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This study examines the asymmetric dynamic hedging effectiveness the Taiwan stock index futures by 
extending the concepts of naive hedging effectiveness and dynamic hedging effectiveness proposed by 
Choudhry (2003). Based on the minimum-variance hedging portfolio, static hedging models and 
dynamic hedging models are also compared in terms of hedging effectiveness, dynamic hedging 
effectiveness, hedging effectiveness of dynamic conditional correlation and asymmetric dynamic 
hedging effectiveness. Experimental results indicate that, there is an asymmetric dynamic hedging 
effectiveness in the Taiwan stock index futures asymmetric dynamic hedging. Additionally, hedging 
effectiveness of the dynamic conditional correlation hedging model is better than that of the conditional 
correlation hedging model. We thus recommend that investors consider the asymmetric dynamic 
hedging model when constructing the minimum-variance hedging portfolio. 
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INTRODUCTION 
 
Global stock markets have undergone dramatic changes 
in recent decades. Risk management has become 
increasingly important in the future as investors recognize 
their exposure to a greater degree of uncertainty in stock 
markets. Among the many hedging strategies designed 
for investors include financial derivatives, especially stock 
index futures. Since financial derivatives are derived from 
their underlying spot assets, the appropriate hedging 
strategies may result in a satisfactory hedging perfor-
mance, especially when the corresponding assets are 
closely related to each other. 

The Taiwan futures exchange (TAIFEX) introduced 
Taiwan stock exchange capitalization weighted stock 
index (TAIEX) futures in 1998. Despite the global finan-
cial crisis in 2008, the futures market in Taiwan continues 
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to perform well, as evidenced by an annual trading 
volume of 37,724,589 contracts, representing a growth 
rate of 122.07% over the previous year. Additionally, the 
growth rate of trading volume for the Taiwan futures 
markets is 14.9% higher than that of trading volume of 
global futures markets. In 2009, the trading volume of the 
Taiwan futures market was 44,886,570 contracts, that is, 
an increase of 18.98% over the previous year, despite 
the fact that the global futures market decreased by 1.7% 
during the same period. Additionally, whereas trade 
barriers that limited the extent of price change, foreign 
ownership, and margin trading impeded the Taiwan stock 
market previously, the gradual lifting of these market 
barriers via the Taiwanese government’s policy of 
financial liberalization has led to more active trading in 
the Taiwan stock and futures markets. This example 
provides a valuable reference for emerging markets. 

Ederington (1979) classified hedging theory into three 
types based on hedging purpose and motivation. First, 
the    naïve   hedging   theory  assumes  that  the  change 
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directions and volatility of the spot price are the same as 
those for the futures price, and hedgers in the spot 
market take opposite exposures. However, risk cannot be 
eliminated completely because the volatilities of both spot 
and futures prices are not entirely consistent with each 
other; in contrast, that theoretical assumption has been 
proven empirically to be incorrect. Second, the Working 
hypothesis hedge theory developed by Working (1953), 
also referred to as the selective hedging theory or 
expected profit maximization, posits that investors hedge 
their risks when basic changes are expected. 

Finally, the portfolio hedge theory, as developed by 
Ederington (1979) in response to Johnson’s (1960) 
conclusion that hedgers should regard spot and futures 
positions as a portfolio, seeks only risk minimization and 
uses the optimal hedging ratio to offset the potential 
losses incurred from the spot market, a situation referred 
to as minimum- variance hedging. Consequently, exactly 
how many futures positions investors should use hedging 
and selection of an optimal hedging ratio has received 
considerable interest. Most studies adopt the ordinary 
least squares (OLS) model to estimate the optimal 
hedging ratio, a model referred to as static hedging. 
Notable examples include Kroner and Sultan (1993), Lien 
and Yang (2004), and Yang and Lai (2009). However, a 
naive OLS model does not consider whether a variable 
has a serial correlation or heterogeneity in variance, cau-
sing the static hedging ratio to ignore a situation in which 
asset risk fluctuates with the arrival of new information. 
As volatility clustering always occurs in financial data, 
time-variant volatility is often identified using GARCH-
family models. Notable examples include the 
autoregressive conditional heteroskedasticity (ARCH) 
model developed by Engle (1982) and the generalized 
autoregressive conditional heteroskedasticity (GARCH) 
model developed by Bollerslev (1986). However, while 
unable to detect good and bad news, the GARCH model 
may have different predictive powers for the volatility of 
the asset prices. Bad news triggering a larger volatility 
than good news does explains why volatility is 
underestimated for bad news and overestimated for good 
news in a volatility model that ignores asymmetric effects, 
leading to an inaccurate prediction of volatility. Black 
(1976), Nelson (1990), Chang and Goo (2003), and 
Hodgson et al. (2006) found asymmetric effects in the 
stock market. Notably, a dynamic hedging model 
normally examines hedging effectiveness by utilizing a 
GARCH-family model. Additionally, the hedging effective-
ness of a dynamic hedging model is better than that of 
static hedging models (Kroner and Sultan, 1993; Park 
and Switzer, 1995; Holmes, 1996; Tong, 1996; Choudhry, 
2004; Lee and Yoder, 2007a and 2007b; Switzer and EI-
Khoury, 2007; Kavussanos and Visvikis, 2008; Andani et 
al., 2009; Yang and Lai, 2009; Park and Jei,   2010). In    
contrast,    the    asymmetric    hedging effectiveness of 
symmetric dynamic hedging models has seldom been 
addressed. 

Based  on  the  minimum-variance  hedging   portfolio,  the 

 
 
 
 
static hedging models and dynamic hedging models are 
also compared in terms of hedging effectiveness, 
dynamic hedging effectiveness, hedging effectiveness of 
dynamic conditional correlation, and asymmetric dynamic 
hedging effectiveness. This comparison is made among 
the following hedging models: the static hedging models 
(naive hedging model and naive OLS model) and 
dynamic hedging models (vector error correct multivariate 
GARCH model with a constant conditional correlation, 
vector error correct multivariate GJR-GARCH model with 
a constant conditional correlation, vector error correct 
multivariate GARCH model with a dynamic conditional 
correlation, and vector error correct multivariate GJR-
GARCH model with a dynamic conditional correlation). 

According to empirical findings, comparing various 
hedging models in terms of hedging effectiveness, based 
on the minimum-variance hedging portfolio, reveals that 
the hedging effectiveness of the naive hedging model in 
the static hedging models, 0.80404, is the lowest among 
all of the models. This finding suggests that in the static 
hedging models, hedging effectiveness of the naive 
hedging model is at least 80.404%. In dynamic hedging 
models, hedging effectiveness of the VEC-MGARCH-t 
model with a constant conditional correlation is the lowest 
among all of the models. We can thus infer that hedging 
effectiveness in the dynamic hedging models is at least 
85.685%. 

Comparing the dynamic conditional correlation hedging 
models with the constant conditional correlation hedging 
models reveals that the former has a higher hedging 
effectiveness than the latter. Importantly, this study 
demonstrates that the asymmetric dynamic hedging 
models have a higher hedging effectiveness than the 
symmetric dynamic hedging models, suggesting that 
there is an asymmetric dynamic hedging effectiveness in 
the Taiwan stock index futures. The rest of this paper is 
organized as follows. Section 2 describes the sample 
selection and methodology. Section 3 then summarizes 
the empirical results. Conclusions are finally drawn in 
Section 4, along with recommendations for future 
research. 
 
 
METHODOLOGY 
 
Sample selection 
 
The sample period lasted from July 21, 1998 to October 29, 2010. 
Data regarding the Taiwan weighted stock index and index futures 
was obtained from the Taiwan Economic Journal Database (TEJ). 
In total, 3,101 sample observations were made. Daily index stock 
returns and index stock futures returns were calculated as the 
difference in the natural logarithms of daily closing prices, and then 
multiplied by 100. 

This study adopts the window-rolling method to ensure that the 
daily hedge ratio and hedging effectiveness are adjusted according 
to the latest information. Generally, using out-of-sample forecasts to 
calculate the hedging effectiveness is a more precise means than 
using in-sample (Baillie and Myers, 1991; Brenner et al., 1996; Lee 
and Hung, 2007; Park and Jei, 2010; Lai and Sheu, 2010). 
Additionally, Choudhry (2009) suggested that one  year  and  two  year  



 
 
 
 
forecast horizons do not differ from each other. This study calculates the 
hedging effectiveness using out-of-sample forecasts for one year. 
Thus, 250 sample observations were made during the test period. 
 
 
Empirical models 

 
Vector Error Correct Multivariate GARCH (VEC-MGARCH) 
Model with a constant conditional correlation 
 
Chan et al. (1991) developed a bivariate GARCH model with a 
constant conditional correlation. An error correction term is added in 
the mean equation and vector error correct multivariate GARCH 
(VEC-MGARCH) model, with the constant conditional correlation 
specified as follows: 
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[ ]′= 21 τττ , [ ]′= ttt ,2,1
εεε , ( )1,21,1 lnln −− −− tt PP δκτ  

denotes the error correction term, 
0

A  represents a ( )2×2  positive-

definite and asymmetric matrix, 
i

A and
j

B  refer to a ( )33×  

matrix, ( )•vech  denotes the operation factor of a ( )13×  vector that 

is stacked from a ( )22×  matrix of lower triangular form, and 
2

12 t,
σ  

represents the covariance of stock index and stock index futures at 
time t. 

 
 
Vector Error Correct Multivariate GJR-GARCH (VEC-GJR-
MGARCH) Model with a constant conditional correlation 

 
Femandez-Izquierdo and Lafuente (2004) developed a bivariate 
GJR-GARCH model with a constant conditional correlation. An error 
correction term is added in the mean equation and vector error 
correct multivariate GJR-GARCH (VEC-GJR- MGARCH) model with 
the constant conditional correlation specified as follows: 
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Vector Error Correct Multivariate GARCH (VEC-MGARCH) 
Model with a dynamic conditional correlation 

 
In an empirical study, the correlation coefficient tends to change 
over time. Therefore, in this study, the vector error correct 
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Vector Error Correct Multivariate GARCH (VEC-MGARCH) 
Model with a dynamic conditional correlation 
 
In an empirical study, the correlation coefficient tends to change 
over time. Therefore, in this study, the vector error correct 
multivariate GARCH model with a dynamic conditional correlation is 
based on the multivariate GARCH model with a dynamic conditional 
correlation proposed by Engle (2002). Therefore, an error 
correction term is added in the mean equation. The model is thus 
specified as follows: 
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 denotes the unconditional covariance matrix of 
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Q
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Vector Error Correct Multivariate GJR-GARCH (VEC-GJR-
MGARCH) Model with a dynamic conditional correlation  

 
Regarding the price adjustment behavior of the GARCH model for 
financial assets, the returns volatility is generally assumed to have 
a symmetric effect. Because the explanatory ability and pre-
dictability in response to an actual situation might be inadequate, 
the model should include the asymmetry of returns volatility.  

Therefore, in this study, the vector error correct multivariate GJR-
GARCH model with a dynamic conditional correlation is based on a 
bivariate GJR-GARCH model with a dynamic conditional correlation 
proposed by Femandez-Izquierdo and Lafuente (2004). An error 
correction term and dynamic conditional correlation are thus 
incorporated in the model, which is specified as follows: 



9674         Afr. J. Bus. Manage. 
 
 
 

( ) ,lnln 1,21,11 ttttt PP ετβrαr +−−++= −−− δκ         (12) 

 

( ) ( ) ( ) ( ) ,
2

1

'

11

1

0 −

=

−−−

=

+∑++=∑ ∑∑ t1-tjttt

m

i

it vechvechvechvech εεε γIBAA
s

1j

j   (13) 

 

,
1/2

t

1/2

tt DψD t=∑
                                 (14) 

 

( ) ( ) ,
2/12/1 −−

××= ttt QdiagQQdiagtψ          (15) 
 

( ) ( ) .1
12

'

11121 −−− ++−−= tttt QuuQQ δδδδ
    (16) 

 
 (16 
Measurements of hedging effectiveness 
 
Based on the minimum-variance hedging portfolio, this study 
investigates the hedging effectiveness, dynamic hedging 
effectiveness, hedging effectiveness of a dynamic conditional 
correlation, and asymmetric dynamic hedging effectiveness among 
various models, which include static hedging models (naive 
hedging model and naive OLS model) and dynamic hedging 
models (vector error correct multivariate GARCH model with a 
constant conditional correlation, vector error correct multivariate 
GJR-GARCH model with a constant conditional correlation, vector 
error correct multivariate GARCH model with a dynamic conditional 
correlation, and vector error correct multivariate GJR-GARCH 
model with a dynamic conditional correlation). Johnson (1960) 
developed both the minimum-variance portfolio hedge ratio and the 

optimal hedge ratio at time t as ( ) ( )f

t

f

t

s

t rrr var,cov , where 

cov rt

s
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f( ) denotes the covariance of stock index and stock index 

futures returns at time t and ( )f

trvar  represents the variance of 

stock index futures returns at time t. 

 
 
Hedging effectiveness 
 

Johnson (1960) defined hedging effectiveness ( )
T

HE  as the 

percentage of reduction of the variance of hedge models in 
comparison with that of unhedged situations: 
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Dynamic hedging effectiveness 
 

Dynamic hedging effectiveness ( )DHE  denotes the percentage of 

reduction of the variance of the dynamic hedge models in 
comparison with that of static hedge models: 

2

22

s

Ds
DHE

σ

σσ −
= ,                                                           (18) 

where 
2

sσ  and 
2

Dσ  denote the variance of static and dynamic 

hedge models, respectively. A positive value of DHE  means that 

the hedge effectiveness of dynamic hedge models is better than 

that of static hedge models. Conversely, a negative value of DHE  

means that the hedge effectiveness of the static hedge models is 
better than that of the dynamic hedge models. 
 
 
Hedging effectiveness of dynamic conditional correlation  
 

Dynamic conditional correlation hedging effectiveness ( )YHE  

represents the percentage of reduction in variance of the dynamic 
conditional correlation hedging models in comparison with constant 
conditional correlation hedging models: 
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where 
2

Cσ  and 
2

Yσ  denote the variances of constant conditional 

correlation hedging models and dynamic conditional correlation 

hedging models, respectively. A positive value of 
YHE  implies that 

dynamic conditional correlation hedging models are better than 
constant conditional correlation hedging models in terms of hedging 
effectiveness. Otherwise, dynamic conditional correlation hedging 
models are worse than constant conditional correlation hedging 
models in terms of hedging effectiveness. 
 
 
Asymmetric dynamic hedging effectiveness 
 

Asymmetric dynamic hedging effectiveness ( )AHE  is defined as 

the percentage of reduction of the variance of asymmetric dynamic 
hedge models compared with that of the symmetric dynamic hedge 
models: 
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where 
2

Sσ  and 
2

Aσ  denote the variance of symmetric dynamic 

hedge models and asymmetric dynamic hedge models, 

respectively. A positive value of AHE  implies that asymmetric 

dynamic models are better than symmetric dynamic models in 
terms of the hedging effectiveness. Conversely, a negative value of 

AHE  implies that asymmetric dynamic models are worse than the 

symmetric dynamic models in terms of hedging effectiveness.  



 
 
 
 
Test for hedging effectiveness 
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RESULTS 
 
Summary statistics and ARCH test 
 
Table 1 summarizes the ARCH test analysis results. At 
5% significant level, the means of the Taiwan stock index 
and stock index futures returns series are insignificantly 
different from 0 for the whole sample period and the 
estimation period other than the test period. The 
skewness values of the Taiwan stock index and stock 
index futures returns series significantly differ from 0 at 
5% significant level for the whole sample period and the 
estimation period other than for the test period. The 
excess kurtosis values of the Taiwan stock index and 
stock index futures returns series are more than 3 at 5% 
significant level for all periods. Therefore, the Taiwan 
stock index and stock index futures returns series are 
leptokurtic forms. Based on the Jarque-Bera test, the 
Taiwan stock index and stock index futures returns series 
are not normally distributed for all periods. The Ljung-Box 
Q test for the lag-6 Taiwan stock index and futures 
returns series are statistically significant at 5% significant 
level for the whole sample period and the estimation 
period, suggesting a linear intertemporal dependence in 
the Taiwan stock index and stock index futures returns 
series. However, they are statistically insignificant for the 
test period, implying no linear intertemporal dependence 
in the Taiwan stock index and stock index futures returns 
series. Ljung-Box Q test for the lag-6 squared returns 
series of Taiwan stock index and stock index futures 
returns are statistically significant at 5% significant level 
for the whole sample period, estimation period, and test 
period, suggesting a linear  intertemporal  dependence  in  
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the squared returns series of the Taiwan stock index and 
stock index futures. Meanwhile, the non-linear 
intertemporal dependence in the squared returns series 
may come from the conditional heterogeneity in variance 
larger price changes that follow larger price changes. 
Additionally, based on the Lagrange multiplier test 
proposed by Engle (1982), the test statistics are all 
significantly larger than the critical value of chi-square 
distribution at 5% significant level for the whole sample 
period, estimation period, and test period. This 
observation leads to the rejection of the null hypothesis in 
which no ARCH effects occur. In short, the Taiwan stock 
index and stock index futures returns series have time-
variant variances. 

Based on the Engle and Ng’s (1993) sign bias test 
(SBT), negative sign bias test (NSBT), positive sign bias 
test (PSBT), and joint test (JT), the volatility of Taiwan 
stock index returns and stock index futures returns 
exhibits a conditional heteroskedasticity and asymmetry. 
 
 
Minimum variance portfolio and hedging 
effectiveness 
 

A naive hedging effectiveness closer to 1 implies a 
hedging model with more effective hedging. Table 2 
summarizes the hedging effectiveness of the various 
hedging models. The hedging effectiveness of the naive 
hedging model, 0.80404, is the lowest in static hedging 
models, suggesting that the hedging effectiveness of the 
naive hedging model is at least 0.80404 in static hedging 
models. Moreover, comparing the static hedging models 
with the dynamic hedging models in terms of hedging 
effectiveness reveals that the hedging effectiveness of 
the naive hedging model in the static hedging models, 
0.80404, is the lowest. Meanwhile, the hedging 
effectiveness of VEC-GJR-MGARCH-t with a dynamic 
conditional correlation in the dynamic hedging models, 
0.92787, is the highest.  

This finding suggests that the dynamic hedging models 
has a higher hedging effectiveness than the static 
hedging models does, which is consistent with the 
conclusions of Kroner and Sultan (1993), Park and 
Switzer (1995), Tong (1996), Choudhry (2004), Lee and 
Yoder (2007a and 2007b), Switzer and EI-Khoury (2007), 
and Kavussanos and Visvikis (2008). However, this 
finding differs from the conclusions of Holmes (1996), 
Yang and Lai (2009), and Park and Jei (2010). Table 2 
also reveals that the hedging effectiveness of dynamic 
conditional correlation hedging models is better than that 
of constant conditional correlation hedging models. For 
instance, in the symmetric t distribution, the hedging 
effectiveness of the dynamic conditional correlation 
model (VEC-MGARCH-t), 0.90779, is higher than that of 
the constant conditional correlation model (VEC-
MGARCH-t), 0.85685. In an asymmetric normal distribu-
tion, the hedging effectiveness of the dynamic conditional 
correlation   model  (VEC-GJR-MGARCH-n),  0.94744,  is  
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Table 1. Summary statistics and ARCH analysis. 
 

Variable 

Taiwan stock index return  Taiwan stock index futures return 

Whole sample period 
(1998/7/21 to 

2010/10/29) 

Estimation period 

(1998/8/14 to 

2009/10/30 

Test period 

(2009/11/1 to 

2010/10/29) 

 

 

 

Whole sample period 
(1998/7/21 to 

2010/10/29) 

Estimation period 

(1998/8/14 to 

2009/10/30 

Test period 

(2009/11/1 to 

2010/10/29) 

Number of samples 3101 2832 250  3101 2832 250 

Mean 0.00134 -0.00010 0.04900  0.00101 -0.00003 0.05287 

Standard deviation 1.58810 1.62923 1.08179  1.89434 1.94697 1.229641 

Skewness -0.11631** -0.09631* -0.83340  -0.16735** -0.15638** -0.57151 

Excess kurtosis 3.84290** 4.70672** 4.79979**  11.03107** 10.76739** 4.05905** 

Jarque-Bera 445.67597** 348.10118** 62.43111**  8345.47416** 7130.75405** 25.19146** 

LB Q (6) 21.90030** 21.12110** 7.84260  18.45060** 18.54220** 9.92470 

LB Q2(6) 443.3848** 381.36440** 8.99350  469.35820** 421.9093** 12.27570 

        

ARCH 
198.67620* 

(0.02181) 

182.77070* 

(0.02236) 

106.57870* 

(0.01461) 

 

 

3503.98800* 

(0.02760) 

3216.21900* 

(0.02842) 

125.74950* 

(0.01730) 

        

SBT 
5.39690* 

(1.95738) 

3.83130 

(1.92265) 

12.67570** 

(1.89060) 

 

 

4.96400* 

(3.16230) 

5.14600* 

(3.11991) 

3.89380* 

(1.72675) 

        

NSBT 
39.17560** 

(1.94708) 

34.52230** 

(1.91257) 

0.48940 

(1.93931) 

 

 

177.59860** 

(3.0783) 

165.1303** 

(3.03590) 

0.73590 

(1.74006) 

        

PSBT 
4.90410* 

(1.95781) 

3.66060 

(1.92296) 

3.79190 

(1.92649) 

 

 

1.16040 

(3.16475) 

0.86000 

(3.12277) 

4.12040* 

(1.72830) 

        

JT 681.62598* 637.96963* 63.94414*  468.68541* 437.22919* 66.20721* 
 

1. ** (*) denotes statistical significance at 1% (5%) significant level. 
2. LB Q (6) represents Ljung-Box Q test statistics of lag 6; the critical value is 16.81 (12.59) at 1% (5%) significant level. 
3. LB Q2 (6) refers to Ljung-Box Q test statistics of lag 6 for squared series; the critical value is 16.81 (12.59) at 1% (5%) significant level. 
4. The ARCH test statistics proposed by Engle (1982) are based on the minimum of AIC as the time lags of the Taiwan stock index and futures returns are determined under the null 
hypothesis; no ARCH effects. 
5. SBT, NSBT, and PSBT denote a sign bias test, negative sign bias test, and positive sign bias test, respectively.  
6. JT refers to a joint test, and it is a chi-square distribution with 3 degrees of freedom. The critical value at 5% significant level is 7.82. 
7. The figures in brackets denote standard errors. 

 
 

larger than that of the constant conditional cor-
relation model (VEC-GJR-MGARCH-n), 0.90772. 
Moreover, the symmetric model has a higher 
hedging   effectiveness   than  that  of  asymmetric 

models. For instance, the constant conditional 
correlation model (VEC-GJR-MGARCH-t) has a 
higher hedging effectiveness (0.88427) than that 
of    the   constant   conditional  correlation  model  

(VEC-MGARCH-t) (0.85685). This    difference    
can be attributed to the asymmetric volatility. 
Additionally, F test suggests that the hedging 
effectiveness of a  hedging  model  is  significantly
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Table 2. Hedging effectiveness of the various hedging models. 
 

Hedging model Hedging effectiveness 

Static hedging model Naive hedging model 0.80404**(5.10317) 

Naive OLS model 0.82339**(5.66212) 

     

Dynamic 
hedging model 

Constant 
conditional 
correlation 

Symmetric VEC-MGARCH-t 0.85685**(8.64069) 

VEC-MGARCH-n 0.89153**(6.98587) 

   

Asymmetric VEC-GJR-MGARCH-t 0.88427**(13.86380) 

VEC-GJR-MGARCH-n 0.90772**(10.84469) 

    

Dynamic 
conditional 
correlation 

Symmetric VEC-MGARCH-t 0.90779**(10.83632) 

VEC-MGARCH-n 0.93117**(9.21934) 

   

Asymmetric VEC-GJR-MGARCH-t 0.92787**(19.02621) 

VEC-GJR-MGARCH-n 0.94744**(14.52911) 
 

1. VEC-MGARCH-t refers to a situation in which a multivariate GARCH model with a vector error correction term follows t 
distribution. VEC-MGARCH-n refers to a situation in which a multivariate GARCH model with a vector error correction 
term follows normal distribution. VEC-GJR-MGARCH-t refers to a situation in which a multivariate GJR-GARCH model 
with a vector error correction term follows t distribution. VEC-GJR-MGARCH-n refers to a situation in which a multivariate 
GJR-GARCH model with a vector error correction term follows normal distribution. 
2. Test period is one year. Hedging effectiveness is calculated from equation 17. 
3. F statistic is used to test hedging effectiveness. **(*) denotes statistical significance at 1% (5%) significant level which 
the critical value is 1.34405(1.23229). 

 
 
 

Table 3. Dynamic hedging effectiveness of the dynamic hedging models. 
 

Dynamic hedging model 
Dynamic hedging effectiveness 

Naive hedging model Naive OLS model 

Constant 
conditional 
correlation 

Symmetric 
VEC-MGARCH-t 0.26950**(1.69320) 0.18949**(1.52606) 

VEC-MGARCH-n 0.44647**(1.36893) 0.38584*(1.23379) 

    

Asymmetric 
VEC-GJR-MGARCH-t 0.40940**(2.71670) 0.34471**(2.44852) 

VEC-GJR-MGARCH-n 0.52907**(2.12509) 0.47749**(1.91531) 

     

Dynamic 
conditional 
correlation 

Symmetric 
VEC-MGARCH-t 0.52943**(2.12345) 0.47789**(1.91383) 

VEC-MGARCH-n 0.64876**(1.80659) 0.61029**(1.62825) 

    

Asymmetric 
VEC-GJR-MGARCH-t 0.63191**(3.72831) 0.59159**(3.36027) 

VEC-GJR-MGARCH-n 0.73178**(2.84707) 0.70241**(2.56603) 
 

1. VEC-MGARCH-t refers to a situation in which a multivariate GARCH model with a vector error correction term follows 
distribution. VEC-MGARCH-n refers to a situation in which a multivariate GARCH model with a vector error correction term follows 
normal distribution. VEC-GJR-MGARCH-t refers to a situation in which a multivariate GJR-GARCH model with a vector error 
correction term follows t distribution. VEC-GJR-MGARCH-n refers to a situation in which a multivariate GJR-GARCH model with a 
vector error correction term follows normal distribution. 
2. Test period is one year. Dynamic hedging effectiveness is calculated from equation 18. 
3. F statistic is used to test hedging effectiveness. **(*) denotes statistical significance at 1% (5%) significant level which the critical 
value is 1.34405(1.23229). 

 
 
 
higher  than that of an unhedging model at 5% significant 
level.  

Table 3 shows the dynamic hedging effectiveness of 
the dynamic hedging models,  in  comparison  with  static 

hedging models. All dynamic hedging effectiveness 
values are positive, suggesting that dynamic hedging 
models are better than the static hedging model in terms 
of dynamic hedging effectiveness, possibly owing  to  that  
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Table 4. Hedging effectiveness of the dynamic conditional correlation hedging models. 
 

Dynamic conditional correlation hedging model Hedging effectiveness of dynamic conditional correlation 

Symmetric 
VEC-MGARCH-t 0.24226*(1.25410) 

VEC-MGARCH-n 0.20262*(1.31971) 

   

Asymmetric 
VEC-GJR-MGARCH-t 0.25359**(1.37237) 

VEC-GJR-MGARCH-n 0.27133*(1.33974) 
 

1. VEC-MGARCH-t refers to a situation in which a multivariate GARCH model with a vector error correction term follows t 
distribution. VEC-MGARCH-n refers to a situation in which a multivariate GARCH model with a vector error correction term follows 
normal distribution. VEC-GJR-MGARCH-t refers to a situation in which a multivariate GJR-GARCH model with a vector error 
correction term follows t distribution. VEC-GJR-MGARCH-n refers to a situation in which a multivariate GJR-GARCH model with a 
vector error correction term follows normal distribution. 
2. Test period is one year. Hedging effectiveness is calculated from equation 19. 
3. F statistic is used to test hedging effectiveness. ** (*) denotes statistical significance at 1% (5%) significant level which the 
critical value is 1.34405(1.23229). 

 
 
 

Table 5. Asymmetric dynamic hedging effectiveness of the asymmetric dynamic hedging models. 
 

Asymmetric dynamic hedging model Asymmetric dynamic hedging effectiveness 

Constant conditional correlation VEC-GJR-MGARCH-t 0.35583**(1.60448) 

VEC-GJR-MGARCH-n 0.40776**(1.55238) 

   

Dynamic conditional correlation VEC-GJR-MGARCH-t 0.37675**(1.75578) 

VEC-GJR-MGARCH-n 0.39916**(1.57594) 
 

1. VEC-MGARCH-t refers to a situation in which a multivariate GARCH model with a vector error correction term follows t distribution. 
VEC-MGARCH-n refers to a situation in which a multivariate GARCH model with a vector error correction term follows normal 
distribution. VEC-GJR-MGARCH-t refers to a situation in which a multivariate GJR-GARCH model with a vector error correction term 
follows t distribution. VEC-GJR-MGARCH-n refers to a situation in which a multivariate GJR-GARCH model with a vector error 
correction term follows normal distribution. 
2. Test period is one year. Asymmetric dynamic hedging effectiveness is calculated from equation 20. 
3. F statistic is used to test hedging effectiveness. **(*) denotes statistical significance at 1% (5%) significant level which the critical 
value is 1.34405(1.23229). 

 
 
 

the hedge ratio of the dynamic hedging models takes 
dynamics into account. Additionally, F test suggests that 
the hedging effectiveness of the dynamic hedging models 
is significantly better than that of the static hedging 
models at 5% significant level. 

Table 4 shows the Hedging effectiveness of the 
dynamic conditional correlation hedging models. All 
hedging effectiveness values of the dynamic conditional 
correlation models are positive, suggesting that the 
dynamic conditional correlation hedging models are 
better than constant conditional correlation hedging 
models. This is possibly owing to that the hedging 
effectiveness of dynamic conditional correlation hedging 
models takes dynamics into account. In particular, the 
asymmetric VEC-GJR-MGARCH-n model has a hedging 
effectiveness of up to 27.133%. Additionally, F test 
suggests that the hedging effectiveness of dynamic 
conditional correlation hedging model is significantly 
better than that of constant conditional correlation 
hedging models at 5% significant level. 

Table 5 shows the asymmetric dynamic hedging 
effectiveness of the asymmetric dynamic hedging models  

in comparison with symmetric models under the same 
distribution. All of the asymmetric dynamic hedging 
effectiveness values are positive, suggesting that 
asymmetric dynamic hedging models are better than 
symmetric dynamic hedging models. In particular, 
effectiveness of asymmetric dynamic hedging for the 
VEC-GJR-MGARCH-n model with a constant conditional 
correlation was up to 40.776% better. Additionally, the F 
test suggests that the hedging effectiveness of the dyna-
mic asymmetric hedging models is significantly better 
than that of the dynamic symmetric hedging models at 
5% significant level. 
 
 
Conclusions  
 
This study examines the asymmetric dynamic hedging 
effectiveness the Taiwan stock index futures by using 
daily data the Taiwan stock exchange capitalization 
weighted stock index (TAIEX) and index futures (TAIFEX) 
from July 21, 1998 to October 29, 2010. Based on the 
minimum-variance   hedging    portfolio,      the     hedging  



 
 
 
 
effectiveness of various hedging models is also 
examined, including dynamic hedging effectiveness, 
hedging effectiveness of dynamic conditional correlation, 
and asymmetric dynamic hedging effectiveness. Based 
on those results, we conclude the following: 
 
(1) Comparing various hedging models in terms of 
hedging effectiveness reveals that the hedging 
effectiveness of the naive hedging model in static 
hedging models, 0.80404, is the lowest among all of the 
models. This finding suggests that in static hedging 
models, the hedging effectiveness of the naive hedging 
model is at least 80.404%. Additionally, comparing the 
static hedging models with the dynamic hedging models 
reveals that the naive OLS model has the lowest hedging 
effectiveness, 0.80404, among the static hedging models. 
Meanwhile, the VEC-GJR-MGARCH-t model with the 
dynamic conditional correlation has the highest hedging 
effectiveness, 0.94744, among the dynamic hedging 
models. This finding suggests that the dynamic hedging 
model has a higher hedging effectiveness than that of 
static hedging models; 
(2) Comparing the dynamic conditional correlation 
hedging models with the constant conditional correlation 
hedging models reveals that the former has a higher 
hedging effectiveness than that of the latter. In particular, 
the asymmetric VEC-GJR- MGARCH-n model has a 
hedging effectiveness that is up to 27.133% higher. 
(3) All asymmetric hedging effectiveness values are 
positive, suggesting that the asymmetric dynamic 
hedging model has a higher hedging effectiveness than 
the symmetric dynamic hedging models. In particular, the 
VEC-GJR-MGARCH-n model with a constant conditional 
correlation has an asymmetric hedging effectiveness that 
is up to 40.776% higher. 

 
 
RECOMMENDATIONS 
 
Although capable of reducing certain spot risks, futures 
contracts cannot eliminate entirely such risks. Therefore, 
investors highly prioritize risk management and should 
have a keen insight into investments to reduce risks. 

As this study focused on the minimum-variance port-
folio, we recommend that future studies adopt the utility 
function of risk and returns to measure. Additionally, the 
market sector is vulnerable to both daily news events and 
events that are unusual; these are also known as normal 
innovations and unusual or jump innovations, respec-
tively. The conditional variance of jump innovations 
determines unusual and extreme price changes from 
significant news. We thus recommend that future studies 
adopt an autoregressive conditional jump intensity (ARJI) 
model to determine the continuous, discontinuous, and 
asymmetric jumps of volatility in the market. For other 
index targets and their derivatives products, we also 
recommend that  future  studies  investigate   asymmetric  
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hedging effectiveness of the derivatives to construct the 
minimum-variance portfolio with those derivatives. 
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