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This paper extends real options theory to consider the situation where the mean appreciation rate of 
cash flows generated by an irreversible investment project is not observable and governed by an 
Ornstein-Uhlenbeck process. The main purpose of this study is to analyze the impact of the 
uncertainnty of the mean appreciation rate on the pricing and investment timing of the option to invest 
under incomplete markets with partial information. We assume that an investor aims to maximize 
expected discounted utility of lifetime consumption. Based on consumption utility indifference pricing 
method, stochastic control and filtering theory, under constant absolute risk aversion (CARA) utility, we 
derive the implied value of cash flows after investment, and then obtain the implied value and the 
optimal investment threshold of the option to invest, which are determined by a semi-closed-form 
solution of a free-boundary partial differential equations (PDE) problem. We show that the solutions are 
independent of the utility time-discount rate. We provide numerical results by finite difference methods 
and compare the results with those under a fully observable case. Numerical calculations show that 
partial information leads to a significant loss of the implied value of the option to invest. This loss 
increases with the uncertainty of the mean appreciation rate. In contrast to standard real options 
theory, a high volatility of cash flows decreases the implied value of the option to invest as well as the 
implied information value. 
 
Key words: Partial information, cash flows, consumption utility-based indifference pricing, real options, implied 
information value. 

 
 
INTRODUCTION 
 
This paper extends the real options theory to consider the 
situation where the mean appreciation rate of cash flows 
generated by an irreversible investment project is an 
unobservable random variable. The objective of an inves-
tor is to maximize expected utility of consumption over an 
infinite time horizon with the option to invest in the 
project, which can be exercised by him at some endoge-
nously chosen time  . We assume that cash flows 

evolve according to an arithmetic Brownian motion. 
Similar to the work of Miao and Wang (2007), we assume  
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that the investor has access to only one risk-free asset. 
Based on consumption utility-based indifference pricing 
methodology and real options theory, we derive semi-
closed-form solutions for the implied value and 
investment threshold of the option to invest in the project. 
We analyze the impact of the uncertainty of the mean 
appreciation rate on the implied value and threshold. 
Comparing the results with that under a fully observable 
case, we quantify the loss of the implied value resulting 
from partial information and obtain the implied information 
value.  

The real options approach to investment under 
uncertainty originates from the work of Myers (1977) and 
presently becomes more and more popular. Major 
milestones in this development are McDonald and Siegal 
(1986), Myers and Majd (1990) and Dixit and Pindyck 
(1994) among others. Recently, Henderson and Hobson 
(2002), Miao and Wang (2007), Henderson (2007) and 
Ewald and Yang (2008)  study  the  real  options  problem  



 
 
 
 
under incomplete markets by utility-based indifference 
pricing methodology. However, all the papers assume 
that the investor has access to full information. In other 
words, the mean appreciation rate of the project value or 
cash flows and the driving Brownian motion are assumed 
to be observable, which is of course unrealistic.  

Following Yang and Yang (2010b), the special feature 
of this paper is that in contrast to the above papers, we 
shall not assume that the investor can observe the mean 
appreciation rate and the Brownian motion appearing in 
the stochastic differential equation on the project cash 
flows. This situation is called the case of partial 
information in the literature.  

The "partial information" assumption in our model is 
quite realistic since the mean appreciation rate and the 
paths of Brownian motions are fictitious mathematical 
tools, which are of course not observable. On the 
contrary, the volatility/dispersion parameter for the project 
cash flows will be observable since one can prove that 
the volatility is adapted to the filtration generated by the 
project cash flows.  

In fact, financial econometricians agree that it is feasi-
ble to obtain good estimates of volatility parameters but 
much harder to estimate expected returns or the mean 
appreciation rate (Merton, 1980). Take stock prices for 
example. According to Brennan (1998), the mean return 
or mean appreciation rate on common stocks since 1926 
is often cited as the best estimate of the mean return, 
there are good reasons to doubt that this parameter has 
remained constant for almost three quarters of a century 
which has witnessed the most dramatic economic, tech-
nological and social change of any comparable period in 
history. Therefore, as a practical matter, it is of interest to 
consider how the optimal investment allocation is affected 
by uncertainty over this important, but hard to estimate, 
parameter.  

Our model is closely related with the research line of 
optimal investment with partial information, say Gennotte 
(1986), Lakner (1998), Brennan (1998), Yang and Ma 
(2001), Xiong and Zhou (2007), Monoyios (2007), 
Monoyios (2008) and Wang(2009), to name just a few. 
But all of the papers did not consider investing in an 
irreversible investment project.  

The differences between Décamps et al. (2005), Klein 
(2007, 2009), Yang and Yang (2010a) and this paper are 
also evident, although these papers do discuss the real 
options problems with partial information also.  

First, we suppose that the mean appreciation rate 
follows a normal distribution other than a two-point 
distribution as assumed by these papers. Second and the 
most importantly, we solve the real options problem 
based on consumption utility-based indifference pricing 
methodology, while these papers assume that the 
investor is risk-neutral. To the best of our knowledge, this 
paper is most related with Yang and Yang (2010b). How-
ever, we assume in this paper that the investor obtains 
stochastic cash flows rather than a lump-sum payoff upon 
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investment as assumed by Yang and Yang (2010b). This 
difference is nuisance in a risk neutral world but signifi-
cant in our model since we suppose that the investor is 
risk-averse and thus, one cannot get an equivalent lump-
sum payment simply by discounting future cash flows. 
Last but not least, these papers also measure the implied 
information value with respect to investment under uncer-
tainty and study its relation to other economical factors. 
While this study is important, it is also especially chal-
lenging. The additional main difficulty is that, we must first 
derive the filtering estimation of the parameter and the 
filtering process is valued in the infinite-dimensional 
space of probability measures: it satisfies the Zakai 
stochastic partial differential equation (Pham, 2005) and 
references therein for additional details. For this reason, 
we provide an elementary setting at the start and a more 
complicated model will be studied in the future. In the 
following text, we first develop a more general investment 
model than indicated above and then focus on the above-
mentioned case in order to get a simpler semi-closed-
form solution.  
 
  

MODEL SETUP 
 

In this section, we develop an investment model under 
uncertainty with partial information. As studied by Wang 
(2009) and Yang and Yang (2010a), we consider the 
case where the investment payoff is given in cash flows 
form. Time is continuous and the horizon is infinite. 

Suppose that we have a given complete probability 

space ( )F P  , and on it (i) two standard Brownian 

motion 
1 2

0( )t t tZ Z  , where process 
1Z  and 

2Z  are, 

without loss of generality, assumed to be independent, as 

well as (ii) a random variable 0  , independent 

of the process 
1Z  and 

2Z , which is normal with prior 

mean 0m  and variance 0v . 

Similar to the work of Miao and Wang (2007), we 
consider the situation where an investor has access to 
only one risk-free asset. Specifically, the investor may 

borrow or lend at a constant risk-free 0r  . In addition, 

the investor can choose to invest or not to invest in an 
irreversible investment project, which can be undertaken 

at a time   by him. Investment cost 0I   paid at the 

exercising time  . After investment, the investor obtains 

a perpetual stream of payoffs tX t   . Assume that the 

cash flow payoff process 0( )t tX   is observable and 

governed by the following arithmetic Brownian motion 
equation: 
 

1

0 givent t tdX dt dZ X                                               (1) 

 
where volatility  ( )  is  a  known  positive  constant  and  
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0( )t t   is the mean appreciation rate process. This 

process implies that payoffs can take negative values 
and it refers to negative values as losses. In contrast to 
most of the literatures on real options theory but similar to 
Gennotte (1986) and Lakner (1998), we assume that the 
mean appreciation rate process is not observable and 
governed by 
 

1 2

0 1 1 2( )t t t td a a dt b dZ b dZ                                (2)                                      

 

where 0 1 1a a b   and 2b  are known constants. Equation 1 

and 2 say that the project value is subject to two different 

sources of uncertainty. The first one is, 
1Z , affects 

current project value, tdX , and also future expected 

appreciation rate, td .  

The second one, 
2Z , affects only future project value 

through its effect on future expected appreciation. 

Clearly, if 1a  is negative, then process 0( )t t   will be an 

Ornstein-Uhlenbeck process with mean-reverting drift.  

We denote by { 0}tF F t    the P -augmentation of 

the filtration 1 2

0( 0 )s sZ Z s t        generated by process 

1 2Z Z  and the random variable 0 , and by { 0}tG G t    

the P -augmentation of the filtration ( 0 )sX s t     

generated by the cash flow payoff process X . Since the 
investor can only observe the project value process 

0( )t tX  , and the mean appreciation rate process 0( )t t   

together with process 1 2

0( )t t tZ Z   is not observable, the 

information available to the investor at time t  is partial 

and modeled by the  -field tG .  

In other words, only G -adapted process is observable. 

Clearly, the assumptions are more reasonable than that 
assumed by [20] among others, although as seen below, 
it leads to a much more complicated decision problem.  

Let   be the stopping time of investment and T  be the 

set of { 0}tG t  -stopping times. Denote the wealth 

process of the investor by 
0( )t tW W  , which is evidently 

G -adapted thanks to Equation 3 and 4 given below. Let 

C  be the space of { 0}tG t  -progressively measurable 

process C , taking value on [0 ) , such that 

0

t

sC ds     for any 0t  . In this paper, sC  represents 

the consumption rate selected by the investor at time s  

and the consumption is taken from the bank account. We 

call a consumption process C  is admissible , if C C .  

An investor is characterized by his initial wealth 0W , a 

time-discount rate   and his preference ( )U  . He seeks 

to choose a stopping time T  , here     represents  the  

 
 
 
 
time to invest in the project, and a consumption process

C C  so as to maximize his expected lifetime time-

additive utility of consumption conditional on all available 
information: 
 

  0
0

( ) exp ( ) ( )sJ C E s U C ds G C T C  
 

 
 
 

              (3)   

 
Since the saving is the only financial investment that the 
investor may use to smooth his consumption over time, 
this optimization problem is therefore, subject to the 
following budget constraint: 
  

0

( ) 0

( )

given 0 for 0

s s s

s s s s

s

dW rW C ds s

W W I

dW rW X C ds s

W W s

 







     


  


     
    

                                  (4)    

 

where process X  is given by Equation 1 and 2, ( )U   is 

an increasing, concave, twice differentiable von Neuman-
Morgenstern utility function.  

Clearly, this market is incomplete because the risk-free 
asset is the unique tradable asset while cash flows are 
uncertain.  

As usual, we do not consider borrowing constraints and 
transaction costs so as to highlight the effects of market 
incompleteness and partial information.  

In the following, we consider the optimization problem 
Equation 3 under CARA utility, that is, exponential utility 
with 
 

( ) exp( )U c c c                                            (5)                                                  

  

where 0   is the absolution risk aversion parameter. 

As assumed by Henderson (2002), Ewald and Yang 
(2008), Miao and Wang (2007) and Henderson (2007) 
among others, we choose the exponential utility primarily 
for separating wealth out of the problem, which allows for 
semi-closed-form solutions for the value of the option to 
invest and the investment threshold in our partial 
information model.  

Clearly, this is an optimization problem with a partially 
observable system since the state process   is not 

observable.  
According to a separation theorem established by 

Gennotte (1986) for instance, we can solve this problem 
by two steps.  
We first derive the filtering estimation for the mean 
appreciation rate process and then an optimal strategy is 
chosen conditional on these estimates. 
 
 

Filtering estimation for the mean appreciation rate 
 

In this here, we apply the  filtering  technique  to  estimate 



 
 
 
 

the mean appreciation rate 0{ }t t  . Denote 

( )t t tm E G   and 
2[( ) ]t t t tv E m G   . The 

following lemma follows from theorem 11.1 in Liptser and 
Shiryayev (1977). 
 
Lemma 1: If the conditional distribution 

0 0 0( ) ( )G x P x G     is normal with mean 0m  and 

variance 0v , a.s., then the conditional distribution 

( ) ( )
tG t tx P x G     is normal with mean tm  and 

variance tv , a.s.. From this lemma we see that tm  is the 

optimal estimate of t  under the observed information 

tG . 

 

Lemma 2: Let 0{ }t t tX   be stochastic processes with 

differentials given by Equation 1 and 2. Suppose that 

0 0( )P x G    is Gaussian with mean 0m  and variance 

0v . Then tm  and tv  satisfy the following equations: 

  

 1
0 1 2

2

2 2 1
1 1 2

( )

0

2

t
t t t t

t
t t

b v
dm a a m dt dX m dt

t
b v

a v b bv










    


 

         

     (6)                         

 
Proof: The conclusion of this lemma follows directly from 

 

By separation of variables, ( 0)tv t   is solved explicitly 

as follows: 
 

1
2 2 2

22 2 2 2 20
2 22

0

1

22

0

2
2 1 exp if 0

1
if 0

t

bv v
v b t b

v v
v

t
b

v

 
  















            
       
 
     
    

                                                                                      

(7)             

 

where, 
2 2 2 2

1 1 2a b v b             

 

Remark 1: (i) The magnitude of tv  is a characterization 

of the accuracy of the estimate tm  of t . If tv  

converges to zero as t , then we say that tm  is a 

consistent estimate of t . (ii) It is clear that tv v  as 

t . Note that 0v   if and only if 2 0b   and 0  . 

Namely, tm  is not consistent in general.   

Now we define the innovation process by its  differential 
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  
1

t t td dX m dtZ


                                                    (8) 

 

It is well-known from the theory of filtering that 0{ }t tZ Z   

is a standard Brownian motion with respect to the 
stochastic basis 

0( { } )T t tG P G    .  

According to Equation 8 and 6, we obtain immediately 
that 
 

1
0 1( ) t

tt t

tt t

b v
dm a a m dt dZ

dX m dt dZ








   


   

                     (9) 

 
 
Model solutions 
 
In here, we discuss the problem on the pricing and 
investment timing of the option to invest in a project, of 
which the project value process is defined by Equation 1 
and 2. We provide a PDE to determine the implied value 
and the optimal investment threshold of the option to 
invest by the consumption utility indifference pricing 
method.  

Based on the filtering estimation and the separation 
theorem, equivalently, we restate the optimization 
problem formulated in previously as follows: 
 

  0
0( )

sup ( ) exp ( )s
C T C

J C E s U C ds G


 
 

 
 
   

              (10)  

 
subject to 
 

1
0 1

0 0 0

( ) 0

( )

( )

0 0 given and 0 for 0

s s s

s s s s

ss s

s
ss s

s

dW rW C ds s

W W I

dW rW C X ds s

dX m ds d Z

b v
dm a a m dt d Z

W X m W s

 













     


  

      


  


    

       

   (11)  

 

where sv  is given by Equation 7. 

We notice that if investment has taken place, the 
problem described by Equation 10 subject to Equation 
11, which is an optimal consumption-saving problem with 
stochastic cash flows, which continuously changes the 
wealth levels and thus the consumption-saving strategy 
as well. Accordingly, in contrast to Yang and Yang 
(2010b), the corresponding value function must depend 
on   the   current   filtering   estimation    based    on    the  
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incomplete information no matter whether investment has 
taken place or not, which of course makes the problem 
discussed here more challenging than that studied by 
Yang and Yang (2010b). In this way, we actually find that 
all relevant information on the current and future physical 
state of the economy is summarized in the current wealth 

level W , the current cash flow rate X , the filtering 

estimation m  and the time t . For this reason, if the 

current time is t , throughout the following text, we denote 

the value function of Equation 10 subject to 11 after and 
before investment has taken place, respectively by 
 

 
0 ( )t t tV W X m t    and ( )t t tV W X m t   .  

 

If we are able to find a stopping time T   and an 

admissible consumption process C
, such that 

 

0 0 0
( )

( 0) ( ) sup ( )
C T C

V W X m J C J C


  

  

              (12)                                   

 

then the stopping time  
 is obviously the optimal 

exercising time of the option to invest. In order to derive 
the consumption utility indifference price of the option to 
invest and the value of cash flows, we define: 
 

 0 (( ) ) exp ( ) ( )s s t s t
t

J C E s t U C ds G C C
 

 
  

 

           (13)                           

 
and consider the following optimization problem: 
 

0sup (( ) )s s t
C C

J C 


                            (14)                                                           

 
Subject to: 
 

( ) 0 given 0 fors s s t sdW rW C ds s t W W s t                      (15)                          

 
Clearly, this optimization problem corresponds to the 
situation where the investment project never exists.  

Noting that the problem formulated by Equation 14 and 
15 is a deterministic control problem, similar to the work 
of Merton (1971), we obtain the following explicit solution 
by dynamic programming: 
 

0

0

( ) (( ) )

sup (( ) )

1
exp(1 )

t s s t

s s t t
C C

t

G W J C

J C W

r rW
r

 









 

 

     

                   (16)                                        

 

where sC 
 is the optimal consumption rate selected at 

time s , and it is given by; 

 
 
 
 

                                                       (17)                                                        
 
According to consumption utility indifference pricing 
principle, we therefore define the consumption utility 
indifference price or implied value of the option to invest 

at time 0  by number y , which satisfies 

 

0 0 0 0( 0) ( )V W X m G W y     
                      

             (18)                                               

 
Actually, Equation 18 says that the consumption utility 
indifference price for adding the option to invest in this 
project is defined as the compensating variation y  of his 

present wealth that leaves his (indirect) utility unchanged. 
Similarly, we define the consumption utility indifference 
price or implied value of cash flows after investment at 
time t  by number z , which satisfies 

 
0 ( ) ( )t t t tV W X m t G W z                                          (19)                                             

 

Remark 2: If the time-discount rate   is greater than the 

bank interest rate r , and the investor still selects 
consumption rate according to Equation 17, then the 
investor’s wealth will get negative after a finite time. 
Hence the consumption process given by Equation 17 is 
not admissible. For this reason, in order to get an optimal 
solution that is taken on the inside (other than boundary) 
of the admissible domain under the constraint conditions 
including Equation 11, we assume in this paper that 

r  .   

In general, if the investment project is not exercised as 
of date t , then the implied value y  of the option to invest 

at time t  is given by 
 

( ) ( )t t t tV W X m t G W y                                        (20)                                             

 

where ( )t t tV W X m t    is the value function defined by  

 

 
( )

( ) sup exp ( ) ( )t t t s t
tC T C

V W X m t E s t U C ds G



 

 
 
   

      
  (21)                     

 
Subject to Equation 11 thanks to the assumption of 
CARA utility, we will show that the implied value of the 
option and cash flows at time t  are functions only of 

project value tX , filtering estimation tm  and time t . We 

denote these functions by ( )t tz f X m t    and 

( )t ty g X m t    respectively. In the following, we 

provide two second-order semi-linear homogeneous 
PDEs with three independent variables, of which 

functions ( )f x m t   and ( )g x m t   are respective 

solutions.  

s s

r
C rW

r





 
  



 
 
 
 

To achieve this goal, we solve the investor’s decision 
problem by dynamic programming. By the standard 

argument, 
0 ( )t t tV W X m t    satisfies the following 

Hamilton-Jacobi-Bellman equation: 
 

 0 0 0 0

0 1
0

2 0 2 0

10 0
1 2

sup ( ) ( ) ( )

( )
( ) 0

2 2

w t x m
c

xx t mm
t mx

rw x c V U c V mV a a m V

V b v V
b v V V

 
 





      


      

     (22)                         

 

where the subscript of 
0V  denotes the differentiation with 

respect to that variable. The usual transversality 
condition: 
 

0lim [exp( ) ( )] 0t t t
t

E t V W X m t


       

 
must be satisfied. This is a condition for convergence of 
integral. The first-order condition for the optimal 
consumption policy after the option is exercised should 
be: 
 

0( ) WU C V    

 
And then, let’s turn to the case before the option is 
exercised. By Bellman principle, problem Equation 21 
can be equivalently written as 
 

 
( )

0

( ) sup exp ( ) ( )

exp( ( )) ( )

t t t s
tC T C

t

V W X m t E s t U C ds

t V W I G









 

  


 

     


    

       (23)                     

 
subject to Equation 11.  

This is a combined stochastic control and optimal 
stopping problem. According to IV(3.21) in Fleming and 
Soner (2006), the Hamilton-Jacobi-Bellman equation now 
has the form 
  

  0 1
0

2 2

1
1 2

sup ( ) ( ) ( )

( )
( ) 0

2 2

w t x m
c

xx t mm
t mx

rw c V U c V mV a a m V

V b v V
b v V V

 
 





     


      

   

                                                                                     (24)                             
 
Similarly, the first-order condition for the optimal 
consumption policy before the option is exercised should 
be: 
 

( ) WU C V    

 

In order to find a solution ( )V w x m t    of Equation 24, 

which is just the value function defined in (21), we must 
specify  the  following  conditions.   First,   the   no-bubble  
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condition ensures lim ( ) ( )x t t t tV W X m t G W     , 

which states that when cash flows goes to negative 
infinity before exercising the option, the investor will 
never exercise the investment option and his value 
function will be equal to that without the investment 

project. Second, at a free boundary point ( )w x m    , 

the following value matching condition and smooth-
pasting conditions are imposed, see Equation 14 and 3 
for details: 
  

0

0

0

0

0

( ) ( )

( ) ( )

( ) ( )

( )) ( )

( ) ( )

w w

x x

m m

t t

V w x m V w I x m

V w x m V w I x m

V w x m V w I x m

V w x m V w I x m

V w x m V w I x m

 

 

 

 

 

         


        


        
         

         

                       (25)                                 

 
On account of Equation 16, we guess that the value 
functions before and after the option is exercised take the 
following forms respectively 
 

0 1
( ) exp(1 ( ( )))V w x m t r r w f x m t

r
 


             (26)                         

 

1
( ) exp(1 ( ( )))V w x m t r r w g x m t

r
 


             (27)                           

 

where functions f  and g  are to be determined. And the 

corresponding optimal consumption rules should be 

[ ( )]
r

r
c r w f x m t






      and [ ( )]

r

r
c r w g x m t






      

respectively. Then substituting them into the Hamilton-

Jacobi-Bellman equations, we get the function f  and g  

are the respective solutions of the following second-order 
semi- linear homogeneous PDEs: 
 

2 2

0 1

2
21

1 2

1
( ) [ ( ) ]

2

( )
( )[ ] [ ( ) ] 0

2

t x m xx x

t
t x m mx m mm

rf x f mf a a m f f r f

b v
b v rf f f r f f

 


  



       


      

                           

                                                                                     (28)    
                     

2 2

0 1

2
21

1 2

1
( ) [ ( ) ]

2

( )
( )[ ] [ ( ) ] 0

2

t x m xx x

t
t x m mx m mm

rg g mg a a m g g r g

b v
b v rg g g r g g

 


  



      


      

            

                                                                             (29)                      
 

subject to the no-bubble condition lim ( ) 0x g x m t     

and the free boundary conditions: 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

x x

m m

t t

g x m f x m I

g x m f x m

g x m f x m

g x m f x m

 

 

 

 

      


     


     
      

                                  (30)                                               

 

where the subscript of functions f  and g  denote the 

differentiation with respect to that variable.  
Naturally, the optimal exercising time is the first time 

the implied value of the option to invest becomes less 

than the implied net return ( )t tf x m t I    getting from 

the investment. In summary, we obtain the following 

theorem: Theorem 1, Suppose that r  , ( )f x m t   

and ( )g x m t  are solutions of the PDEs formulated by 

Equation 28, 29 and 30. Define stopping time  
 by 

  

 inf 0 ( ) ( )t t t tt g X m t f X m t I             (31) 

 

then  
 is the optimal exercising time of the option to 

invest. The optimal consumption rate is given by 
  

[ ( )] 0

[ ( )]

t t t t

t t t t

r
c r W g X m t t

r

r
c r W f X m t t

r











 

 


        




        


               (32)                                    

 

The implied value ( )t tF X m t   of the option to invest is 

given by 
 

( )
( )

( )

t t

t t

t t

g X m t t
F X m t

f X m t I t









     
   

     

                  (33)                                  

 

From Theorem 1, while the time-discount rate   has 

impact on the optimal consumption rate and the total 
consumption utility, we get an interesting conclusion, 
which is shown this study.  
 
Corollary 1: The implied value and the optimal 
exercising time of the option to invest are independent of 

the time-discount rate   of the consumption utility, 

Remark 3. This conclusion differs from Dixit and Pindyck 
(1994), Henderson (2007), Ewald and Yang (2008) and 
Décamps et al. (2005) and many others, in which the 
pricing and exercising are based on the ordinary utility 
indifference instead of the consumption utility indifference 
we argue in this paper. Naturally, Corollary 1 is a good 
result we expect, since we do not hope that there are two 
different  prices  and  exercising  times  for  two  investors 
 with the same utility but only different time-discount  

 
 
 
 
rates. 

According to this point only, we can also think that 
consumption utility-based indifference pricing method is 
superior to the ordinary utility-based method.  
 
 
A deterministic case 
 
The purpose of this segment is two-fold: First, it aims to 
give an example for the application of the above 
conclusions; and second, in so doing, to provide a very 
simple model that allows us to develop intuition for how to 
price and exercise the option to invest based on 
consumption utility indifference pricing method.  

As argued by Dixit and Pindyck (1994), although we will 
be mostly concerned with the ways in which the 
investment decision is affected by uncertainty, it is useful 
to first examine the deterministic case, that is 

0 1 1 2 0 0a a b b v        in Theorem 1. As we see below, 

there can still be a implied value of the option to invest.  
Under this deterministic situation, an investor has a 

deterministic irreversible investment project. Once he 
invests in this project, he gets permanent cash flows. The 
project value is governed by a deterministic ordinary 

differential equation 
0 0 0tdX dt X    with known 

constant 0 0  . Clearly, 0t tm     and 0tv   for 

all 0t   under this case. Hence, Equation 28 and 29 is 

simplified to 
  

0 0t xrf x f f                                                           (34)                                                   

 

0 0t xrg g g                                                          (35)                                                      

 
Combining Equation 34, 35 and 30, we get the solution  
 

0

2
( )

x
f x m t

r r


                                                 (36)                                                     

 

0

2

0

( ) exp[ ( )]
r

g x m t x rI
r




                                   (37)                                             

 
Remark 4: For the same reason with the argument in 

remark 2, we assume here that 0r  . Making use of 

the boundary condition ( ) ( )g x m t f x m t I       and 

( ) ( )x xg x m t f x m t      again, we obtain the optimal 

investment threshold 
  

x rI        (38)                                                           

 
According to Equation 31, we get the optimal exercising 
time; 



 
  
 
 

0

0

inf 0

max 0

tt X x

rI x





  
 
 

   

 
   

 

                                           (39)                                         

 

Consequently, the optimal investment threshold x
 

divides the state space [0 )  of the project value X  

into two regions: the investment region, [ )x , and the 

waiting region, [0 )x . Substituting Equation 36, 37 into 

32, we obtain the optimal consumption rate at time t  

 

0

0

0

exp[ ( )]t t

t t

r r
c x rI rW t

r r

r
c x rW t

r r




 






 

 


      




       


              (40)                               

 

where  
 is derived in Equation 39. In addition, thanks to 

Theorem 1, the implied value is given by 
 

0

2

0

0

2

exp[ ( )]

( )t t

r
x rI t

r
F X m t

x
I t

r r














   

   
     


             (41)                                  

 
As expected, both the implied value and the optimal 
investment threshold are independent of the risk aversion 

parameter   and the time-discount rate  . 

 

 

A stochastic case 
 

We will now return to the stochastic case, in which 

0 0 0v     but 0 1 1 2 0a a b b    . Thus, under this 

case, the mean appreciation rate is a Gaussian random 

variable with mean 0m  and variance 0v , which is 

independent of time. 
 
 

Partial information 
 

This is a special case discussed previously; we can 
naturally make use of above-mentioned conclusions to 
derive all the desired results. For example, according to 
Lemma 3, we have 
  

 2

2 0

t t
tt t t

t
t

v v
dm dx m dt d Z

t
v

v

 




   


 

       

            (42)                                  
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to which we get explicit solutions 
 

0 0

2 2

0

2

0

2

0

t
t t

t

m x x
m v

v

v
v

v t

 





  
     

  



 
 

                                        (43)                            

 
The proof of Equation 43 is simple, so we omit here. 

Thanks to Equation 43, we find that the estimation tm  is 

a function of t  and tX . For this reason, the 

corresponding value function 
0V  and V  depend only on 

W X  and time t , and thus can be written as 

0 ( )t tV W X t   and ( )t tV W X t  . By this way, we derive 

more simple Hamilton-Jacobi-Bellman equations than 
Equations 22 and 24 as follows: 
 

 
2 0

0 0 0 0

0

sup ( ) ( ) 0
2

xx
w t x

c

V
rw x c V U c V mV V






               (44)                      

 

 
2

0

sup ( ) ( ) 0
2

xx
w t x

c

V
rw c V U c V mV V






                (45)                              

 
with transversality condition 
 

0lim [exp( ) ( )] 0t t
t

E t V W X t


      

 

the no-bubble condition lim ( ) ( )x t t tV W X t G W     

and the following value matching condition and  smooth-
pasting conditions: 
  

0

0

0

0

( ) ( )

( ) ( )

( ) ( )

( ) ( )

w w

x x

t t

V w x V w I

V w x V w I

V w x V w I

V w x V w I









     


    


    
     

                                          (46)                                                    

 
As we did previously, we guess that the value function 
has the form 
  

0 1
( ) exp(1 ( ( )))V w x t r r w f x t

r
 


                      (47)                              

 

1
( ) exp(1 ( ( )))V w x t r r w g x t

r
 


                      (48)                               

 
Further, similar but different to the analysis of Wang 
(2009), we have; 
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2

2 2
( ) ( )

2

tmx
f x t h t

r r r


                                        (49)                                             

 

where ( )h t  measures the impact of the incomplete 

information on the certainty equivalent wealth after the 

option is exercised. And then, we get function h  and g  

are solutions of the following equations: 
 

2 2
20 0

2 2 3 2

0 0

( )
( ) 2

t

v v
rh h

r v t r v t

 

 
   

 
                (50)                                     

 
2 2

20 0 0

2 2 2

0 0 2
x xx x t

m x vx
rg g g rg g

v v t

 


  

 
 
 

 
       

 

      (51)                         

 

subject to the no-bubble condition lim ( ) 0x g x t    

and the boundary conditions 
  

( ) ( )

( ) ( )

( ) ( )

x x

t t

g x f x I

g x f x

g x f x

 

 

 

    


   
    

                                              (52)                                                   

 
Additionally, in that there is no further belief updating 
once time t  goes to positive infinity, the termination 

condition for h  is 

  

lim ( ) 0
t

h t


   (53)                                                           

 
To sum up, following Theorem 1, we present a similar 
result as follows. 
 

Theorem 2: Suppose that r   and ( )f x t  and 

( )g x t  are solutions of the PDE formulated by Equations 

50 and 51. Define stopping time  
 by 

  

 inf 0 ( ) ( )t tt g X t f X t I                          (54)                                     

 

then  
 is the optimal exercising time of the option to 

invest.  
The optimal consumption rate is given by 

 

[ ( )] 0

[ ( )]

t t t

t t t

r
c r W g X t t

r

r
c r W f X t t

r











 

 


       




       


               (55)                                  

 

The impled value ( )tF X t  of the option to invest is given 

by; 

 
 
 
 

( )
( )

( )

t

t

t

g X t t
F X t

f X t I t









    
  

    

                                     (56)                                       

 
 
Net present value (NPV) of cash flows with partial 
information 
 
In this here, we derive the corresponding net present 
value (NPV) of cash flows with partial information and 
compare it with the implied value of cash flows derived in 
this paper.  

By this way, we can make clear the effect of the risk 
aversion on the value of cash flows in a new viewpoint.  

Following Friedman (1957) and Hall (1978), the net 
present value of cash flows is defined as the expectation 
of the sum of discounted cash flows at the risk-free rate. 
That is, 
 

0 ( )( ) ( )r s t

s t
t

f x t E e X ds G


                                  (57)                                           

 

Since we take 0 1 1 2 0a a b b     here, it follows from 

Equation 9 and 42 that 
 

t
tt

tt t

v
dm dZ

dX m dt dZ






 


   

                                                 (58)                                                   

 

Thus, we may solve 
0 ( )f x t  in the following way: 

 

0 ( ) ( )

( )

( )

2

( ) ( )

(( ) )

s
r s t r s t

t u t
t t t

s u
r s tt s

t s t
t t t

s
r s tt

t
t t

t t

f x t e x ds e E m G duds

x v
e E m dZ G duds

r

x
e m duds

r

x m

r r



 
   


 


 

   

   

 

  

  

  

 

   (59)                        

 
Now, we can rewrite the implied value of cash flows given 
in (49) as follows: 
 

2
0

2
( ) ( ) ( )

2
f x t f x t h t

r


                                       (60)                                              

 

Since the payoffs are given in the form of cash flows, the 
investor continues to face undiversifiable idiosyncratic 
cash flow risk after investment. From Equation 59, we 
can see that this net present value does not incorporate 
the effect of idiosyncratic risk, and the certainty-
equivalent (risk-adjusted) wealth ( )f x t  decreases in  the  



 
 
 
 
the risk aversion coefficient   and also in income 

volatility  . let 
2

2

0

2
( ) ( ) ( ) ( )

r
Lf x t f x t f x t h t


       , which 

represents the difference between NPV of cash flows and 
the implied value of cash flows after the option is 

exercised. Notice that if 0   ,then ( ) 0h t   and thus 

( ) 0Lf x t  . We get that the estimation risk has no 

effect on the value of cash flows after the option is 
exercised when the investor is risk neutral.  
 
 

Implied information value 
 

Intuitively, an investor who only has access to partial 
information instead of full information usually makes 
incorrect decisions on investment timing and thus, partial 
information leads to a loss of the implied value of the 
option to invest. We call the loss the implied information 
value since it represents the cost to pay for getting full 
information that leaves his (indirect) utility unchanged. 
Naturally, we want to know how much the implied 
information value is. This segment will answer this 
question. To this end, we first present a corollary of 
theorem 2 under full information assumption, and then 
provide a method to compute the implied information 

value. As said before, the initial value 0  is a random 

variable but is known to the investor at the outset who 

has full information. Thus, 0  can be considered as a 

known constant, which corresponds to the segment 

“partial information” with 0 0m   and 0 0v  . Under this 

situation, the controlled system and object function are 
independent of time and so, the pricing and timing of the 
option to invest are determined by the present project 
value and do not depend on time. We therefore obtain 
the following corollary of Theorem 2: 
  

Corollary 2: Suppose that r  , the implied value of 

cash flows is given by 
  

2

0

2 2
( )

2

x
f x

r r r

 
                                                   (61)                                                    

 

and 0( )g x   is a solution to the free boundary problem: 

  

2 2

0

1
( ) ( )

2
x xx xrg g x g r g   

 
 

                               (62)                                        

 

subject to the no-bubble condition lim ( ) 0x g x   and 

the boundary conditions 
  

( ) ( )

1
( ) ( )x x

g x f x I

g x f x
r

  



  


                                                           (63)                                          
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Define stopping time  
 by 

 

 0 0inf 0 ( ) ( )t tt g X f X I                        (64) 

 

then  
 is the optimal exercising time of the option to 

invest with full information. The optimal consumption rate 
is given by 
 

0

0

[ ( )] 0

[ ( )]

t t t

t t t

r
c r W g X t

r

r
c r W f X t

r


 




 



 

 


       




       


                 (65)                                  

 
The impled value of the option to invest with full 

information depends on the random variable 0  and is 

given by; 
  

0

0

0

( )
( )

( )

Full t

t

t

g X t
F X

f X I t

 


 





    
  

    
             (66)                                   

 
This corollary tells us that, for an investor with full 

information, the implied value 
0( )Full

tF X   is a function 

of the random variable 0  as well as the current value 

tX  of cash flows. However, under partial information 

assumption, the implied values ( )tF X t  depends on 0m  

and 0v  but not on 0  as seen in Theorem 2. More often 

than not, 
0( )Full

tF X   will be greater than ( )tF X t  since 

full information is helpful to make a right choice. But one 
cannot expect that it happens all the time since if the 
investor with full information is ’unlucky’, he might be 

given a ’bad’ 0 , that is one 0  small enough, which 

leads to 
0( ) ( )Full

t tF X F X t   . For this reason, we 

consider as the implied information value for the 
mathematical expectation, instead of a single sample 
point, of the implied value difference (IVD) defined by

0( ) ( )Full

t tF X F X t   . Combining with the 

consumption utility-based indifference pricing method, we 
define the implied information value by 
 

( ) ( ) ( )Full

t tIIV F X u u du F X t



                                          (67) 

 

where ( )   is the normal probability density function with 

mean 0m  and variance 0v .  

Since there is no closed-form solution of Equation 51 with 
Equation 52 and 62 with Equation 63, we provide 
numerical calculations in the next segment. 
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Table 1. Impact of changes in prior variance ( 0v ) on implied values, investment thresholds, IIV and standard deviations of 

the IVD. Baseline parameter values are set as 
0 00 05 0 5 10 0 02 0 3r X I m               and 1  . 

 

0v  0.005
2 0.01

2 0.015
2 0.02

2 0.03
2 0.04

2 

Implied value 4.7926 4.7531 4.6859 4.6115 4.4965 4.4792 

Investment threshold 1.9500 2.0000 2.0000 2.0500 2.1500 2.2500 

IIV 2.2922 2.3286 2.3727 2.4991 2.5873 2.6160 

Standard deviation of IVD 7.4635 7.4636 7.4492 7.4650 7.4753 7.5581 

 
 
 

Comparative statics and numerical simulations 
 
Here, we perform a numerical simulation of the results 
from the segment “a stochastic case”. The baseline 
parameter values are set as follows 
 

2

0 0 00 05 0 5 10 0 02 0 02 0 3r X I m v                

 and 1  .
 

 

First, we compute the implied value ( )f x t  of cash flows 

given in Equation 49, then solve the free boundary 
problem Equation 51 with Equation 52 and 62 with 
Equation 63 respectively by a finite difference method. 
After that, we get the implied values and investment 
thresholds of the option to invest with partial and full 
information respectively. In order to obtain the implied 
information value under a given prior normal distribution, 

0 0( )N m v , we compute the implied value 0 0( )F X   for 

every 
0 0 0{ 4 0 1 5000}mA m v id i          , 

where 0 0002md   . We then utilize a random number 

generator to generate 100,000 samples of the distribution 

0 0( )N m v  and hence get 100,000 samples of the 

implied value 0 0( )F X  . Naturally, if the sample of 0  

does not belong to set A , we get an approximate implied 
value by linear interpolation. Following that, we obtain the 
sample distribution from the 100,000 samples of 

0 0( )F X  . In the end, we get the implied information 

values and the standard deviation of the IVD, that is 

0( ) ( )Full

t tF X F X t   , by (67). Most of the results are 

presented in Tables 1 and 5, which explain the impact of 
changes in several different parameters respectively, on 
implied values and investment thresholds of the option to 
invest with partial information, implied information values 
(IIV) and standard deviations of the IVD. An 
implementation of all algorithms used in this segment in 
Matlab is available upon request.  

The numerical results show that the IIV is usually 
significant and in particular, IIV as well as the standard 

deviations  of  IVD  [(
0( ) ( )Full

t tF X F X t   ]  gets  bigger  

with the increase of 0v , that is the uncertainty of the 

mean appreciation rate of cash flows. Also, the implied 
values (investment thresholds) of the option to invest 
decrease (increase) slowly under a high-uncertainty 
mean appreciation rate of cash flows. These conclusions 
are quite in agreement with economic intuition but 
indicate that the loss for an investor with partial 
information is probably bigger than that we normally 
think.  

For example, according to Table 1, IIV is up to 47.8% 
of the implied value of the option to invest even for a very 

small value 
2

0 0 005v   . By the way, although the 

results are computed at time t=0, it actually holds 
anytime. In particular, since the estimation is not 
consistent, thanks to Remark 1. The effects of the 
estimation error of the mean appreciate rate cannot be 
ignored even if the realized cash flows are observed 
continuously over an infinite time period Gennotte (1986).  

It is well-known that in a risk-neutral world, a higher 
volatility of project values necessarily leads to a bigger 
implied value of the option to invest. However, Table 2 
indicates that, both IIV and the implied values of the 
option to invest decrease with a growth of the volatility of 
cash flows. The intuition is as follows. The investor in our 
model is risk-averse and thus a high volatility, which 
means a high risk, might conversely decrease the implied 
value of the option to invest and IIV as well at last. In 
addition, as we expect, an investor always delay 
investment with regard to a higher volatility according to 
Table 2.  

Tables 3 and 4 present the impacts of changes in risk 

aversion index   and the prior mean 0m  of the mean 

appreciation rate respectively. The results say that for a 
more risk averse investor or given a smaller prior mean, 
the implied value of the option to invest decrease quickly 
but increase the investment threshold substantially. 
However, IIV are not globally monotonic with respect to 
the variation of risk aversion index  , which implies that 

the effect of the risk aversion level on the implied 
information value are ambiguous. But it is shown that the 
more the prior mean, the smaller the IIV. Table 5 means 
the implied values of the option to invest increase quickly 
but  the  investment  threshold  raise  very  slowly  as  the  
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Table 2. Impact of changes in volatility ( ) of project valus on implied values, investment thresholds, IIV and standard 

deviations of the IVD. Baseline parameter values are set as 2

0 0 00 05 0 5 10 0 02 0 02r X I m v              and 1  . 

 

  0.1 0.15 0.2 0.25 0.3 0.4 

Implied value 5.9803 5.4419 5.4075 5.1499 4.6115 3.6114 

Investment threshold 0.7000 1.0000 1.3500 1.7000 2.0500 2.9000 

IIV 5.3667 4.9800 3.9187 3.0305 2.4991 1.5951 

Standard deviation of IVD 12.4732 11.4505 10.1666 8.7945 7.4798 5.2051 
 
 

 

Table 3. Impact of changes in risk aversion (  ) on implied values, investment thresholds, IIV and standard deviations of the 

IVD. Baseline parameter values are set as 2

0 0 00 05 0 5 10 0 02 0 02r X I m v              and 0 3   . 

 

  0.3 0.5 1 1.5 2 2.3 

Implied value 9.8804 7.9981 4.6115 2.6583 1.5621 1.1399 

Investment threshold 1.5500 1.7000 2.0500 2.4500 2.8500 3.1000 

IIV 1.9437 2.2393 2.4991 2.1837 1.7155 1.4494 

Standard deviation of IVD 10.9334 9.8809 7.4798 5.4623 3.9200 3.1958 
 

 
 

Table 4. Impact of changes in prior mean ( 0m ) on implied values, investment thresholds, implied information values (IIV) and 

standard deviations of the implied value differences (IVD). Baseline parameter values are set as 
2

0 00 05 0 5 10 0 02r X I v          , 0 3    and 1  . 

 

0m  0 0.01 0.015 0.02 0.025 0.03 

Implied value 2.3959 3.3869 3.9683 4.6115 5.3170 6.0942 

Investment threshold 2.3000 2.1500 2.1000 2.0500 2.0000 1.9500 

IIV 4.6989 3.6998 3.1088 2.0499 1.7751 1.0026 

Standard deviation of IVD 7.4660 7.4617 7.4477 7.4633 7.4591 7.4665 
 

 
 

Table 5. Impact of changes in project initial value (
0X ) on implied values, investment thresholds, IIV and standard deviations of 

the IVD. Baseline parameter values are set as 2

0 00 05 10 0 02 0 02r I m v          , 0 3    and 1  . 

 

0X  0.1 0.5 1 1.5 2 2.5 

Implied value 3.3099 4.6115 7.1267 11.2613 18.8459 28.0726 

Investment threshold 2.0500 2.0500 2.0500 2.1000 2.1500 2.1500 

IIV 2.1226 2.4991 3.0009 3.3720 1.9749 0.6542 

Standard deviation of IVD 6.0204 7.4798 9.8587 12.8551 15.8128 17.9882 

 
 
 
current cash flow value increases. Moreover, the 
impaction of the current cash flow value on IIV is not 
monotonic also.  

Following that, we provide a figure to describe the pro-

bability densities of 0( 0)F X   and 0 0( )FullF X  , that is 

the implied values of the option to invest with partial and 
full information respectively. The parameter values are 
set    as    

0 0 00 05 15 10 0 02 0 0004 0 4r X I m v                  

and 1  . According to the segment “a stochastic case”, 

the implied value 
0( 0)F X   is deterministic for the given 

parameters but 
0 0( )FullF X   is a random variable. 

Therefore, as seen in Figure 1a, the probability density of 

0( 0)F X   is represented by a vertical line while 
0 0( )FullF X   

is described by a curve. It is seen in the figures that 

0 0 0( 0) ( )FullF X F X       sometimes   but   this   does   not  
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Figure 1. a, the probability density of the implied value of the option to invest with full and partial information respectively. Baseline 

parameter values are set as 
2

0 0 00 05 0 5 10 0 02 0 4 0 02r X I m v                 and 1  ; b, the difference ( )Lf x t  

between NPV of cash flows and the implied value of cash flows after the option is exercised under different risk aversion level 0 1    , 

and 2  . 

 
 

 

indicate that information is worthless since 
0( 0)F x   

represents a mathematical expectation while 
0 0( )FullF X   is 

a sample point.  

Finally, Figure 1(b) plots the difference ( )Lf x t  

between NPV of cash flows and the implied value of cash 
flows after the option is exercised under risk aversion 

level 0 1     and 2  . As we expect, the higher 

the risk aversion, the bigger the difference. In particular, 

for a risk neutral investor that is 0  , the difference is 

zero. 
 
 

Conclusions 
 

To the best of our knowledge, the current real options 
approach to investment under uncertainty is based on 
one of the three assumptions: Complete markets, risk 
neutrality and full information. However, in practice, it is 
common for a risk-averse investor to invest under an 
incomplete market with partial information. For this 
reason, we discuss in this paper the real options problem 
under an incomplete market with partial information for a 
risk-averse investor. We extend the real options theory to 
consider the situation where the mean appreciation rate 
of cash flows generated by an  irreversible  investment  is  

not observable and is governed by an Ornstein-
Uhlenbeck process. We analyze the impact of the 
uncertainty of the mean appreciation rate on the pricing 
and investment timing of the option to invest under an 
incomplete market with partial information. To this end, 
we assume that an investor aims to maximize expected 
discounted utility of lifetime consumption. Based on 
consumption utility indifference pricing method, we obtain 
under CARA utility the implied value and the optimal 
investment threshold of the option to invest, which are 
determined by a semi-closed-form solution of a free-
boundary PDE problem. The solution indicates that 
optimal investment strategy and the implied (information) 
value are independent of the time-discount rate of the 
utility.  

Since there is no closed-form solution of the free-
boundary PDE problem, we provide numerical results by 
finite difference methods and compare the results with 
those in the fully observable case. Numerical calculations 
show that partial information leads to a significant loss of 
the implied value of the option to invest. This loss is 
naturally called by us the implied information value. 
Numerical simulations explain that the implied information 
value is usually significant and increase quickly with the 
uncertainty of the mean appreciation rate of cash flows. 
For  instance,  numerical   analysis   shows   the   implied  

 
 
 

    
 
 
    
 
 

  

(a) Density of implied value (b) Difference between NPV and implied value 

Implied value F f 

Probability density of the implied value of the option 

to invest 
The difference Lf(x,t) 



 
 
 
 
information value is more than a half of the implied value 
of the option to invest, even under middle-uncertainty of 
the mean appreciation rate in cash flows, let alone high-
uncertainty.  

In contrast to standard real options theory, our nu-
merical results say that a growth of volatility of cash flows 
decrease the implied value of the option to invest as well 
as the implied information value. This happens because a 
high volatility leads to a high risk at the same time, which 
decreases the implied value at last for a risk-averse 
investor.  

Several opportunities exist for future research. Firstly, 
in many practical projects, the initial investment cost is 
not predictable, and uncertainty about it can be incor-
porated into our model. Secondly, in order to separate 
wealth out of the problem, this paper chooses the 
exponential utility. However, as highlighted by Rouge and 
El Karoui (2000), this is not always desirable since it is 
unrealistic to assume that investors with different endow-
ments have the same attitude toward risk. Consequently, 
it is worth considering the same problem under CRRA 
utility that is power utility. Finally, there is no tradeable 
risk asset in our model to hedge the cash flow risk. This 
is a shortcoming to be overcome. It is our hope that our 
work will encourage future research in these interesting 
and important directions. 
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