
 

African Journal of Business Management Vol. 6(1), pp. 333-340,11 January, 2012     
Available online at http://www.academicjournals.org/AJBM 
DOI: 10.5897/AJBM11.2366 
ISSN 1993-8233 ©2012 Academic Journals 
 
 
 

Full Length Research Paper 
 

Joint determination of lot-size and shipment policy for a 
vendor-buyer system with rework and an improving 

delivery plan 
 

Yuan-Shyi Peter Chiu1, Yi-Chun Lin1, Singa Wang Chiu2 and Chia-Kuan Ting2* 
 

1
Department of Industrial Engineering and Management, Chaoyang University of Technology, Taichung 413, Taiwan. 

2
Department of Business Administration, Chaoyang University of Technology, Taichung 413, Taiwan. 

 

Accepted 31 October, 2011 
 

This paper studies a vendor-buyer integrated system with rework and an improving delivery policy for 
lowering both vendor and buyer’s stock holding costs. The objective is to derive the optimal production 
lot size and number of deliveries that minimizes total costs for the proposed vendor-buyer integrated 
system. This study extends the work of Chiu et al. (2011) by incorporating an improving n+1 shipment 
policy into their model, with the purpose of reducing both vendor and buyer’s stock holding costs. 
Under such an enhancing policy, one extra upfront delivery of finished items is distributed to buyer for 
satisfying product demand during supplier’s production and rework times. Then, fixed quantity (n) 
installments of finished items are delivered to customer at the end of rework. Mathematical modeling 
along with Hessian matrix equations is employed to derive and prove convexity of the long-run cost 
function. Closed-form solution in terms of lot size and number of deliveries is obtained. A numerical 
example is provided to show its practical usage and demonstrate significant reduction in stock holding 
cost. 
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INTRODUCTION 
 
Chiu et al. (2011) studied an optimal replenishment and 
shipment decisions in an integrated finite production rate 
model with scrap and rework. Their work can be 
considered as an extension of the conventional economic 
production quantity (EPQ) model (Taft, 1918) with special 
focuses on both production quality assurance and end 
items delivery issues. Classic EPQ model assumes that 
all items produced are of perfect quality. However, in real-
life manufacturing firms, owing to process deterioration or 
various other factors, generation of defective items is 
inevitable. Many studies have been carried out to address 
the imperfect quality issue in production systems (Barlow 
and Proschan, 1965; Rosenblatt and Lee, 1986; Wee, 
1993; Salameh and Jaber, 2000; Nahmias, 2009; Baten 
and Kamil, 2009; Grasman, 2009; Jha and Shanker, 
2009; Roy et al., 2009; Cheng and Ting, 2010; Lodree et 
al., 2010; Ma et al, 2010; Saha et al., 2010; Mehdi  et  al., 
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2010), Panda and Maiti, 2009; Liu et al., 2009. The 
defective products sometimes can be reworked to reduce 
total production costs (Hutchings, 1976; Chiu et al., 
2009a; Cárdenas-Barrón, 2009; Wazed et al., 2009; El 
Saadany and Jaber, 2010; Chiu et al., 2010a, b, c, d; 
Taleizadeh et al., 2010; Wahab and Jaber, 2010; Chiu, 
2010; Wazed et al., 2010a, b). For example, production 
processes in plastic injection molding, or in printed circuit 
board (PCB) assembly, sometimes employs rework as an 
acceptable process to increase level of quality. Chern and 
Yang (1999) considered a threshold control policy for an 
imperfect production system with only a work center 
handling both regular and rework jobs. The imperfect 
production system generates defect jobs by factors other 
than machine failures. A threshold control policy sets the 
guideline for a work center to switch between regular and 
rework jobs. They assumed the outcome of each 
completed regular job is an independent Bernoulli trial 
with three possibilities: good, rework, or scrap. Once the 
work center accumulates more than a threshold of rework 
jobs, it finishes the last batch of regular jobs and switches  
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to rework jobs. The objective of their research was to find 
a threshold ω and a lot size s that maximize the average 
long-term profit. Chiu et al. (2010a) examined a finite 
production rate model with scrap, rework and stochastic 
machine breakdown. Stochastic breakdown rate and 
random defective rate along with the reworking of 
nonconforming items were assumed in their study. The 
objective was to derive the optimal production run time 
that minimize the long run average production cost. 

In real-life, vendor-buyer integrated production-inventory 
system, multiple or periodic deliveries of finished products 
are commonly adapted instead of continuous issuing 
policy (as was assumed by classic EPQ). Schwarz (1973) 
considered a one-warehouse N-retailer inventory system 
with the objective of determining optimal stocking policy 
that minimizes average system cost. Schwarz (1973) 
derived some necessary properties for the optimal policy 
as well as the optimal solutions. Heuristic solutions were 
also provided for the general problem and tested against 
analytical lower bounds. Studies have since been carried 
out to address various aspects of supply chains 
optimization (Goyal, 1977; Schwarz et al., 1985; Hahm 
and Yano, 1992; Sarker and Parija, 1994; Hill, 1995; 
Viswanathan, 1998; Buscher and Lindner, 2005; Sarmah 
et al., 2006; Kim et al., 2008; Mahnam et al., 2009; Chiu 
et al., 2009b; Sarker and Diponegoro, 2009; Chiu et al., 
2011). Selected articles are surveyed as follows. Hahm 
and Yano (1992) determined the frequencies of 
production and delivery of a single component with the 
objective of minimizing the long-run average cost per unit 
time. Their cost includes production setup costs, 
inventory holding costs at both the supplier and the 
customer and transportation costs. For their proposed 
model, it was proved that the ratio between the produc-
tion interval and delivery interval must be an integer in an 
optimal solution. They used these results to characterize 
situations in which it is optimal to have synchronized 
production and delivery and discussed the ramifications 
of these conditions on strategies for setup cost and setup 
time reductions. Sarmah et al. (2006) considered that 
coordination between two different business entities is an 
important way to gain competitive advantage as it lowers 
supply chain cost, so they reviewed literature dealing with 
buyer vendor coordination models that have used 
quantity discount as coordination mechanism under 
deterministic environment and classified the various 
models. An effort was also made to identify critical issues 
and scope of future research. Chiu et al. (2009b) 
incorporated a multi-delivery policy and quality assurance 
into an imperfect economic production quantity (EPQ) 
model with scrap and rework. They assumed the 
reworking of repairable defective items in each production 
run and the finished items can only be delivered to 
customers if the whole lot is quality assured in the end of 
rework. The expected integrated cost function per unit 
time was derived. A closed-form optimal batch size 
solution  to  the  problem  was  obtained.  This paper 
extends   the  integrated  vendor-buyer  production-shipment 

 
 
 
 
shipment problem (Chiu et al., 2011) and proposes an 
n+1 delivery policy with the purpose of reducing both 
vendor and buyer’s stock holding costs. The joint effects 
of the n+1 multi-delivery policy and partial rework on the 
optimal replenishment lot size and shipment policy for 
such an integrated system are examined. 
 
 
METHODS 
 
Modelling and formulations 
 

For the purpose of lowering both vendor and buyer’s stock holding 
costs, this study proposed an n+1 delivery policy in lieu of n delivery 
policy in Chiu et al. (2011). Recall such a specific integrated vendor 
buyer production-shipment problem: it is a typical EPQ model with 
the quality assurance in production process and multi-delivery 
policy. Quality assurance issue is in regard that the process may 
produce an x portion of random nonconforming items at a 
production rate d. All defective items are considered to be 
repairable and they are reworked and repaired at a rate P1 within 

the same cycle when regular production ends. While under the 
proposed n+1 delivery policy, the first installment of finished 
products is delivered to customer for satisfying demand during 
uptime t1 and rework time t2 (Figures 1 and 2). Then, in the end of 
rework when the whole lot is quality assured, fixed quantity n 
installments of the rest of finished items are delivered to customer 
at a fixed interval of time during the production downtime t3. Figure 
1 illustrates vendor’s on-hand inventory level of perfect quality items 
in the proposed n+1 delivery model (in blue). It also depicts the 
vendor’s expected reduction in stock holding costs (in a lighter 
shade of blue) when comparing with model in Chiu et al. (2011) (in 
black). Figure 2 depicts buyer’s stock level in the proposed model 
(in blue) and the expected reduction in buyer’s holding costs (in a 
lighter shade of blue) when comparing with model in Chiu et al. 
(2011) (in black). From Figures 1 and 2, the objective of the present 
study is clearly displayed, that is, to reduce the stock holding costs 
for both vendor and buyer in such an integrated system. The 

following are more details in assumption. Consider that the constant 
production rate P is larger than sum of demand rate λ and 
production rate d. Thus, (P-d-λ)>0; where d=Px. Cost parameters 
include the setup cost K per production, unit manufacturing cost C, 
unit holding cost h, unit rework cost CR, holding cost h1 for each 
reworked item, fixed delivery cost K1, delivery cost CT per item 
shipped and the following notation: 
 

H = the level of on-hand inventory for satisfying product demand 
during vendor’s uptime t1 and rework time t2, 
H1 = maximum level of on-hand inventory in units when regular 
production ends, 
H2 = the maximum level of on-hand inventory in units when 
rework process finishes, 
Q = production lot size per cycle, 
n  = number of fixed quantity installments of the remaining 
finished items to be delivered to customer during t3, 

I(t) = the level of on-hand inventory of perfect quality items at time t, 
Ic(t) = the level of buyer’s on-hand inventory at time t, 
TC(Q,n+1) = total production-inventory-delivery costs per cycle for 
the proposed model, 
E[TCU(Q,n+1)] = the long-run average costs per unit time for the 
proposed model, 
 

Total production-inventory-delivery costs per  cycle  TC(Q)  consists 
of the following: 
 

1) The variable manufacturing costs and setup cost per cycle as 
given in Equation (1): 
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Figure 1. Vendor’s inventory level of perfect items in the proposed model (in blue) and 

the expected reduction in holding costs (in a lighter shade of blue) when comparing 
with model in Chiu et al. (2011) (in black). 

 
 
 

 
 

Figure 2. Buyer’s inventory level in the proposed model (in blue) and the expected 

reduction in buyer’s holding costs (in a lighter shade of blue) when comparing with 
model in Chiu et al. (2011) (in black) (T = cycle length, t = the production time needed 
for producing enough perfect items for satisfying customer’s demand during t1 and t2, 
t1 = the production uptime, t2 = rework time, t3 = production downtime, time to deliver 
the remaining quality assured finished products, tn = a fixed interval of time between 
each installment of products delivered during t3). 

 
 
 

CQ K                                               (1) 

 
2) The quality assurance costs include variable repairing costs and 
holding costs for reworked items: 
 

   1
1 2

2
R T

dt
C xQ C Q h t                                (2) 

 
3) The fixed and variable delivery costs per cycle as shown thus: 

  11 Tn K C Q                                        (3) 

 
4) Total inventory holding costs for vendor for all end items 
produced in t1, t2, and t3 (Chiu et al., 2011) for computations of the 
last term in Equation (4): 
 

       1 1 1 2
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5) Total stock holding costs for buyer are as follows (Chiu et al., 
2011): 
 

1 2
2

( ) 2

2 2
n

H t t D I
h n t

   
   
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                         (5) 

 

 
 
 
 
Therefore, total production-inventory-delivery costs per cycle TC 
(Q,n) is: 
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Because defective rate x is assumed to be a random variable with a 
known probability  density  function,  one  could  use  the   expected  
 
 

values of x in the related cost analysis. With further derivation, the 
long-run average production-inventory-delivery cost per unit time 
E[TCU(Q,n+1)] is as follows: 
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Convexity of E[TCU(Q,n)] 

 
To derive the optimal production-shipment policy for the proposed 
model, one must first prove that E[TCU(Q,n)] is  a  convex  function.  
 
 

 
Hessian matrix equations (Rardin, 1998) are employed in this study 
to verify the convexity of E[TCU(Q,n)] as follows: 
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(9) 
Applying Hessian matrix equations one obtains: 
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Substituting Equations 10 to 14 in Equation 9, one has: 
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Equation 15 is resulting positive, because K, K1, λ, and Q are all 
positive. Hence, E[TCU(Q,n+1)] is a strictly convex function for all Q 
and n different from zero. 
 
 

RESULTS 
 

Derivation of the optimal production-shipment policy 
 

Derive   the    optimal   lot    size   Q*   and     number  of  
 

 
shipments n*, one can differentiate E[TCU(Q,n+1)] with 
respect to Q and with respect to n, and solve the linear 
system of Equations 10 and 12 by setting these partial 
derivatives equal to zero. With further derivations one 
obtains Q* and n* respectively as follows: 
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Figure 3. Comparisons of cost reductions among different scenarios in numerical 

example. 

 
 
 
It is noted that the optimal number of shipments n* only 
takes on integer value, while Equation 17 results likely in 
a real number. One can use two adjacent integers from 
the result of Equation 17, plugging into Equation 16 to 
obtain their corresponding Qs. Then substituting each 
pair of (Q,n) in E[TCU(Q,n+1)] (that is, Equation 7) to 
compare and pick whichever (Q,n) that has the minimal 
cost as our optimal production-shipment policy. 
 
 
DISCUSSION 
 
To ease the comparison for readers between the pro-
posed model and Chiu et al. (2011) model, we adopt their 
numerical example and the values for the corresponding 
system parameters are as follows: 
 
λ = 3400 units per year, 
P = 60,000 units per year, 
x = random defective rate which follows a uniform 
distribution over interval [0, 0.3], 
P1 = 2,200 units per year, 
C = $100 per item, 
K = $20,000 per production run, 
H = $20 per item per year, 
h1 = $40 per item reworked per unit time (year), 
h2 = $80 per item kept at the customer’s end per unit time  

CR = $60, repaired cost for each item reworked, 
K1 = $4,350 per shipment, a fixed cost, 
CT = $0.1 per item delivered. 
 
Three scenarios are considered here with the purpose of 
comparing our research results to what was obtained in 
Chiu et al. (2011).  
 
 
Scenario 1 
 
Add one extra upfront delivery to Chiu et al. (2011) model 
and use the same replenishment lot size in Chiu et al. 
(2011), so we have (Q,n+1)=(1673,3). Applying Equation 
7, E[TCU(1673,3)] =$ 474,748. It is noted that even with 
one extra delivery, our proposed policy results a cost 
reduction of $ 12,869 in comparison with what is in Chiu 
et al. (2011) or 9.55% savings of total other related costs 
(that is, E[TCU(Q,n+1)]-(λC)). 
 
 
Scenario 2 
 
Let total number of deliveries remain 2 (Chiu et al., 2011) 
(that is, trigger first delivery during regular production 
time as proposed by our model) and use the same lot 
size, so one has (Q,n+1)=(1673,2).  Applying  Equation 7,  



 

 
 
 
 
E[TCU(1673,2)] =$ 478,612. This scenario results in a 
cost saving of $ 9,005 in comparison with what is in Chiu 
et al. (2011) or 6.50% savings of total other related costs. 
 
 
Scenario 3  
 
Use the proposed model. Let us use Equations 16 and 17 
to derive the optimal production-shipment policy. We 
have n* = 2.44, since n* only take on integer value one 
can use two adjacent integers, plugging them in Equation 
16, and then into Equation 7. The resulting costs are 
E[TCU(2265,2)] = $470,159 and E[TCU(2562,3)] 
=$470,200. Therefore, the optimal production-shipment 
policy is (Q,n+1) = (2265,2) and the long- run average 
cost is $ 470,159. Total cost for the proposed model 
results in a reduction of $ 17,458 or 13.41% savings of 
other related costs (Figure 3). 
 
 
Conclusions 
 
Chiu et al. (2011) studied a vendor-buyer integrated 
system with quality assurance issue and multi-delivery 
policy. They adopted an n multi-delivery plan starts in the 
end of rework process when the entire lot is quality 
assured. This paper extends it and proposes an enhan-
cing product delivery policy with the purpose of lowering 
both vendor and buyer’s stock holding costs. Under the 
proposed enhancing policy, one extra upfront delivery of 
finished items is distributed to buyer for satisfying product 
demand during supplier’s production and rework times. 
Then fixed quantity n installments of finished items are 
delivered to buyer at the end of rework. By using mathe-
matical modeling along with Hessian matrix equations, 
this study derives optimal production lot size as well as 
optimal number of deliveries that minimizes total costs for 
the proposed vendor-buyer integrated system with an 
enhancing product shipping policy. A numerical example 
along with a few scenarios is provided to demonstrate the 
significant savings from the proposed model. 
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