airports and resulting flight 
schedule disruptions are the most extreme event in the 
daily operations of an airline. When the airport is tem-
porary closed, major disruptions to an airline’s flight 
schedule are unavoidable when the airport served by a 
large number of flights is suspended for any length of 
time. And the airline must evaluate immediately if this 
situation would influence any flight by knock-on delay or 
connection delays. Intelligently rescheduling of aircraft 
routing in such situations can save airlines cost and 
minimize the adverse impact on passengers. 



 
 
 
 

The purpose of this research is to determine a recovery 
schedule by optimizing five objectives functions men-
tioned above in response to the airport closure. In our 
proposed method allows for delaying flights and swap-
ping flight duty in the same fleet. For example, the 
empirical study in this research limits that any alternative 
aircraft routing must be feasible with respect to the 
following constraints and assumptions: 
 
(a) Only flight swaps and flight delays are considerable in 
our research, that is, no flight cancellation or ferrying 
flights allowed. 
(b) The ground turn-around time must be greater than 20 
min by the requisition of the authority. 
(c) No flights can depart from an airport when it is closed. 
(d) Any flights are planned to land at those airports during 
airport closure, their arriving times will be postponed to 
the reopening time. Any flights are planned to depart to 
those airports during airport closure, their departing times 
will be also postponed to the reopening time. 
(e) Airport time slots are assumed to be available. 
 
Due to the complexity of schedule recovery problem, 
previous works on this similar question usually only use 
flight delaying, flight swapping, or cancellation separately. 
In this research, we will incorporate flight delays and flight 
swaps in a single model. We expect to minimize the 
perturbation as few as possible by reduce flight swaps 
and total flight delay cost to assure the passenger’s 
satisfaction, and reduce environmental impact. 

In this research, we uses a real flight schedule obtained 
from a Taiwanese domestic airline, comprising 12 
aircrafts (C1, C2, …, C12) with 140 flights of DH-8 fleet in 
one operation day. The Gantt chart of original schedule is 
illustrated as Figure 1. The flight routes involve 11 
different airports and the flight network is showed as 
Figure 2. The two most common types of flight route 
networks in the world are point-to-point and hub-and-
spoke. In the hub-and-spoke network airports are 
separated into two groups, called hubs and spokes. Most 
spoke airports are served from only one hub and hubs 
are connected by regular flights. If disruptions occur at 
one or more hub airports, tracking and recovering the 
downstream impact of these flights could be extremely 
challenging and time consuming. In the point-to-point 
networks, this type of operation is less dependent on 
overcrowded hubs and therefore is less sensitive to major 
operational disruptions that are usually associated with 
hubs (Kohl et al., 2007). From Figure 2, we can find the 
flight network is combining point-to-point and hub-and-
spoke networks. In addition, all the flights are short-haul 
(less than one hour) and quick turn-around. These 
characteristics will increase the complexity while tackle 
the schedule disruption problem. 

We will discuss a case of one-hour temporary closure 
from 14:00 to 15:00 of Taipei Sungshan Airport (TSA) 
due  to  a  summer  afternoon  thunderstorm,  and  try   to  
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recover this disrupted schedule and evaluate the 
difference between recovered schedule and original 
schedule. The hardware used in this study is a Pentium4 
2.4G CPU computer with 512M RAM and the program is 
written by C language in Dev C++ development 
environment. The MMGA operators are population size 
100, crossover rate 0.9, mutation rate 0.01 and gene-
ration number 50000. Simulation results demonstrate that 
the application is capable of presenting high-quality 
solutions in 3 CPU minute, and therefore can be used as 
a real-time decision supporting tool for practical complex 
airline operations. Table 1 shows the computed Pareto 
Optimal sets for DH-8 fleet. 

There will be total 21 delay flights with 730 min total 
delay including 16 flights delay more than 15 min if no 
recovery action is taken after one-hour airport closure. 
Using the proposed method, a set of Pareto optimal set 
can be obtained in 3 min, compared to 15~20 min to 
create a manual solution. Comparisons of the MMGA 
approach result with a manual recovered schedule by a 
senior airline operation controller are given in Table 2. 

In most recently airlines operation, the usage of APU or 
GPU are more common when delayed on the ground. We 
will use these two scenarios in our experiment and the 
environment benefits are shown in Table 3. The emission 
costs can be estimated for each pollutant and is 
represented as Table 4 (Carlier et al., 2006). The relative 
environmental cost reduction of MMGA approach is 
represented by pollutant type in the following Figure 3. 

The fast solution times have made it possible to 
comprehensively evaluate the schedule creation process 
prior to the publication of a new recovered schedule by 
creating more proposed schedules. This demonstrates 
that the application is capable of presenting high-quality 
solutions, and can therefore be applied as a real-time 
decision support tool for practical complex airline 
operations. 
 
 
Conclusion 
 
The process of airline schedule disruption management 
in present airline operations is under extreme time 
pressure and often without complete information. It is 
also depends strongly on personal experience judgments 
because it must involve humans in many key parts of the 
process. Since it is a time consuming and complex task 
to construct a recovered schedule, the operation 
controllers are often satisfied with producing a single 
feasible plan of action. In addition the controllers have 
little help in estimating the quality of the recovery action 
they are about to implement. Determining the quality of a 
single recovery option is also difficult because the 
objective function is composed of several conflicting and 
sometimes non-quantifiable goals: for example, 
minimizing the number of passenger delay min, returning 
to the original  plan  as  quickly  as  possible,  and  at  the  
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Figure 1. The Gantt chart of original schedule. 
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Figure 2. Flight network. 

 
 
 

Table 1. Pareto solution set for DH-8 fleet. 
 

Schedule 
Total delay cost 

(US$) 
Delay over 15 min 

(Flights) 
Delay flights 

Flight swaps 

(Flights) 

1 16,928.8 6 9 4 

2 16,928.8 6 10 6 

3 16,928.8 6 10 8 

4 21,161 8 9 4 

5 16,928.8 6 10 4 
 
 
 

Table 2. Comparison of disrupted schedule, manual recovery and MMGA. 
 

Comparison 

Method 

Disrupted Schedule 

(No action taken) 

Manual Recovery by a 
senior controller 

MMGA Recovery 
(schedule 1) 

Solution time (Min) - 20 3 

Total delay cost (US$) 44,135.8 24,184 16,928.8 

Delay over 15 min. (Flights) 16 9 6 

Delay flight (Flights) 21 12 9 

Flight swaps (Flights) 0 2 4 

Cost saving
 
(US$) - 19,951.8 27,207 
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Table 3. Environment benefit of MMGA approach. 
 

Parameter 
                     Emission 

Method 

CO2 
(6.636Kg/min) 

NOx 

(10.4g/min) 

HC 

(0.6g/mim) 

CO 

(15.6g/min) 

APU on only 

Disrupted Schedule 4,844.28Kg 7,592g 438 g 11,388 g 

MMGA Approach 1,858.08 Kg 2,912 g 168 g 4,368 g 

Benefit -2,986.2 Kg -4,680 g -270 g -7,020 g 

      

GPU on only 

Disrupted Schedule 459.9 Kg 14,600 g 4,562.5 g 4,891 g 

MMGA Approach 176.4 Kg 5,600 g 700 g 1,876 g 

Benefit -283.5 Kg -9,000 g -3,862.5 g -3,015 g 

 
 
 

Table 4. Emission unit costs. 
 

Pollutant type Unit costs (€/ton) 

CO2 37 

NOx 6,414 

HC 5,543 

CO 142 

 
 
 

-€ 110.49

-€ 30.02

-€ 1.50 -€ 1.00

-€ 10.49

-€ 57.73

-€ 21.41

-€ 0.43

-€ 120.00

-€ 100.00

-€ 80.00

-€ 60.00

-€ 40.00

-€ 20.00

€ 0.00
CO2 NOx HC CO

APU ON

GPU ON

CO2 

 
 
Figure 3. Relative environmental cost reduction of MMGA approach. 

 
 
 

same time minimizing the cost of the recovery operation. 
An optimal solution is not always available in real-world 

airline disruption management problems, because  of  the 

complex situations and limited resources. However, 
airline operations controllers have to discover a feasible 
solution  in  an  acceptable   short   time   to   ensure   the  



 
 
 
 
promised service level and maintain the profitability of an 
airline. In this study, we develop an alternative optimi-
zation models based on the Method of Inequality-based 
Multiobjective Genetic Algorithm and using them 
generate recovery schedule that allow flight delaying, 
flight swapping, and ensure the compliance of the 
limitation including ground turnaround time as well as 
aircraft flight connection. The objective is to find the 
optimal trade-off between operating perspective (that is, 
total flight delay cost, flight swap) and service perspective 
(flights over 15 min delay). The focus of this proposed 
model is not to create the optimum solution under the 
strict academic assumption, but rather to provide a 
flexible tool that can help the airline schedule recovery 
process in real airline operations environment. 

We evaluate our recovery solutions using real flight 
schedules representing the operation of a Taiwanese 
domestic airline. The flight cancellation does not take into 
consideration in our model, because the total effect of 
flight cancellation is very difficult to evaluate and the 
model will be hard to describe precisely. We assume that 
the time slots are still available; due to the airlines will not 
need to submit the new time slots during the real-time 
schedule disruption management. Computational experi-
ments demonstrate that the proposed model can recover 
a disrupted schedule within a very short time, making it a 
very powerful supporting tool for decision-making during 
the airline disruption management process. 

Since the particular operation environment of most low-
cost carriers, that is, short-haul flight, quick turnaround, 
and very competitive market, airline operation controllers 
normally cannot wait very long to obtain a feasible 
solution for recovered schedule. Most airlines currently 
rely on humans to execute recovery process in the face 
of a disruption, rather than using optimization algorithms 
for this task. The operation controllers will certainly 
benefit from the use of a decision support system based 
on a recovery algorithm able to provide several recovery 
alternatives quickly in the complex and intensely com-
petitive airline environment. 
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