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Prospective sellers of housing often commission housing agencies to broker transactions. The 
relationship between the waiting period for sellers (from the date of commission to the date of 
transaction) and housing variables is a topic of considerable interest to real estate investors, housing 
agents, and researchers. This study examines the effect of these factors on the waiting period. Data 
was collected on 4,256 housing transactions brokered by agencies from 2007 to 2011 in New Taipei City, 
Taiwan. Parametric survival analysis was performed to produce a probability model for the transaction 
waiting period for sellers and establish a relationship between the waiting period and housing 
variables. Empirical results show that the transaction waiting period for sellers follows the Weibull 
probability distribution. 
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INTRODUCTION 
 
In recent years, increasingly active trading in the real 
estate market has led a growing number of prospective 
sellers of housing to commission agencies to broker 
transactions. The means to effectively analyze the 
relationship between various features and attributes of 
real estate and the transaction waiting period, and use 
this relationship to predict the waiting period for sellers for 
future transactions, are topics of keen interest to all 
parties involved in the real estate market. 

The trends in real estate prices and how quickly real 
estate transactions are concluded can be seen as 
indicators of economic health. Most studies in the domain 
of real estate have concentrated on estimation of real 
estate prices, developed analysis models and methods to 
target these issues, and derived specific and constructive 
research conclusions. Previous researchers have 
generally used two approaches when studying factors 
that influence housing prices. One approach is to 
combine macroeconomic conditions and the supply-
demand principle of microeconomics to observe factors 
that may affect fluctuations in housing prices (Giannias, 
1998; Thalmann, 1999). The second is the hedonic price 
approach (Lancaster, 1966), which focuses on various 
features  and   attributes  of   real   estate,  and  uses  the 

consumer utility theory to analyze the influence of the 
implicit price of these attributes on actual product price 
(Singell and Lillydahl, 1990; Evans, 1973; Ha and Weber, 
1994; Laurice and Bhattacharya, 2005; Giannias, 1998). 
Most previous studies, however, have applied these 
techniques to processing price data. However, very few 
studies have been conducted on the subject of waiting 
time for agency-brokered housing transactions. 

To understand how various features and attributes of 
real estate influence the length of time required to 
successfully broker housing transactions, data were 
collected on 4,256 housing transactions brokered by 
agencies from 2007 to 2011 in New Taipei City, Taiwan. 
Survival analysis (Fleming and Harrington, 1991; 
Hosmer, 1999; Lawless, 1981) was then performed to 
produce a probability model for the transaction waiting 
period, and a parametric method was used to establish 
the relationship between the waiting period and housing 
variables. For investors, predicting the waiting period and 
the probability of exceeding it provides an important 
reference for investment decisions and financial planning. 
Housing agents can also use this information to manage 
time costs, control management quality, and enhance 
service efficiency. 
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Figure 1. Various types of data collected. 

 
 
 
METHODOLOGY 
 

This study used survival analysis to develop a probability model for 
the waiting period of agency-brokered housing transactions. The 
parametric method was used to establish the relationship between 
waiting period and various features and attributes of housing; 
research inferences were then made based on this relationship. 
The objective of survival analysis is to analyze the random 
distribution of events in time (Hosmer, 1999). When conducting 
survival analysis of temporal data, we must first define the event 
and event time. This study defined the conclusion of a housing 
transaction as the event. The length of time from the date the case 
was commissioned to the date of successful transaction (known as 
the waiting period) was defined as event time, and counted in days. 

The observed values of event time are related to the definition of 
the event, the starting point of observation (date of commission) 
and the ending point of observation (date of transaction). Of course, 
the waiting period of housing transactions is always closely 
associated with the state of the real estate market, and the market 
economy fluctuates over time. In the process of statistical analysis 
and inference, a large sample number indicates more reliable 
results. The commonly-used SAS package software (Der and 
Everitt, 2002) was used for all statistical analysis in this study. 
 
 

Data on waiting period and housing attributes 
 
The collected research data may include incomplete data. In 
statistics, such incomplete data is known as right-censored. As the 
main objective of survival analysis is to observe event time, right-
censored data can also be called right-censored time. This means 
that the starting point of observation is known, but at the end point 
of observation, the defined event has either not occurred or it is 
impossible to ascertain when the event occurred. Figure 1 shows 
the various types of data collected. As shown in Figure 1, the 
waiting times TA and TB are not censored; the waiting times TC and 
TD are censored because we can say only that the waiting times for 
the cases C and D are at least TC and TD, respectively. 

In addition to creating a probability model for the waiting period, 
this study also used multiple regressions to establish the 
relationship between waiting period (response variable) and 
housing   attributes   (explanatory  variables).  The purpose  was  to 

determine the significance of the marginal effects of these factors 
on transaction waiting period. The housing variables considered in 
this study include internal variables and external variables. Internal 
variables include building age, floor area of the house, building 
height (low-rise (1 to 3 stories), mid-rise (4 to 7 stories), or high-rise 
(8+ stories)), number of rooms, type of construction material 
(reinforced concrete/steel/steel reinforced concrete), apartment 
house type (apartment houses with and without elevators). External 
variables include proximity to schools, MRT stations or bus stops, 
parks, and markets. The definition of “in proximity” was within 500 
m. For example, if a house was designated in proximity to a park, 
this indicated that the distance between the house and the park 
was within 500 m. 

The housing variables used in this study include both quantitative 
and qualitative variables. Using regression analysis, qualitative 
variables were converted into dummy variables. The number of 
dummy variables was equal to the number of variants minus 1 
(Kleinbaum et al., 2007). For example, the variable “building height” 
had three variants: high-rise, medium-rise, and low-rise buildings. 
Thus, this variable was converted into two dummy variables. The 
variable “proximity to parks” had two variants (in proximity/not in 
proximity) and was therefore converted into one dummy variable. 

The incorporation of censored data is essential to survival 
analysis, as it still includes useful information. To enhance the 
comprehensiveness of data analysis, this study integrated censored 
time data into the survival analysis, thereby considering all 
observations. In other words, the likelihood of both complete data 
and right-censored data was considered when estimating the 
likelihood function. 
 
 
Likelihood function of waiting period 
 
Consider the waiting period X and censored time C are two non-
negative continuous random variables. X and C are mutually 

independent and defined as . 

The variable X has the probability density function  and 

distribution function ; the variable  has the probability 

density function  and distribution function . This study 

considered n samples ( , ),….., ( , ). Under random 
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and  can be expressed as follows: 
 

                          (1) 
 

                            (2) 
 

where  is the indicator function and  is used to express the 

state of  data. As , this shows that  is waiting period; as 

,  is censored time. 

Set ( , ), , as n number of independently and 
identically distributed observations. The likelihood function of 
transaction waiting period can be expressed as follows (Dabrowska 
and Doksum, 1988): 
 

 
 

             (3) 
 
where 
 

                                                           (4) 
 

                                                                     (5)  
 
 
Survival function and hazard function of waiting period 
 
Two primary quantities desired from the perspective of survival 
analysis are survival rates and hazard rates. The survival function 

 expresses the probability that the transaction will not be 

concluded until time . The hazard function  expresses the 
rate of occurrence in which the transaction is concluded precisely at 

time , given that the waiting period is greater than or equal to . 
The survival function can be expressed as follows (Hosmer, 1999): 
 

 (6) 
 

It is worth noting that , and  
are functions that increase with time and then monotonically 
decreases to zero. 

The relationships among the survival function, probability density 

function , and distribution function  are as follows: 
  

                    (7) 
 

                           (8) 
 
The hazard function is an important function in survival analysis. 

The hazard function is defined as follows:  

 
 
 
 

                            (9) 
 
The relationships among the hazard function, probability density 

function , and survival function are as follows: 
 

                                         (10) 
 
Another important function in survival analysis is the cumulative 

hazard function , which is defined as follows:  
 

                                          (11) 
 
The survival function can be expressed as 
 

                (12)  
 
The hazard function and the cumulative hazard function include 
important information related to the probability model of the waiting 
period. Both functions are particularly useful in the creation of the 
probability model. Commonly used hazard functions include 
constant function, incremental function, decreasing function, 
bathtub-shaped function, and hump function. The parametric 
method of survival analysis has been widely applied to solve 
problems in the domains of biomedicine and food science; however, 
few studies have used survival analysis to predict the waiting period 
for agency-brokered housing transactions. The following parametric 
probability distributions are frequently used when survival analysis 
is applied to problem-solving: exponential distribution, log-normal 
distribution, and Weibull distribution. Table 1 shows the theoretical 
relationships between the cumulative hazard functions and waiting 
period for these three models. 

As shown in the table, if the probability distribution of the waiting 
period is exponential, then there is a linear relationship between 
cumulative hazard function and waiting period. If the probability 
distribution is Weibull, there is a linear relationship between the 
natural logarithm of the cumulative hazard function and the natural 
logarithm of waiting period. If the probability distribution is log-
normal, the relationship between the cumulative hazard function 
and waiting period is more complex. However, if the cumulative 
hazard function is appropriately converted, there will be a linear 
relationship between the Probit function values and the natural 
logarithm of the waiting period. 
 
 
Probability distribution of the waiting period 
 
The survival function of the variable of interest can be estimated 
using the well-known product-limit estimator (Kaplan and Meier, 
1958), which provides a nonparametric estimate. In this study, the 
probability distribution of waiting period was assumed to be a two-
parameter Weibull distribution (Weibull, 1951), thus the probability 
distribution function, hazard function, cumulative hazard function, 
and survival function of waiting period can be given as follows: 
 

                                         (13) 
 

                                                                      (14) 
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Table 1. Theoretical relationships between the cumulative hazard functions and waiting period. 
 

Probability distribution f (x)  Cumulative hazard function H (X) = -log [S(X)] Linear relation 
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                        (16) 
 

where and  are the parameters of Weibull distribution.  is 

the scale parameter and  is the shape parameter. Equations (15) 
and (16) can be rewritten as follows: 
 

                                                        (17) 
 

                                         (18) 
 

The linear relationship between  and  can be 
used to ascertain whether the assumption that the probability 
distribution of the waiting period is appropriate. It should be noted 
that the estimated cumulative hazard function can be obtained once 
the survival function is estimated (Equation 18). 
 
 
Parametric regression model of waiting period 
 
In most instances, the waiting period may depend on housing 
variables. To reduce the bias in the estimation, the effects of these 
variables on the waiting period must be considered. Parametric 
models can be used to predict the distribution of the waiting period 
to an event from a set of housing variables. This study used the 
well-known Weibull regression model to conduct survival analysis of 
agency-brokered housing transactions. The model can be 
expressed as follows: 
 

                                         (19) 
 

where ( ) are the housing variables,  is the 

regression coefficient that corresponds to ,  is the number of 

variables,  is the intercept, and  is the error term. The density 

function of , given ( ), has an extreme value 
distribution. 
 
 
Estimation of parameters 
 
All parameters in the parametric model can be estimated by  the 

maximum likelihood method. Assume that there are p parameters (

) to be considered in the model. Let 

 be denoted as the parameter vector. 
Considering a group of n randomly selected samples

, the likelihood function  can be 
expressed as: 
  

                                                         (20) 
 
The maximum likelihood estimates of the parameters must satisfy 
Equation 21, and the Hessian for parameter vectors must be 
negative-definite: 
 

                          (21) 

 
Numerical methods are often used to obtain the maximum 
likelihood estimates of parameters because a closed-form solution 
cannot be obtained for the majority of these parameter estimates. 
Maximum likelihood estimates can be determined through iterations 
using the Newton-Raphson algorithm. The main advantage of this 
method is that in addition to the maximum likelihood estimates for 
parameters, this method simultaneously solves the Fisher 
information matrix. The inverse of the Fisher information matrix is 
the covariance matrix of estimators. This matrix is particularly useful 
when making inferences about parameters, including the processes 
of deriving confidence intervals and conducting hypothesis testing 
(Hosmer, 1999). 
 
 
Evaluation of goodness of fit 
 
The most intuitive approach involves observing the model 
graphically (Arjas, 1988). This study examined the relationship 
between waiting period and the estimated value of the cumulative 
hazard function, to determine whether it matched the theoretical 
relationship expressed in Equation (17). In addition, the significance 
of each parameter of the regression model was also tested. The 
purpose was to evaluate the goodness-of-fit of the hypothesized 
model. 

The parameter estimates and their estimated covariance matrix 
are available in an output SAS data set and can be used to 
construct additional tests or confidence intervals for the parameters 
(Andersen, 1982; Schoenfeld, 1980). Alternatively, tests of 
parameters can be based on likelihood ratios (Vuong, 1989). It is 
believed that likelihood  ratio  tests  are  generally  more  reliable  in 
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small samples than tests based on the information matrix (Cox and 
Oakes, 1984). The statistic of likelihood ratio test follows chi-square 
distribution with p degrees of freedom. 
 
 

Analysis process 
 
The analytical procedure is briefly summarized as a step-by-step 
format as follows: 
 

i) Collect data on housing attributes and the waiting period for 
agency-brokered housing transactions; 
ii) Identify housing attributes or variables that influence waiting 
period; 
iii) Test the correlations between waiting period and all housing 
variables; variables with low correlations were eliminated from the 
regression model. SAS software provides two test methods: the log-
rank test and the Wilcoxon test. 
iv) Hypothesize that the probability distribution of waiting period was 
a specific type of parametric probability distribution: Weibull 
distribution; 
v) Conduct survival analysis of the data collected in Step 1; 
vi) Estimate regression coefficients and establish the relationships 
between transaction waiting period and housing attributes; 
vii. Evaluate the model’s goodness of fit. 
 

By following the steps described, we can select parametric models 
with a better fit, which can be used as the basis for further statistical 
inference. Two main procedures executed in SAS software were 
PROC LIFETEST and PROC LIFEREG. 

 
 

EMPIRICAL ANALYSIS 
 

This study used survival analysis to create a probability 
model for the waiting period for agency-brokered housing 
transactions. A parametric survival method was used to 
establish the relationship between the waiting period and 
the factors associated with housing. Housing agencies 
provided the data used in this study, covering 4,256 
agency-brokered housing transactions, from 2007 to 2011 
in New Taipei City. The 4,256 housing cases collected for 
this study included 2,307 transactions that had been 
concluded and 1,949 cases that had not been concluded. 
Due to the limitations of the research deadline and the 
fact that the contracts for some of these cases were 
terminated prior to completion, we were unable to 
ascertain the waiting period for 1,949 cases. As a result, 
the research data collected may have included right-
censored data. 

This study considered both internal and external 
variables. Internal variables refer to housing attributes, 
while external variables refer to the attributes of the 
surrounding environment. Both quantitative and 
qualitative variables were included. Internal variables 
include building age (AGE), floor area of the house 
(AREA), building height (HEI), number of rooms (ROOM), 
type of construction material (MAT), apartment house 
type (TYP). External variables include proximity to 
schools (SCH), MRT stations or bus stops (STAT), parks 
(PAR), and markets (MAR). Descriptive analysis was 
performed on these variables. 

 
 
 
 
The results show that average building age was 16.5 
years (standard deviation=11.2 years); the relative 
frequency distribution for building age is shown in Figure 
2a. The average floor area of housing was 100.94 M

2
 

(standard deviation=42.88 M
2
); the relative frequency 

distribution for floor area is shown in Figure 2b. As shown 
in Figure 2b, the histogram highly skewed to the right. A 
few very high areas create the skewness in the right tail. 
There are no areas above 400 M

2
; most of the areas are 

often below 150 M
2
. Table 2 shows the descriptive 

statistics for the variables. Approximately 53% of 
buildings were high-rise buildings, 46% were mid-rise 
buildings, and 1% were low-rise buildings. A high 
proportion (51 %) of houses had three rooms. 64 % of 
apartment houses had elevators and 36 % were lower-
rise apartment houses without elevators. Reinforced 
concrete was the most common construction material 
(approximately 96%), followed by steel reinforced 
concrete (3%). Houses built with steel structures 
accounted for only 1% of housing cases in research data. 
70% of houses were near schools, 62% near MRT 
stations or bus stops, 55% near parks, and 71% near 
markets. 

Figure 3 illustrates the survival curve for agency-
brokered housing transactions. This curve was estimated 
using the Product-Limit method. The x-axis in Figure 3 
indicates the waiting period, and the y-axis indicates the 
exceedance probability of the waiting period. The figure 
shows that from 2007 to 2011, the waiting period for 75% 
of agency-brokered housing transactions in New Taipei 
City exceeded 21 days; 50% exceeded 101 days, 
and25% exceeded 272 days. This study used the 
Wilcoxon and Log-Rank methods to test the correlations 
between housing attributes and waiting period. The 
results showed that the correlation between waiting 
period and AREA was not significant. Therefore, AREA 
was eliminated from the regression model. The qualitative 
variables SCH, STAT, PAR, MAR, HEI, MAT, and TYP 
were all converted to dummy variables during regression 
analysis. The relationships between transaction waiting 
period and housing attributes can be expressed as 
follows: 

 
 

                                                                                     (22) 

 
or 

 

 

                                                                               (23) 

 
The variable “HEI” included three possibilities: high-rise, 
mid-rise, and low-rise  buildings.  Therefore,  two  dummy
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Figure 2. Histogram of housing variables: (a) age and (b) area (sample size =4256). 

 
 
 

variables, BTYP1 and BTYP2, were established 
for this variable. When BTYP1=0 and BTYP2=0, 
this indicates cases in which the buildings are low-
rise. When BTYP1=1 and BTYP2=0, this indicates 
that the buildings are mid-rise. When BTYP1=0 
and BTYP2=1, this indicates that the buildings are 
high-rise. 

If SCH=1, the house in question is within a 
distance of 500 M from a school. If SCH=0, the 
house does not satisfy the condition of “in 
proximity to a school”. Likewise, when STOP, 
PAR, and MAR equal 1, this indicates that the 
house in question is near MRT stations or bus 
stops, parks, and markets, respectively. 
Conversely, when STOP, PAR, and MAR equal 0, 
the house does not satisfy the conditions of “in 
proximity to MRT stations or bus stops 
/parks/markets.” 

The variable “MAT” included three possibilities: 
steel, reinforced concrete, and steel reinforced 
concrete. Two dummy variables, MAT1 and MAT2 

were established for this variable. If MAT1=0 and 
MAT2=0, the construction material is reinforced 
concrete. If MAT1=1 and MAT2=0, the 
construction material is steel. If MAT1=0 and 
MAT2=1, the construction material is steel 
reinforced concrete. The variable “TYP” 
represented apartment houses with or without 
elevators. When TYP=1, this indicated that the 
apartment house is equipped with an elevator. 

Figure 4 illustrates the relational curve between 
the natural logarithm of the estimated cumulative 

hazard function, , and the natural logarithm 
of the waiting period, , based on the data 
from the 4,256 housing cases. The figure shows 
that the relationship is nearly linear, which 
complies with the theoretical relationship 
expressed in Equation 17. This demonstrated the 
validity of the Weibull distribution model. 

Table 3 shows the results of regression 
analysis. The first column lists all the variables 
that were included in  the  regression  model.  The 

second column shows the coefficients of the 
variables, while the third column lists the 
estimated coefficient values. The chi-square test 
results in the table show that 6 of the 12 
regression coefficients were significant at the 5% 
level. The coefficient of the variable AGE was 

, meaning that with each year a 
building increased in age, the waiting period for 
housing transactions is reduced by

 times. This indicates that 
houses in older buildings have a shorter 
transaction waiting period. 

The waiting period for mid-rise buildings was 

 times that of low-rise 
buildings. The waiting period for high-rise 

buildings was  times that of 
low-rise buildings. This indicates that higher-rise 
buildings correspond to a shorter waiting period. 

With each unit increase in the number of rooms, 
waiting period increased by 

   times,    indicating    that
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Table 2. Descriptive statistics for the housing variables. 
 

Variable Description Outcome Frequency Relative frequency (%) 

BTYP Building type 

Low-rise building (1~3 stories) 38 1 

Mid-rise building (4~7 stories) 1948 46 

High-rise building (8+ stories) 2270 53 

     

ROOM Number of room 

One room 655 15 

Two rooms 812 19 

Three rooms 2170 51 

Four rooms 619 15 

     

MAT Construction material 

Reinforced concrete 4099 96 

Steel 39 1 

Steel Reinforced concrete 118 3 

     

TYP Property type 
With elevator 2716 64 

Without elevator 1540 36 

     

SCH Proximity to schools? 
Yes 3002 71 

No 1254 29 

     

STOP Proximity to MRT stations or bus stops? 
Yes 2636 62 

No 1620 38 

     

PAR Proximity to parks? 
Yes 2362 55 

No 1894 45 

     

MAR Proximity to markets? 
Yes 3032 71 

No 1224 29 

 
 
 

 
 

Figure 3. Exceedance probability of waiting period. 
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Figure 4. Relationship between the natural logarithm of cumulative 
hazard function and the natural logarithm of waiting period. 

 
 
 
Table 3. Regression variables and the estimated values of 
regression coefficients. 
 

Variable Coefficient Estimate 

Intercept 0C  5.604
* 
(221.90) 

AGE 1C  -0.027
* 
(44.19) 

BTYP1 2C  -0.307 (0.77) 

BTYP2 3C  -0.316 (0.80) 

ROOM 4C  -0.172
* 
(22.31) 

MAT1 5C  -0.153 (0.18) 

MAT2 6C  0.215 (1.01) 

TYP 7C  -0.013 (0.01) 

SCH 8C  0.082 (0.83) 

STOP 9C  -0.165
** 

(4.05) 

PAR 10C  0.773
* 
(106.09) 

MAR 11C  0.493
*
(28.66) 

 

*, ** indicate significance at the 0.1 and 5% level, respectively. The 
figures in parentheses are the values of chi-square statistic. 

 
 
 
houses with a higher number of rooms have a shorter 
transaction waiting period. The waiting period for houses 
built from steel was  times that of 
houses built from reinforced concrete. The waiting period 
for   houses  built  from  steel   reinforced   concrete   was 
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times that of houses built from reinforced concrete. In 
other words, houses built from  steel demonstrated the 
shortest waiting period, followed by houses built from 
reinforced concrete. Residences constructed from steel 
reinforced concrete showed the longest waiting period. If 
houses were located in apartment buildings with 
elevators, the waiting period was reduced by 

 times. 
As shown in Table 3, the waiting period for houses near 

schools was  times that of houses 
not in proximity to schools. Thus, agency-brokered 
housing transactions in school neighborhoods require a 
longer waiting period. The waiting period for houses close 
to MRT stations or bus stops was reduced by

 times. The waiting period for housing 
close to parks was times that of 
housing not in proximity to parks. Thus, the purchase or 
sale of housing near parks requires a longer waiting 
period. The waiting period for housing near markets was 

times that of housing not in proximity 
to markets. This indicates that brokering transactions of 
housing near markets requires a longer waiting period. 
 
 
Conclusion 
 
Based on survival analysis, this study proposed an 
analysis framework and procedures to predict the waiting 
period for agency-brokered housing transactions. 
Empirical results show that the transaction waiting period 
follows Weibull distribution, and housing features and 
attributes significantly influence the waiting period for 
sellers. The results also show that housing with a higher 
number of rooms in older buildings has a shorter waiting 
period. Housing in higher-rise buildings indicates a longer 
waiting period, while housing in apartment buildings with 
elevators corresponds to a shorter waiting period. With 
regard to construction materials, the waiting period for 
houses built with a steel structure was the shortest, 
followed by housing constructed from reinforced 
concrete. The purchase or sale of housing constructed 
from steel reinforced concrete requires the longest 
waiting period. Housing in proximity to schools, parks, 
and markets has a longer waiting period, while housing in 
proximity to MRT stations or bus stops indicates a shorter 
waiting period. 
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