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This work presents the results of the theoretical-experimental researches of the quantification for the 
superponed flow time of the two local-autonomous flows in the net of the basic Clark’s equations. The 
computer solution to this basic variant of the general flow model through the net is performed by the 
methods of the numerical simulation (Monte Carlo), supplemented by frames’ method. The numerical 
experiment is realized by the program tool Mathcad Professional. 
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INTRODUCTION 
 
The host model, for which the Clark’s equation of the 
equivalent (resulting) activity, consists of the oriented 
graph, where two activities go parallel, they have the 
common beginning and run up to a terminal “event”. In 
that sense activities can be local - autonomous, until they 
are totally realized. The results of Clark's equations in this 
work are compared to the results of the Monte Carlo - 
frame numerical simulation. Both methods, analytic and 
numerical ones, are characteristic for studying different 
phenomena and processes based upon network models 
of activity flows, resources, energies and likes. Those 
problems, as we know from the experience of Clark 
(1961), are mostly of stochastic character, and solving 
them in an analytic way is often unfeasible without certain 
approximation. In this way, stimulated by Clark (1961), 
Clemen (1996), Slyke (1963), Dodin (1984), Fishman 
(1986, 1999), Haga and O’Keefe (2001), Keefer and 
Bodily (1983),  Keefer and Verdini (1993), Littlefield and 
Randolph (1987), Lock (2007) and Vose (1996), a 
network model of flows activity is defined and the 
contribution to algorithms development is given for 
solving the general model of critical flows based on row-
parallel graph  structures. In this  analysis, it is  supposed  
that   there   is   a  normal  distribution   of  single   activity  
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endings with the average (mean) values characteristics 
and appropriate time deviations of their realization. 

 
 
THE FLOWS WITH CRITICAL ACTIVITIES 

 
The unambiguous solution for critical activity flow, and with it, the 
resulting flow time using the expecting times of the elementary 
flows-activities, presents one of the most troublesome effects of the 
network planning application based on stochastic methods. The 
stochastic (but also deterministic) activities networks formed, for 
example, the arrow diagram method (ADM) basis structure can in 
some planning cases be very complex. There are the examples of 
the network diagrams, for example, in machine-building industry, 
where the number of activities amounts to several thousands, with 
several hundreds of identified critical and subcritical flows (paths). 
From the analysis standpoint of the critical flows, as seen in the 
study of Clemen (1996), the particular problem encountered is the 
variant with parallel critical flows, which do not contain one common 
(unique) activity. The only one common thing with those activities is: 
the initial and final event and the approximately same or different 
values realized from the critical and subcritical flows. The final event 
will be realized if all the critical flows that “run up into it” are 
realized. In that case, we can rightly put the question: how great is 
the certainty (as well probability distribution) that the resulting flow 
time will be completed within the planned period of time Tp, taking 
into consideration that such activity graph can comprise one, two ar 
limitless number of critical flows parallel, ordinal ar combined type. 
For giving a correct answer to this question, it is necessary to define 
exactly the algorithm for the impact quantification, primarily, critical 
and subcritical flows and forming the resulting - superponed flow  
time of flows. 



 
 
 
 
The aim of the paper 
 
The basic aim of this paper is the impact quantification of critical 
and subcritical flows on forming the resulting, that is, superponed 
flow time. With its solution, a fundamental base is being created 
here for defining the function of probability distribution, as well 
relatively noticing those flows by frames methods application. 

 
 
The defining of the basic time parameters for the autonomous 
critical flows 

 
According to the researches by Clark (1961) and Van Slyke (1963), 
the intervals superponing of the critical and subcritical flow times 
and their deviations and (their) reducing into an equivalent flow can 
be deduced by: 

 
 Analytic methods: with Clark’s equations for the parallel flows 
solving, on the basic of the central limit theorem, for ordinal flows 
solving and 

 By numerical method: - Monte Carlo - frame simulation for the 
parallel - ordinary flows. To illustrate the application of the above-
mentioned fundamental algorithms, we shall take the   ADM - 

network with two parallel flows 1  and 2  (Figure 1). 

 Based on modeling Fuzzy. 

 
 
The Superpone time and the flow variant 

 
In the algorithm structuring for the analytical solving of this critical 
flows variant, the paper starts from Clark’s authentic equations. 
With these equations, the flows parameters are being solved as 

follows: the superpone flow time 12P  and its variants )( 12
2 P . 

For basic oriented graph with two parallel flows, from the initial (r) to 

the terminal (k) event (Figure 2), the flow time values 12P ,  are: 

 
 The superponed flow time: 

 

)()()( 2,12,12,122,112,1   PPP                      (1) 

 

Where: 


 



 dzz )2/exp()2()( 22/1  - Laplace integral, 

)2/exp()2()( 22/1   
 - the density function of the centered 

normal distribution and   1 2

2

1

2

2, ( ) ( ) P P , that is 




1 2

1 2

1 2

1
,

,

( )  P P - the parameter of Clark’s functions. In addition 

to it, the predicted or mean values of time intervals are usually 
taken as:  

 

P1 1   i P2 2                                                                    (2) 

 
so according to Equations 1 and 2, it follows that:                                                    

 
 The mean superponed flow time is: 
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 The superponed dispersion is presented by the second Clark’s 
equation: 
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With this equation, we can describe characteristics of an equivalent 
flow instead of the previous two flows (Figure 2). 
 
 

The growth of the superponed flow time in relation to the 
critical flow 
 

On the basic of the new superponed function of the time distribution 

12P , with the characteristics ],[~ 1212 N ], one can quantify 

the time growth P1,2 in relation to the single time 1P  or 2P , 

depending on which of them has the critical feature. For the 

elementary network with the autonomous flows 1  and 2 , the 

growth or “the superponed extract”, after a more straightforward 
derivation results to: 
 

)()()( 2,1122,12,12,1                                   (5)   

 

Meanwhile, in the case of the reversed choice, it follows: 
 

       2 1 2 1 2 1 1 2 2 1, , , ,( ) ( ) ( )                                (6) 

 

In addition, these values are by their nature (essence) always 

negative, that is: 02,1   and 01,2  . 

 
 

The Invariant ability testing of the flow model 
 
The invariant ability ought to prove that the invented values 
remained unchanged and unambiguously fixed while changing the 
flows rank order in the reckoning process. It is well-known that, 
already with only two flows with two parameters each for every flow, 
we can have nine relations. In other words, analyzing the next 
possible relations between the expected times and the deviations of 
single flows, we have: 
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It can be concluded that nine different combinations can be totally 
formed. Accepting that: 
 

 1 2 2 1, , ,  1 2 2 1, ,  ,  and  ( ) ( ), ,  1 2 2 1              (8) 

 
The paper gets the invariant relations of the basic tested values that 
are connected to the superponed flow, that is: 
 

1,22,1   ; 1,22,1    and )()( 1,2
2

2,1
2 PP                            (9)  

 
It can be concluded that any of the two flows that will be observed 
as critical or subcritical is irrelevant. This characteristic of the 
model’s invariant ability (Letić, 1996) is very  essential  and  in  
addition  to  the  
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Figure 1. The flow network with two local autonomous activities flows. 
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Figure 2. The equivalent - superponed activity flow. 
 
 
 

 
 

Figure  3. The distributions of probability for critical, subcritical and superponed flow time. 
 
 
 

analytical verification, there can also be a numerical performed 
model: Fishman (1986), Haga and O'keefe (2001), with the Monte 
Carlo simulation. 

 
 
THE APPLICATION OF THE SIMULATION MODELS 
 
The use of the Monte Carlo method for solving 
Clark’s flow model 
 
Because the elementary activities of the flow time have 
the normal     distribution        with       the      parameters  

],[~ jjN  , ( 2,1j ) as convenient method, for the 

modeling of the observed random changeable value, the 
method of inverse functions is accepted. Figure 3 present 

the results of the numeric simulation of the 
5105xn   

replications for chosen values ]8,120[~ 11  N  and 

]5.6,110[~ 11  N . Here are also obtained:   

 
 theoretic values: ]1046795.7,908747.120[~ 1212  N , 

 simulation values: ]109556.7,897371.120[~ 1212  smN . 
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Figure 4. The frame for the values: ]8,120[ 11    and  ]5.6,130[ 22   . 

 
 
 

 
 

Figure 5. The frame for the values: ]8,120[ 11    and  ]5.6,120[ 22   . 

 
 
 

Meanwhile, as this algorithm is computer fixed, the main 
point of the problem is now within the purview of 
simulation, where one session of the simulation of 

5105xn   replications was done by testing only one 

chosen variant, when it is 21    and 21    of the 

possible nine ones. 
 
 

The application of the Monte Carlo - frame methods 
in solving the Clark’s flow model 
 

The purview extension of the Monte Carlo method is 
possible to be done by frames using Equation 7, with 
computer frames by means of changing the fixed 

parameter, through the vector value 1 . In the set 

algorithm, Monte Carlo is formed the convenience for 
understanding and the visualization of a broader class of 
appearances, than it was in previous stereotype-satic 

view on the process and the simulation results. In that 
sense the supposition (Equation 9) can be sum up to 
three variants in one simulation session:  
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 and  1 2 .                                      (10) 

 
The frame number depends on the problem complexity, 
that is, the studied process. One should not neglect the 
esthetic moment of the frames presentation, as a result, 
the integrated Monte Carlo method-frame has also very 
educative role. Here are frames which are totally, 
spontaneously connected for the simulation process, and 
so broadened Monte Carlo simulation for “a new 
dimension”, what can be partially presented by a series of 
selected frames (Figures 3, 4, 5, 6, 7, 8 and 9).   
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Figure 6. The frame for the values: ]8,120[ 11    and  ]5.6,110[ 22   . 

 
 

 

 
 

Figure 7. The frame for the values: ]8,120[ 11    and  ]5.6,90[ 22   . 

 
 
 

 
 

Figure 8. The frame for the values: ]8,120[ 11    and  ]5.6,80[ 22   . 
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Figure 9. The frame for the values: ]8,120[ 11    and  

]5.6,65[ 22   . 

 
 
 

CONCLUSION 

 
The most important advantage of Monte Carlo simulation 
method, in solving this flow problem through the network, 
presents the possibility of function modeling for function 
distribution of superponed flow time possibility for the 
essential flow time of the basic network model, presented 
in Figure 1. Meanwhile, the advancement of Monte Carlo 
frame simulation method is substantially increased 
because of the possibility for dynamic flow modeling 
through network. The frames provide more reliable basic 
for further acquirement and expanding of knowledge in 
this field, especially in relation to the relativity of the 
critical flow activity. Using combine procedures of Monte 
Carlo and frames, there can be more authentic performed 
time planning for the critical flows, than what is achieved 
by standard procedures of network planning and 
managing, for example, through program evaluation and 
review technique (PERT). With the classical PERT, the 
flow time planning was established on the expected 
values of the elementary flow times and so a 
considerable mistake was done in the planning, since in 
principle, the influence of subcritical flows and forming of 
the total superponing flow time was neglected. Van Slyke 
(1963) indicated that, in the flow network with ten 
(sub)critical flows of autonomous type, the resulting flow 
time increases by 11% from the time we should get by 
calculating using the PERT method. This “planning 
mistake” as theoretical result, verified also by simulation 

for two parallel flows, is %313.3 . The result obtained 

by frames is not unambiguous but it depends on the 

chosen value pairs ],[~ jjN  , ( 2,1j ). In addition to 

it, we can distinctly see from one frame to another, the 
domination losing of the critical flow in favor of the 
subcritical one, if the mean value of this latter is 
increased as regard to the former one. Of course, it is 
possible by Monte Carlo frame method to test also the 
remaining cases, for example, when there is put the 
deviation  vector, instead of  the mean  value vector  as in 

 Equation 10: 
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These influences Equation 10 and 11 can be by 
simulation explicitly perceived with more complex ADM 
networks (Equation 10). The consequences of the 
essence of ignoring the obtained results can be very 
negative especially in the planning and control cased of 
the complex stochastic flows activities through network. 
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