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This paper develops a general continuous-time evolutionary finance model with time-dependent 
strategies based on evolutionary game theory. We show that the continuous model, which is a limit of a 
general discrete model, is well-defined and if there exists one completely diversified strategy in the 
market, then there is no sudden bankruptcy. We study in detail, a deterministic evolutionary bond 
market and certify that a bond market is evolutionary stable if and only if the total returns across all 
assets are the same. By this way, we derive an explicit expression for the bond valuation and provide 
an approach to recover the benchmark interest rate from an effective bond market.  
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INTRODUCTION 
 
The Darwinian principle "Survival of the Fittest" is well 
known to evolutionary biologists but rather less known for 
its applicability in financial market theory. However, this 
major principle, as applied to financial markets, means 
nothing else that those traders with the most successful 
trading strategies will dominate the market at last, after 
an evolutionary process has taken place. This 
evolutionary process can be understood as a process of 
adaptation and imitation, rather than a process of 
inheritance in evolutionary biology. From an evolutionary 
point, the market is completely determined by the 
corresponding evolutionary stable trading strategy. 
Evolutionary financial market models have been 
considered in Blume and Easley (1992), Evstigineev et al. 
(2006), and Farmer and Lo (1999). The main point in 
setting up an evolutionary financial market model is the 
specification of an evolutionary dynamic which 
determines the market shares of the relevant trading 
strategies in time. In general, such a dynamic will depend 
on the stochastic payoffs, dividends or prices of the 
underlying assets, as well as the trading strategies, which 
are assumed to be adapted to the underlying information.  
  The models developed by Evstigineev et al. (2006) and 
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Hens and Schenk-Hoppé (2005) assume that stochastic 
dividends or payoffs of the underlying assets are 
exogenously given, but that in contrast to other models, 
the asset prices are determined by the trading strategies 
and a market clearing condition.  

This paper employs a similar approach as in 
Evstigineev et al. (2006) and Hens and Schenk-Hoppé 
(2005) but sets up a model in continuous time rather than 
in discrete time. The choice of continuous time brings 
with it the usual technical problems which lie in the 
analytical formulation of the model, in particular in a 
probabilistic framework, but has the major benefit. In 
particular, the methods from classical analysis such as 
PDE and stochastic calculus become applicable and 
provide powerful tools for the solution of problems. It is 
therefore necessary to extend discrete time evolutionary 
Evstigineev et al.’s (2006) finance models to continuous 
time framework.  

As a first step into this direction, Yang and Ewald (2008) 
consider a model in which the trading strategies are 
assumed to be fix-mix, that is, the relative budget 
fractions are constant in time. In this model, Yang and 
Ewald (2008) set up a continuous time stochastic 
dynamic which describes the evolution of market shares 
in a population of finitely many trading strategies. Yang 
and Ewald (2008) identify evolutionary stable investment 
strategies, that is, those strategies that prevent entrants 
to the financial market from gaining wealth in  the  long  
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run. Under the assumption that the relative dividends are 
first-order stationary and ergodic, Yang and Ewald (2008) 
derive an evolutionary stable investment rule. Fix 
strategies are simple and also suitable in some economic 
environments but are of course too restrictive.  

Along this research line, Buchmann and Weber (2007) 
derive a continuous time approximation of the 
evolutionary market selection model of Blume and Easley 
(1992). Conditions on the payoff structure of the assets 
are identified that guarantee convergence. It is shown 
that the continuous time approximation equals the 
solution of an integral equation in a random environment. 
For constant asset returns, the long-run asymptotic 
behavior is discussed in detail.  

However, the paper by Buchmann and Weber (2007) is 
substantially simpler than what studied in this paper. First 
Buchmann and Weber (2007) consider a market with only 
short-lived assets and thus capital gains are omitted, 
which is much less interesting. Secondly, to guarantee 
convergence, Buchmann and Weber (2007) impose an 
unnatural condition on the payoff structure of the assets 
and so, strictly speaking, its continuous-time model is not 
a limit of the model of Blume and Easley (1992). Lastly, 
the assumption of constant asset returns, which is much 
simpler than the one supposed by this paper, is 
extremely restrictive and thus its strategies are fix or 
time-invariant as well.  

Taking a step further into the continuous evolutionary 
finance model, this paper considers a model in which 
strategies are time-dependent1 rather than time-invariant. 
A continuous time approximation of the evolutionary 
market selection of a general discrete-time model is first 
derived, which is a generalization of Evstigineev et al. 
(2006). It is shown that the continuous model is 
well-defined and only if one of the strategies is 
completely diversified - this condition almost imposes no 
restrictiveness, there is no sudden bankruptcy in the 
market. Secondly, a bond market is studied in which the 
dividend process paid by each asset is deterministic and 
prices and wealth vary due to market interaction. It is 
certified that a bond market is evolutionary stable if and 
only if all the total returns of bonds defined in this paper 
are equal to each other although the same total return 
may change along the time. Any other market can be 
invaded just by a portfolio that invests all wealth in an 
asset, which pays off the largest total return. When 
introduced on the market with arbitrarily small initial 
wealth, this portfolio increases its market share at the 
incumbent’s expense. By this way, the necessary and 
sufficient conditions are derived for the evolutionary 
stable portfolio rule. It is shown that a bond market is 
evolutionary stable if and only if each bond is  evaluated  

                                                 
1In a time-dependent strategy, the fraction of the remaining wealth after 
consumption, which the strategy assigns to the purchase of an asset in one 
period, may change with time. On the contrary, in a fix, time-invariant or 
time-independent strategy, the fraction must keep unchanged. Of course, the 
time-dependent strategy is much more reasonable than the latter. 

 
 
 
 
by an improper integral in which the integrand is a 
discounted value of the dividend payoff with the discount 
rate being market consumption parameter. A formula is 
provided to evaluate the discount rate or the market 
consumption rate based on the trading prices in a relative 
effective bond market. By this way, an approach to 
compute benchmark interest rate is presented.  

The structure of the article is as follows. This study sets 
up a general discrete-time market selection dynamic 
where the length of the trading time interval is arbitrarily 
positive. Then a continuous-time evolutionary stock 
market model is derived and discussed. Furthermore, it 
investigates an evolutionary bond market in which the 
dividend process is deterministic, after which two 
formulas to price bonds were provided and the 
benchmark interest rate was recovered respectively. 
Finally, the main conclusions of this paper are 
summarized.  
 
 
CONTINUOUS-TIME MARKET SELECTION PROCESS 
WITH TIME-DEPENDENT STRATEGIES 
 
Following Lucas (1978), this paper introduces an infinite 
horizon asset market model. First, a discrete market 
model is established with an arbitrary trading interval and 
then a general continuous-time model is derived by 
taking a limit of that the trading interval converges to 
zero. 

Let ( )F PΩ, ,  be a probability space endowed with 

the filtration 0( )t tF ≤ ≤∞ , where tF  is an information 

filtration for market participants up to time t. All random 
variables and stochastic processes in this paper will be 
defined on this base. 

Consider an asset market with 1K ≥  long-lived 
assets and a single perishable consumption good. The 
assets are indexed by {1 }k K∈ Λ ≡ , ,L . Time is 

discrete and denoted by { ,  0 1 2 }t l t l∈Π ≡ ∆ = , , ,L , 

where t∆  is the length of the time interval. In this 
market there are finitely many players (investors) and 
each player plays one strategy. All players or strategies 
indexed by 1 2i I I= , , , ≥L  compete with each other 
for the market capital, and the amount of the wealth 
managed by strategy i  is tF − adapted and denoted by 

1i
tw i I, = , ,L . Each asset pays off a dividend in cash or 

just a single perishable consumption good as implied by 
Lucas (1978). As seen further, whether the dividend is 
cash or good, does not matter only if it is supposed to be 
totally consumed. The amount of the dividend paid by 
asset k  at period t  is 

tF − adapted and denoted by k
tD . 

In this paper, the following assumption is imposed: 
 

Assumption 1: All strategies have a common 

consumption rate at each period t , denoted by  ( )tc t∆ , 



 

 
 
 
 
which is tF − adapted satisfying ( )0 1tc t t< ∆ < , ∈Π .  

 
The assumption on common consumption rate is 
obviously necessary in order to compare performances 
among strategies, since one of the aims of the paper is to 
study what strategy will dominate the market at last. If, on 
the contrary, the consumption rate is different, then the 
strategy dominates the market probably also because it 
consumes less. Moreover, the assumption that 

( )0 1tc t< ∆ <  says every strategy or player must 

consume at a strictly positive consumption rate at each 
period but is not permitted to consume all his wealth.  

Denote by i
t kλ ,  the fraction of the remaining wealth 

after consumption, ( )( )1i
t tw c t− ∆ , which strategy i  

assigns to the purchase of the asset k  in period t . 

Formally, a strategy is a stochastic process, which is 

tF − adapted. Further, the next assumption is made: 
  
Assumption 2: (i) For every strategy, the fraction 

invested in each asset is tF − adapted and non-negative, 

that is, 0i
t kλ , ≥  for almost every sample path and all 

t k i, , . (ii) there is at least one completely diversified 

strategy, that is, given that t ∈Π  or 0t ≥  for the 

continuous time model, there is a { }1j I∈ , ,L  with 

0j
tw >  such that 0 1j

t kλ ,< <  for almost every sample 

path and all k .  
Assumption 2 means that short selling is prohibited 

(though which is quite possibly unnecessary to get the 
main conclusions of this paper). Meanwhile, Assumption 
2 also makes sure that the prices of all assets are strictly 
positive, thanks to equation (1), which is actually just the 
reason why it is assumed. 

In this framework, all the assets are just K  long-lived 
assets, which pay off dividends in cash or produce the 
same perishable consumption good, say milk. The cash 
or perishable consumption good are consumed 
completely and especially can not be used to reinvest. 
For this reason the total amount of assets traded in the 
market keeps constant. On account of a stock split, the 
following assumption is imposed without loss of 
generality:  
 
Assumption 3: The supply of each asset is normalized 
to 1.  
 
According to this assumption, the market-clearing price, 

denoted by k
tρ , is given by: 

 

( )( )
1

1
I

k i i
t t k t t

i

w c tρ λ ,
=

= − ∆ .∑  (1) 

Yang and Shi         1465 
 
 
 
Denote the aggregate market wealth by tW , that is, 

1

I i
t ti

W w
=

=∑ , then the market-clearing price of 

consumption good or cash, denoted by 0
t tρ ,∀ ∈Π , is 

determined by: 
 

( ) 0
t t t tW c t Dρ∆ = ,    (2) 

 
where tD  is the aggregate dividend, that is, 

1

K k
t tk

D D
=

=∑ . In contrast to (2), Evstigineev et al. 

(2006) take a normalized price for cash, that is, 0 1tρ ≡ . 

Following this, (2) is written as ( )t t tW c t D∆ = , which is 

however a bit more artificial, although the difference is 
not important.  

Let {1 }KΛ ≡ , ,L . For a given strategy profile and the 

wealth 1i
tw i I, = , ,L , the percentage of all shares 

issued of asset k  that strategy i  invests during period 
t  is: 
 

1

i i
t k ti

t k I j j
t k tj

w
t k

w

λ
π

λ
,

,

,=

= , ∈Π, ∈ Λ.
∑

 (3) 

 
It is evident that: 
 

1 1

1 1
K I

i i
t k t k

k i

λ π, ,
= =

= , = .∑ ∑  (4) 

 
Since the change of a wealth results only from dividends 
and capital gains, the wealth of strategy i  at the 

beginning of period t t+ ∆ , that is, 1
i
tw +  is determined 

by: 
 

( ) ( )0

1

1 ( ) ( )
K

i i k k k i
t t t t t t t t t t t t k

k

w c t w Dρ ρ ρ π+∆ +∆ +∆ +∆ ,
=

− − ∆ = + − ,∑  

                                                (5) 
 
or according to (1) and (3) � (4), determined by: 
 

0

1

K
i k k i
t t t t t t t t t k

k

w Dρ ρ π 
 +∆ +∆ +∆ +∆ , 

=

= + .∑     (6) 

 
While the total amount of assets traded in the market 
keeps constant, the aggregate market wealth tW  does 

change with time because of trading randomly. However, 
social welfare has evidently no relation to the level of the  
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market wealth tW  and a big tW  only means higher 

prices of the assets and consumption good or cash. 
Actually, there exist infinitely many solutions to the wealth 
dynamics (6) since it is by (2) homogeneous for all wealth 

variables, that is, 1i
tw t i I, ∈Π, = , ,L . In particular, any 

solution multiplied by an arbitrary non-zero number is still 
a solution. For this reason and an economic 
consideration, the aggregate market wealth tW  is taken 

as a numéraire in the following. 
Based on this numéraire, the normalized prices for 

asset k  and consumption good are k k
t t tp Wρ≡  and 

0 0
k k

tp Wρ≡  respectively for each period t. Further, the 

normalized wealth or the market share of strategy i  is 
i i

t t tr w W≡ . Accordingly, it follows directly from (1) and (3) 

that: 
  

( ) ( )
1 1

1 ( )
1 ( ) and 1

i iI I
t t k tk i i i i

t t k t t t k tk
i it

c t r
p r c t r

p

λ
λ π ,

, ,
= =

− ∆
= − ∆ , = = .∑ ∑

       (7) 
 

Obviously, the market share process i
tr  is the most 

important index that tells how strategy i  performs. For 
example, the market share process determines whether 
the strategy is dominated or dominating. Consequently, 
the dynamics of market share process is studied further 
in detail. 

Similar to Yang and Ewald (2008), by an elementary 
manipulation, for all i k t, ,  it follows from (1) � (2) and (6) 
that: 
 

( ) ( )( )
1 1

1
K I

i k j j i
t t t t t t t t k t t t k

k j

r c t d c t rλ π
 
 
 +∆ +∆ +∆ , +∆ , 
 = = 

= ∆ + − ∆ ,∑ ∑                                                     

                                                (8) 
 

where k
td  represents the relative dividend payment of 

asset k , that is, k k
t t td D D≡ . Equation (8) is called 

market selection equation.  

Obviously, 0i
tr ≡  thanks to (8) if 0 0ir = . In order to 

avoid this uninteresting case, it is supposed throughout 

the paper that 0 0ir >  for each {1 }i I∈ , ,L . Further, it 

is not difficult to prove that (8) is well-defined. Formally, 
the following theorem holds.  
 
 
Theorem 1  
 
Given a strategy profile and all the relative dividend 

payment processes, { }kt td k∈Π , ∈ Λ , and provided  that 

 
 
 
 
Assumption 1 and 2 hold, there exists a path-wise unique 

market share process { }it tr ∈Π  satisfying (8) for each 

strategy 1i i I, = , ,L .  
 
 
Proof 
 
A sketch of a proof is given here (Evstigineev et al., 
2006). In fact, this theorem can be proved by solving (8) 
step by step forward. At each step, say period t t+ ∆ , (8) 
is a system of I  linear equations in I  variables, that is 

{1 }i
t tr i I+∆ , ∈ , ,L  and the coefficient matrix can be 

proved to be invertible by verifying that it has a column 
dominant diagonal thanks to Assumption 1 and 2 and (4). 
Thus the theorem is proved.  

A continuous-time evolutionary finance model with 
time-dependent strategies is established in the following 
by letting 0t∆ →  in (8). To achieve this goal, more 
assumptions are needed and shown thus: 
  
Assumption 4: For all {1 }t k i I∈Π, ∈ Λ, ∈ , ,L  and 
every sample path, the following limits exist and the 
equalities hold: 
 

t 0 0 0

and furtherlim lim lim
i i
t t k t k ik k i i

t kt t t t t k t k
t t

d d
t

λ λ
λ λ λ+∆ , ,

,+∆ +∆ , ,
∆ → ∆ → ∆ →

−
= , = , ≡

∆
&  

 (9) 
 

Throughout this paper, "dot" notation is used for 
derivatives. Assumption 4 seems too restrictive but 
actually not. The first equality of the assumption says the 
relative dividend process is continuous as well as 
stochastic, which describes the economic phenomenon 
that the relative dividend changes gradually instead of 
suddenly. In addition, it is well-known that a 
continuous-time portfolio in mathematical finance is 
mostly left continuous with right hand limits. 
Consequently, the portfolio is generally not continuous, 
let alone being differentiable. On the contrary, asset 
prices in this setup are endogenous instead of 
exogenous as in mathematical finance and they do 
change along with the portfolio. Accordingly, once a 
portfolio is performed, the wealth managed by any 
players or strategies will be changed in the same time 
through a complicated rebalancing process for 
market-clearing. This rebalancing process will make the 
amount of wealth managed by any players changed after 
trading, which is totally different from the self-financing 
trading assumed by mathematical finance. As a result, 
every alteration of a portfolio will incur a strong resistance 
from the market and the speed of alteration improbably 
gets too quick - that is to say, the portfolio is altered 
slowly and thus the differential assumptions in (9) are 
also acceptable. 

Following the seemly strongly restrictive Assumption 4, 
the next assumption is intuitively reasonable: 



 

 
 
 
 
Assumption 5: The common consumption rate for each 
player or strategy is a function of the time interval t∆  
and the following limits exist for almost every sample path 
and all t ∈Π : 
  

( ) ( )
0 0

0 and furtherlim lim t
tt

t t

c t
c t c

t∆ → ∆ →

∆
∆ = , ≡ .

∆
 (10) 

 
This assumption says that the longer the time interval, 
the more the consumption rate and there exists an 
instantaneous speed of the change of the consumption 
rate, which is tc  for all t ∈Π .  

Now, it is ready to derive the continuous-time 
evolutionary finance model with time-dependent 
strategies. In order to get a deep insight, the following 
text turns to the case 2I = , which is particularly 
important from evolutionary game theory. Under this case, 
only two strategies compete with each other for the 
market capital and the market shares satisfy that 

1 2 1t tr r+ =  for all t ∈Π . For this reason, the dynamics 

of only one market share, say 2
tr t, ∈Π  will be studied 

in detail subsequently 
The following theorem is the main conclusion of 

“continuous-time market selection process with 
time-dependent strategies” in which (12) is called 
continuous-time market selection equation with 
time-dependent strategies. 
 
 
Theorem 2 
 

Suppose a strategy profile { } 1 2i
t k t i kλ , ∈Π , = , , ∈ Λ , is 

given and Assumption 1 � 5 hold: 
  

(i) For all t ∈Π  and 1 2i = , , 0 1i
t tr +∆< <  if and only if 

0 1i
tr< < ; 

(ii) For almost every sample path: 
  

1 1 2 2

0 0
lim limt t t t t t

t t
r r r r+∆ +∆∆ → ∆ →

= , = ;  (11) 

 
(iii) Further, for almost every sample path, the market 

share 1 2i
tr i, = ,  is differentiable and 2

tr  satisfies the 

following random differential equation: 
 

2 2 2 21 2

1 2 2 2

1 2

1 2 2 2

12

1 12

1 1

k
tt k t t t tt k t k

t k t t k t

t k t k

t k t t k t

r r r dcK

t t k r r

t K

k r r

rc
r

λ λ λ

λ λ

λ λ
λ λ

  
  , , ,  

 
 , , 

, ,
 
 , , 

− + +

= − +

= − +

− +
= ,

∑

∑

& &

&  (12) 

 

with initial value 2
0r , while 1 2

t tr r= − .& &   

Yang and Shi         1467 
 
 
 
Proof2  
 
It suffices to verify the conclusions about the market 
share of strategy 2.First, It follows from (8) and the case 

2I =  that: 
 

( )
( )

2 1 2
2 1 1

1 2 2 1

1

( ) 1 ( )

( ) 1 ( )

K Kk
t t t t k t t t k t kk k

t t K

t t t t k t k t t k t kk

c t d c t
r

c t c t

π λ π

λ π λ π
+∆ , +∆ , ,= =

+∆  
 +∆ , , +∆ , ,=  

∆ + − ∆
= .

∆ + − ∆ +
∑ ∑

∑
    (13) 
 
As a result, part (i) of this theorem is immediately proved 
thanks to the assumptions of the theorem and: 
  

1 2 1t tr r t+ = , ∈Π.  (14) 

 
From (4) and (7), it is concluded that: 
  

1 1 2 2 2 2 1 1 2 2 2 2

1 1 1

K K K

t t k t k t t k t k t t k t t k t k t
k k k

r r r r rλ π λ π λ λ π 
 , , , , , , , 

= = =

+ = + = .∑ ∑ ∑  

   (15) 
 
Consequently, one gets that: 
  

( )
( )

2 2

22 2 2

1 1 1

1 2 2 1

1

( ) ( ) 1 ( ) ( )

( ) 1 ( )

t t t

K Kk i i i
t t t t t k t t k t t t k t kk k i

K

t t t t k t k t t k t kk

r r

c t d r c t r

c t c t

π π λ λ
λ π λ π

+∆

+∆ , , +∆ , ,= = =
 
 +∆ , , +∆ , ,=  

−

∆ − + − ∆ −
= .

∆ + − ∆ +
∑ ∑ ∑

∑

 

     (16) 
 

Next, let the time interval shrink to zero, that is, 0t∆ → , 
then by (9), (10) and (14) the numerator converges to 
zero and the denominator of the right-hand side of (16) 
converges to: 
  

1 2
1 2 2 1

1 2 2 2
1 1 1

0
(1 )

K K K
t k t k

t k t k t k t k
k k k t k t t k tr r

λ λ
λ π λ π

λ λ
, ,

, , , ,
= = = , ,

+ = > .
− +∑ ∑ ∑  

 (17) 
 

Accordingly, the second equality of (11) is derived. 
Furthermore, one infers from (9), (10) and (16) that: 
  

1 2

1 2 2 2

22 2 22 2
2 1 1 1

0

(1 )1

( )
lim

t k t k

t k t t k t

K K ik i
t t kt t t k t k tt t t k k i

t Kt

r rk

d r rcr r
r

t λ λ
λ λ

π π λ
, ,

, ,

,, ,+∆ = = =

∆ →
− +=

− +−= = .
∆

∑ ∑ ∑
∑

&

&  

 
Therefore, part (iii) of the theorem is shown after a simple 
substitution from (7).   

Market selection equation (12) differs from Itô 
Stochastic differential equation since its integral can  be 

                                                 
2We only give a short proof from intuition here. Recently, Palczewski and 
Schenk-Hoppé (2010) provide a strict proof for almost the same conclusion. 
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defined path by path as a Riemann integral. (12) 
demonstrates explicitly that the evolution of each market 
share is determined by all strategies as well as the 
relative dividend and it is well defined in the sense that 

for an arbitrary initial value 2
00 1r≤ ≤ , its solution exists 

and is path-wise unique. With a view to proving this 
conclusion, a general existence and uniqueness are 
shown in the following. Let: 
  

( )
( )

( )

2 1 2

1 2

1 2

1 2

1

11

11

( )

k
tt k tt k t k

t k t k

t k t k

t k t k

x x dK c
t x xk

K

x xk

c
h t x

λ λ λ
λ λ

λ λ
λ λ

ω

 
 , , , 

, ,

, ,

, ,

− + +

− +=

− +=

− +
, , ≡ ,

∑

∑

& &

 

 

and ( ) ( )g t x xh t xω ω, , ≡ , ,  then (12) can be 
equivalently written as: 
 

( ) or ( )x g t x x xh t xω ω= , , = , , ,& &  (18) 
 

in which initial value 2
0 0 00 ( )t x t r= , =  and 2 ( )tr x t≡ . 

Generally speaking, there is a path-wise unique solution 
to (18) for an arbitrary initial value 

( )0 0( ) [0 ) ( )t x t, ∈ ,∞ × −∞,∞  instead of only 

2
0 0 00 ( ) [0 1]t x t r= , = ∈ , . In order to get this result, the 

next assumption instead of Assumption 2 is sufficient: 
  
Assumption 6: The consumption rate and the 
derivatives of the fraction invested in each asset are 
almost surely path-wise continuous, finite and 

tF -adapted.  

 

That is to say, 0 i
t t kc λ ,< < ∞,| |< ∞&  and i

t t kc λ ,, &  are 

continuous functions of t  for all 0 {1 2}t k i≥ , ∈ Λ, ∈ ,  

and almost every sample path.  
This assumption nearly puts no extra restriction from an 

economic viewpoint on account of the comments 
following Assumption 4. Now, the existence and 
uniqueness of (18) are formally presented thus.  
 
 
Theorem 3 
 
If Assumption 6 holds for a given strategy profile, then for 

an arbitrary initial value ( )0 0( ) [0 ) ( )t x t, ∈ ,∞ × −∞,∞  

with 
0 0

1 2
0 0(1 ( )) ( ) 0t k t kx t x tλ λ, ,− + ≠  for all k ∈ Λ , there 

exists a path-wise unique local solution of random 
differential equation (18).  
 
 
Proof  
 
According to the assumption of the theorem, there  is  a  

 
 
 
 

null set N F∈ , such that for every cNω ∈ , one can 
find an open subset U  satisfying 

( )0 0( ) [0 ) ( )t x t U, ∈ ⊂ , ∞ × −∞ , ∞ , on which function 

( )g t xω, ,  is Lipschitz continuous in the third argument, 
uniformly with respect to the first (for more details refer to 
the proof of Theorem 4 below). Hence, the theorem is 
proved thanks to the well-known Picard-Lindelöf theorem.  

Based on Theorem 3 and Assumption 2, the existence 
and uniqueness of market selection equation (12) are 
discussed next and a more insightful result is summed up 
in the following.  
 
 
Theorem 4 
 
For a given strategy profile, Assumption 2 and 6 hold: 
 

(i) For an arbitrary initial value 00 1 1 2ir i< < , = , , there 

exists a path-wise unique solution of market selection 

equation (12), which satisfies 0 1 1 2i
tr i< < , = ,  for all 

0t > ; 

(ii) For almost every sample path, if 0 0ir = , then 0i
tr =  

for 1 2i = ,  and 0t ≥ ; if 0 1ir = , then 1i
tr =  for 

1 2i = ,  and 0t ≥ .  
 
 
Proof  
 
According to Theorem 3 part (ii) of the theorem is obvious 
and thus, without loss of generality, only part (i) for 2i =  
is shown in the following. (12) can be written as: 
  

2 2 22 2( ) or ( )t tt t tg t r r h t rr rω ω= , , = , , ,& &  (19) 
 

with initial value 2
00 1r< < . Thanks to Theorem 3 and 

part (ii) of the theorem, the phase space of (19) is 
included in the interval [0 1],  for an arbitrary initial value 

2
00 1r< < . First, there exists a positive 1 0t >  such that 

there is a path-wise unique solution of the initial value 
problem (19) for a given sample path up to 1t  owing to 

Theorem 3 and in particular, 20 1tr< <  can be 

guaranteed for 10 t t≤ ≤ . Secondly, the interval 1[0 )t,  

is extended as wide as possible in the following way. 
For a given strategy profile and an arbitrary positive 

integer 2n ≥ , define stopping time: 
 

}

2 1 2 2 2
0

1 2

1
( ) inf 0 s t 0 (1 )

or max{ }

n t k t t k t

t t k t k

T r t k r r
n

nc

ω λ λ

λ λ

, ,

, ,

, ≡ ≥ ∃ ∈ Λ, . . < − + <


, | |, | | > ,& &



 

 
 
 
 
where the infimum of the empty set is understood to be 

∞ . Note that for all [0 1]x ∈ ,  and 2
00 ( )nt T r ω≤ < , , 

1 2 1 2 1 21
min{ } (1 ) max{ } 1t k t k t k t k t k t kx x

n
λ λ λ λ λ λ, , , , , ,≤ , ≤ − + ≤ , ≤  

and  
1 2

1 2 1 2
1 2

1
min{ } max{ } 1

(1 )
t k t k

t k t k t k t k
t k t kn x x

λ λ
λ λ λ λ

λ λ
, ,

, , , ,
, ,

≤ , ≤ ≤ , ≤ ,
− +

 

 
and thus, it follows from a lengthy but elementary 

calculation that for all [0 1]x ∈ , , 2
00 ( )nt T r ω≤ < ,  and 

ω ∈Ω , 

 4 3( ) 6 and ( ) 2xf t x n h t x nω ω′| , , |< , , , > − .  
 
For this reason, there exists a path-wise unique 

solution of (19) up to 2
0( )nT r ω,  by means of extensibility 

of solutions. Moreover, according to the second equality 
of (19), the solution satisfies: 
 

( ) ( )2 2 2 2 3
0 00 0

exp ( ) exp 2 0
t t

t ur r h u r du r n duω= , , > − >∫ ∫
 (20) 
 

for 2
00 ( )nt T r ω≤ ≤ , . On the other hand, it is evident 

that 2 1tr <  since 1 2 1t tr r+ =  and one can also show 
1 0tr >  in the same way. 

Lastly, it can be verified that 
2

0lim ( )n nT r a sω→∞ , = ∞, . . . In fact, if there is a 

measurable set A F∈  with ( ) 0P A > , such that 
2

0lim ( ) ( )n nT r ω τ ω→∞ , = < ∞  for all Aω ∈ , then there 

exists k ∈ Λ  and {1 2}i ∈ , , such that 
1 2 2 2
( ) ( ) ( ) ( )(1 ) 0k kr rτ ω τ ω τ ω τ ωλ λ, ,− + = , or ( )c τ ω = ∞ , or 

( )
i

kτ ωλ ,| |= ∞&  for all Aω ∈ . The last two equalities 

contradict Assumption 6 and the first equality leads to 
2
( ) 0rτ ω = , that is, 2

( ) 0wτ ω =  and 1
( ) 0kτ ωλ , =  or 

1
( ) 0rτ ω = , i.e. 1

( ) 0wτ ω =  and 2
( ) 0kτ ωλ , = , which 

contradicts Assumption 2. Hence the proof is finished.   
� 

It follows directly from Theorem 4 that if one of the 
strategies is completely diversified then there is no 
sudden death or bankruptcy in the economy even some 
strategies are not completely diversified. 
For example, suppose in a market there are only two 
assets: One pays 1 and another pays nothing all the 

time, that is, 1 1td =  and 2 0td =  respectively. The 

consumption parameter is constant, i.e. 0t cc ≡ > .  
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Strategy 1 is completely diversified with 1
1tλ µ, =  and 

1
2 1tλ µ, = − , 0 1µ< <  all the time but strategy 2 is not 

with 2
1 0tλ , =  and 2

2 1tλ , = . Strategy 2 is clearly very bad 

since it invests all the wealth in asset 2, which pays 
nothing all the time. However, the bad strategy will not go 
bankrupt forever only if its initial wealth is strictly positive, 

that is, 2
00 1r< < . In fact, a simple calculation leads to: 

 

( )
2

2 0
2

0

(1 ) exp( )
0 for all 0

1 1 exp( )t

r ct
r t

r ct

µ
µ µ

− −= > , ≥ ,
− + − −

 

 

although 2lim 0t tr→∞ =  and thus 1lim 1t tr→∞ = , that is, 

strategy 1 dominates the market at last.  
 
 
EVOLUTIONARY STABLE BOND MARKET 
 
Market selection equation (12) is a rather general 
continuous-time evolutionary finance model, in which it is 
difficult to answer what is the "optimal" strategy since the 
strategies are time-dependent in a stochastic 
environment. In order to avoid a too complex problem 
suddenly while studying this general model, Yang and 
Ewald (2008) deal with the case of constant proportions 
strategies though in a stochastic world, which is 
substantially simpler than the general model established 
in subsequently. For the same reason, nevertheless from 
another point of view, the following text focuses on a 
deterministic bond market but keeps the strategies 
time-dependent.  

By a deterministic bond market we mean nothing other 
than the market discussed above in which the relative 
dividend process is a deterministic function of time t . 
While fundamentals are fixed, prices and wealth vary due 
to market interaction. This market appears too restrictive 
but in fact includes a variety of marketable treasury 
securities issued by the United States Department of the 
Treasury through the Bureau of the Public Debt: Treasury 
bills, Treasury notes, Treasury bonds, and Treasury 
Inflation Protected Securities (TIPS). This market also 
includes Account Treasury bonds issued by the China 
Department of Finance, which were first issued in 1997 
but the amount increases with an extremely quick speed.  

In a deterministic world, the dividend is decided in 
advance and thus for a given strategy profile, (12) is an 
ordinary differential equation. Let: 
 

2 2 2 21 2

1 2 2 2

1 2

1 2 2 2

12

1 12 1 2

1 1

( )

k
tt k t t t tt k t k

t k t t k t

t k t k

t k t t k t

r r r dcK

t t k r r

t t k t k K

k r r

rc
f r

λ λ λ

λ λ

λ λ

λ λ

λ λ

  
  , , ,  

 
 , , 

, ,
 
 , , 

− + +

= − +

, ,

= − +

− +
; , ≡ .

∑

∑

& &
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The market selection equation (12) in a deterministic 
world is rewritten as: 
  

2 1 22 1 2( ) andt t tt t k t kf rr r rλ λ, ,= ; , = − .& & &  (21) 

 
There are obviously only two fixed points in (20), that is, 
(1 0),  and (0 1),  respectively according to part (ii) of 
Theorem 4. Without loss of generality, the stability of 
fixed point (1,0) is discussed below. Namely we 
investigate a bond market where there are two players: 
One is an incumbent or the dominant market strategy, 

strategy 1 with an initial market share 1
0 1r ≈  and 

another is a mutant, strategy 2 with an initial market 

share 2
0 0r ≈ . It is our aim to answer whether the 

incumbent is evolutionary stable.  
At first sight, the assumption that there are only such 

two strategies in a market seems unrealistic but in fact 
not. For example, one can interpret strategy 1 as the 
market portfolio and strategy 2 as an arbitrary strategy, 
say one played by an individual or even a financial 
institution.  

For this reason, whether the incumbent is evolutionary 
stable equals to whether the market is effective. And if 
the incumbent is evolutionary stable then a "fair price" of 
each asset can be derived by the following (24). 
Accordingly, a study on a market even with only such two 
strategies can still lead to a lot of interesting conclusions.  

It is clear that the evolution of (20) is determined by the 

sign of function 2 1 2( )t t k t kf r λ λ, ,; , . In particular, if the sign 

is positive the market share of strategy 2 will increase but 
decrease on the contrary. Therefore, the following 
definition is presented. 
  
Definition 1: (i) Strategy 1 is called evolutionary stable, if 
there exists a positive 0ε >  such that, for every 
strategy, say strategy 2, with an initial market share 

2
00 r ε< < , it is impossible to find a time interval, say 

( ) (0 )a b, ⊂ ,∞  such that 2 1 2( ) 0t t k t kf r λ λ, ,; , >  for 

( )t a b∈ ,  while 2 1 2( ) 0t t k t kf r λ λ, ,; , ≥  for ( )ct a b∈ ,  and 

0t ≥ ; (ii) On the contrary, strategy 1 is called 
evolutionary unstable, if there exists a time interval, say 
( ) (0 )a b, ⊂ ,∞  and a strategy denoted by strategy 2 

with an arbitrary initial market share 2
00 1r< < , such 

that 2 1 2( ) 0t t k t kf r λ λ, ,; , >  for ( )t a b∈ ,  while 

2 1 2( ) 0t t k t kf r λ λ, ,; , ≥  for ( )ct a b∈ ,  and 0t ≥ .  

It follows from this definition that an incumbent is 
evolutionary stable if and only if there is no arbitrage 
opportunity in the market. Note that at the beginning of 
the entry of a mutant, the market shares satisfy  

 
 
 
 

1 21 0t tr r≈ , ≈  and thus the sign of 2 1 2( )t t k t kf r λ λ, ,; ,  is 

determined by its linear approximation:  
 

( )
2

12 1 2 2
1

1

( )
K

t k k
t t t kt t k t k t t

k t k

f r d rc c
λ

λ λ λλ
,

,, ,
= ,

 
; , ≈ − + + .  

 
∑ & (22) 

 

Definition 2: For a given incumbent 1{ 0}t k k tλ , ∈ Λ; ≥ , 

the total return of asset k  is defined by: 
 

1

1
( )

k
t t kt

t
t k

dc
k kλ

λ
,

,

+
Γ ≡ , ∈ Λ.

&

 (23) 

 
( )t kΓ  is called the total return because it completely 

determine the investment value of the asset as seen in 
the following Theorem 5. In fact, ( )t kΓ  is a sum of the 

capital gain and the dividend return. To make this clear, 

recall (7) and (10) and note that 1 21 0t tr r≈ , ≈ . Then one 

finds: 
  

1 1 2 2 1 0k
t t k t t k t t kp r r t kλ λ λ, , ,= + ≈ , ≥ , ∈ Λ,  (24) 

 
which means the relative price of an asset approximately 
equals to the fraction invested in this asset by the 
incumbent. Especially, if the market portfolio is taken as 

the unique strategy in a market, that is, 1 1tr =  all the 

time, then the relative price is just the fraction invested by 
the market portfolio according to (24).  

It follows from (24) that 1 1 k k
t k t k tt ppλλ , ,/ ≈ /& &  and 

1k k k
t tt t k t td d pc cλ ,/ ≈ . Clearly 

k k
tt pp&  is a capital gain 

while k k
t t td pc  represents a dividend return. (23) says 

that the bigger the changing speed tc  of consumption 
rate, the more dependent the total return on the relative 
dividend but the less dependent on the capital gain. 
Hence, it explains that in a society with excess 
consumption, the dividend paid by an asset should be 
much more appreciated.  
 
 
Theorem 5  
 
For a given incumbent, provided that the total return of a 
market with the incumbent is not identical for all assets at 
some time t, this incumbent is evolutionary unstable.  
Proof. In fact, if a mutant invests all wealth in an asset 
with the largest total return at first and then gradually 
revise the portfolio to equal to the incumbent, then the 
mutant will gain the market.  Namely 2 1 2( )t t k t kf r λ λ, ,; ,  is 



 

 
 
 
 
strictly positive in a small neighborhood of (1 0),  and 

keep non-negative all the time. Hence this theorem is 
shown from Definition 1.  

This theorem means that a market is arbitrage-free only 
if the total returns of an incumbent defined by (23) are the 
same across all assets. To take one step further, next we 
prove that if the total returns of an incumbent defined by 
(23) are the same across all assets, then the incumbent 
is evolutionary stable, i.e. the market is arbitrage-free: 
 
Assumption 7: For a given incumbent, strategy 1, the 
total return defined by (23) is identical for all assets all the 
time.  
 
This assumption also appears to be too restrictive but as 
proved in Theorem 5, if the assumption does not hold 
then there exists an arbitrage opportunity in the market, 
which is not interesting to study also in mathematical 
finance.  

By virtue of Assumption 7, the value ( )t kΓ  is 

independent of k  and it is therefore denoted by tν  in 

the following. Accordingly, one gets: 
 

1 1k
t t kt t t kd kc ν λλ , ,+ = , ∈Λ.&  (25) 

 
Note that: 
  

11

1 1 1

1 1 0
K K K

k
t kt t k

k k k

d λ λ ,,
= = =

= , = , = .∑ ∑ ∑ &  (26) 

 
Aggregating (25) over assets, one finds tt cν = , namely: 

  
1 1k

t tt kt t kdc c λλ , ,+ = .&  (27) 

 
Consequently, under Assumption 7, the linear 
approximation in (22) is always zero, which, however, 
does not directly mean strategy 1 is evolutionary stable. 
Hence a more detailed analysis of the second and even 
higher order approximation is necessary. For this 
purpose, a second-order approximation of function 

2 1 2( )t t k t kf r λ λ, ,; ,  is shown thus: 

  
2

2 22 1 2 2 2 2 2 32
1 1

1

( ) (( ) )
kK

tt k tt
t t t k t k t t k t k t

k t k t k

dccf r r O rr
λλ λ λ λ

λ λ
,   

   , , , ,   
= , ,

+
= ; , = − + + ,∑

&

&

     (28) 
 
where a function ( )h x  is said to be ( ( ))O g x  if 

0lim ( ) ( )x h x g x→ | / |< ∞ . Equivalently, for an arbitrary 

terminal time T , one has: 
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2
22 2 2

2 2 1 10
10

1 1
d ( )

kKT tt k tt
t k t k t

kT t k t k

dcc t O r
r r

λλ λ
λ λ

 
 ,   , ,  
 = , , 

+
= + − + .∑∫

&  

 (29) 
 
Therefore, if the target of a mutant is to maximize its 

market share at a given terminal time T , that is, 2
Tr  

then the optimal mutant 2{ }t kλ ,  is a solution of the 

following variation problem:  
 

2

22
2

1 100 1

2

1

2

min

1

0 1 0

t k

kKT t tt k t k t
t k

t T k k t k t k

K

t k
k

t k

dc c
dt

s t

t T k

λ

λ λλ
λ λ

λ

λ

,

, ,
,

; ≤ ≤ , ∈Λ = , ,

,
=

,

 +
−  

 

 = ,. . 
 ≤ ≤ , ≤ ≤ , ∈ Λ,

∑∫

∑

&

 (30) 

 
where strategy 2 is constrained to be differential 
according to Assumption 4. Regarding this problem, there 
exists an ε − optimal strategy shown further.  
 
 
Theorem 6  
 

Let 1

T k
λ ∗,

 be a minimum value of the set 1{ }T k kλ , ∈ Λ . 

Then for any given small 0ε > , an ε -optimal solution 
to (30) is given by: 
  

2 1

2 2

0 ( )

0 1
t k t k

T k T k

t T

k k

λ λ δ ε
λ λ ∗

, ,
∗

, ,

 = , ≤ ≤ − ,
 = , ≠ ; = .

 (31) 

 

In addition, 2 { }t k k kλ ∗
, , ∈ Λ − , which passes 

1
( )( ) T kT δ εδ ε λ 

 − , 
− ,  and ( 0)T , , and 2

t k
λ ∗,

, which 

passes 1

( )
( )

T k
T δ εδ ε λ ∗

 
  − , 

− ,  and ( 1)T , , are 

differentiable at ( ) andT Tδ ε− , where ( )δ ε  is a 
sufficiently small positive number. The optimal objective 

function equals to 11 2 1 (2 )
t k

λ ε∗,
/ − / + , which can be 

strictly negative since ε  is a sufficiently small positive 
number.  
 
 
Proof  
 
It follows from (27) that: 
 

1

21 1

1 k
t tt t k

t k t t k

dc c λ
λ λ

′

,

 
,  , 

  −
= ,  

 
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Consequently, applying the rule for integration by parts, 
(30) is equivalent to: 
  

2

2 22 2
0

1 10 1 0

1
2 2

21 10 1
1

2

1

2

min
2 2

d
2

1

0 1 0

t k

K
k T k

t T k k k T k

k kKT t tt t k tt t
t k t k

k t k t kt k

K

t k
k

t k

d dc c cc t

s t

t T k

λ

λ λ
λ λ

λ
λ λ

λ λλ

λ

λ

,

   
   , ,   

; ≤ ≤ , ∈Λ = , ,

,
, ,

 = , , , 

,
=

,

 
 − +
 
 

  −  + −
  
  

 =. . 
 ≤ ≤ , ≤ ≤ , ∈ Λ.

∑

∑∫

∑

 

     (32) 
 
Obviously, the optimal strategy is myopic. In addition, the 
objective function is quadric and the constrained 
conditions are convex. Thus there exists a unique 
globally optimal solution to (32). More concretely, three 
optimization problems are solved below: The first one is: 
  

2
0

22
0

1
1 0

2
0

1

2
0

min
2

1

0 1

k

K
k

k k k

K

k
k

k

s t

k

λ

λ
λ

λ

λ

,

 
 , 

; ∈Λ = ,

,
=

,

 = ,. . 
 ≤ ≤ , ∈ Λ,

∑

∑
 

 
in which, there is a unique global solution - that is 

2 1
0 0k k kλ λ, ,= , ∈ Λ , and the optimal value of the objective 

function is 1 2/ . The second one is: 
  

2

22

1
1

2

1

2

max
2

1

0 1

T k

K
T k

k k T k

K

T k
k

T k

s t

k

λ

λ
λ

λ

λ

,

 
 , 

; ∈Λ = ,

,
=

,

 = ,. . 
 ≤ ≤ , ∈Λ,

∑

∑
 

 

in which, there is a unique global solution - that is 
2 21 while 0 { }T kT k

k kλ λ∗
∗

,,
= , = , ∈ Λ − , and the optimal 

value of the objective function is 1 1(2 )
t k

λ ∗
−

,
. The last one 

is: 

 
 
 
 

2

1
2 2

21 10 10 1

2

1

2

min d
2

1

0 1 0

t k

k kKT t tt t k tt t
t k t k
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K

t k
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t k
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t T k

λ
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 ; ≤ ≤ , ∈Λ = , , , 

,
=

,

  −  + −
  
  

 =. . 
 ≤ ≤ , ≤ ≤ , ∈Λ,

∑∫

∑
 

     (33) 
 
in which there is a unique global solution, i.e. 

2 1 0t k t k t T kλ λ, ,= , ≤ ≤ , ∈ Λ  and the optimal value of the 

objective function is zero. Accordingly, on account of that 
the strategies must be differential, the theorem is proved.  

This theorem shows that the optimal mutant is almost 
the same as the incumbent, except that, while 
approaching to the terminal time, the mutant gradually 
but quickly invests all the wealth in only one asset, of 
which the fraction of the wealth the incumbent assigns to 
the purchase is minimum at the terminal time. It is also 
shown that the optimal objective function is strictly 
negative. This implies from (29) that the market share of 
the mutant is strictly increasing at the terminal time 
although it keeps unchanged prior to the end. However, 
that does not represent the incumbent is evolutionary 
unstable.  

To make this point clear, one notes that, if the mutant 
plays the ε -optimal strategy given by (31), the total 

return on asset k∗  must be the smallest among all 
assets at the terminal time in the new market portfolio 
including the investment of the mutant after the entry. As 
a result, Assumption 7 does not hold anymore at time T  
and the only asset the mutant purchases has the least 
value for investment since no rational investor will buy it 
at the purchase price of the mutant according to Theorem 
5. Meanwhile, if the portfolio of the mutant keeps 
invariant, the right-hand side of (22) is strictly negative at 
least in a short period after the terminal time and so the 
mutant’s market share will strictly decrease.  

For example, suppose an institutional investor buys an 
asset on a large scale during a short period. Undoubtedly 
the asset price will shot up and his market share will 
increase. However, this phenomenon will not last long 
and the price will definitely fall. Afterwards, he will 
probably lose what he gained.  

Accordingly, another condition is imposed on strategy 2 
played by the mutant. The aim is to make sure that the 
new extended market portfolio after the entry satisfies 

Assumption 7 still at the terminal time T  - that is to say, 

the constrain 2 1
T k T k kλ λ, ,= , ∈ Λ  is added in the 

following. Therefore, the variation problem (30) is 
changed into: 
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 +
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 = , ∈ Λ.
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∑∫

∑

&

 (34) 

 
Based on Theorem 6, the following theorem is evident 
and hence the proof is omitted.  
 
 
Theorem 7  
 
If Assumption 7 holds, then there is a unique solution of 
(34), which is given by: 
  

2 1 0t k t k t T kλ λ, ,= , ≤ ≤ , ∈ Λ.  (35) 

 

The optimal objective function and 2 1 2( )t t k t kf r λ λ, ,; ,  

equal to zero for all [0 ]t T∈ , . For an arbitrary strategy, 

which is different from the strategy given by (35) the 

objective function and 2 1 2( )t t k t kf r λ λ, ,; ,  at some time 

[0 ]t T∈ , , are strictly negative in a small neighborhood of 

(1 0), . Hence, the incumbent satisfying Assumption 7 is 
evolutionary stable.  

Notice that the terminal time T  is arbitrarily selected 
and in particular if let T → ∞ , then one concludes (35) 
holds anytime. Therefore the following corollary is direct 
from Theorems 5 and 7: 
  
Corollary 1: An incumbent is evolutionary stable if and 
only if the portfolio of the incumbent satisfies Assumption 
7.  
 
 
EXPLICIT EXPRESSION FOR BOND VALUATION AND 
BENCHMARK INTEREST RATE 
 
This discuss provides an expression for bond valuation if 
the market is arbitrage-free. Owing to Definition 1, a 
market is arbitrage-free if and only if the incumbent, that 
is, the market portfolio is evolutionary stable or 
equivalently, if and only if Assumption 7 holds according 
to Corollary 1. Thus, here it is supposed that Assumption 
7 holds. 

Clearly, Assumption 7 leads to (27), which yields by 
integration: 
  

( ) ( )1 1exp exp 0
T T uk

u u sT k t k ut t t
du d ds du tc c cλ λ, ,

 = − − , ≥ .
  ∫ ∫ ∫  
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or equivalently: 
  

( ) ( )1 1 exp exp 0
T T uk

u u st k T k ut t t
du d ds du tc c cλ λ, ,= − + − , ≥ .∫ ∫ ∫  

 (36) 
 
Following that, the main result here is provided 
subsequently.  
 
 
Theorem 8  
 
(i) A bond market is evolutionary stable if and only if each 
bond (relative) price is given by: 
  

( )exp 0
uk k

u st ut t
p d ds du t kc c

∞
= − , ≥ , ∈ Λ;∫ ∫  (37) 

 
(ii) On the contrary, if the bond prices are collected 
already in an evolutionary stable market, then the 
discount rate (consumption parameter) is recovered by: 
  

0
k
t

t k k
t t

p
k tc

p d
= , ∈ Λ, ≥ .

−
&

 (38) 

 
 
Proof 
 
In this bond market, the market portfolio can be 
considered as the unique strategy, say strategy 1 with 

1 1tr ≡ . Therefore, we conclude from (24) that 1k
t t kp λ ,=  

for k ∈ Λ . Let T → ∞  in (36), then (37) is derived 
since: 
  

( )1lim exp 0
T

uT k tT
ducλ ,→∞

− = .∫  

 
Lastly, (38) follows directly from (27) and the equality 

1k
t t kp λ ,=  for all k ∈ Λ .  

Since 1k
t t kp λ ,=  as shown in the afore proof, the first 

part of the theorem accords with economic intuition. It 
says that in an evolutionary stable bond market, one 
should divide wealth across assets according to the 
relative asset prices, that is, the arbitrage-free prices, 
which equal to the discounted values of the relative 
dividends with the discount rate just being the 
consumption parameter tc . 

However, the conclusion of the second part appears 
more interesting. For example, the benchmark interest 
rate is extremely important in finance industry, however, 
how to fix it is open to my best knowledge. In order to 
approach this problem, the third  part  of  Theorem  8  
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suggests that in a relatively effective (that is, evolutionary 
stable) bond market, the relative bond prices are 
collected first and then the consumption parameter tc  
are recovered by (38). This parameter should be a good 
candidate for the benchmark interest rate.  
 
 
CONCLUSIONS 
 
This paper develops a continuous-time evolutionary 
finance model with time-dependent strategies, from which 
an evolutionary stable bond market is studied. First, a 
general discrete-time evolutionary finance is established 
with an arbitrary trading time interval. A continuous-time 
model is derived by letting the time interval converge to 
zero. It is shown that the continuous-time model is 
well-defined and there is no sudden bankruptcy in the 
general market only if all the asset prices keep positive.  
Second, as a special case of the general model, a bond 
market with deterministic dividend payoffs is discussed in 
detail. This bond market is not so artificial as one may 
consider at first sight since it includes a variety of 
marketable treasury securities, say Treasury bills, 
Treasury notes, Treasury bonds, and Treasury Inflation 
Protected Securities (TIPS) issued by the United States 
Department of the Treasury. This market also includes 
Account Treasury bonds issued by the China Department 
of Finance. It is certified that a bond market is 
evolutionary stable, which implies the market is 
arbitrage-free, if and only if the total return of each asset 
in the market is identical all the time.  

Further, the arbitrage-free price of each bond is derived, 
which equals an improper integral with the integrand 
being a discounted value of the dividend payoff. The 
discount rate is identical for all bonds and equals the 
market consumption parameter. To my best knowledge, 
there is not an accepted approach to evaluate the 
discount rate or the benchmark interest rate although this 
rate is vital for asset pricing. Equation (38) at least 
provides a new attempt to attack this problem. For 
example, if one gets bond prices in a relatively effective 
or evolutionary stable bond market then the discount rate 
or the benchmark interest rate can be recovered from 
(38). In particular, along this research line, it must be very 
interesting to have this model tested with market data. 
Since this is not a simple work and will lead to another 
paper, so we leave it in future research.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Finally, although a general continuous-time 

evolutionary stock market with time-dependent strategies 
is established in this paper, we afterwards focus on an 
evolutionary bond market, in which the fundamentals are 
deterministic and both prices and wealth vary due to 
market interaction. Clearly a profound study on 
continuous-time evolutionary stock market in a stochastic 
world is more interesting and of course more challenging. 
This work is also left in future research.  
 
 
ACKNOWLEDGEMENTS 
 
The research for this paper was supported by Social 
Science Funds of Hunan Province in China (Project No. 
11YBA058), by National Natural Science Foundation of 
China (Project No. 70971037 and No. 71171078) and by 
Doctoral Fund of Ministry of Education of China (Project 
No. 20100161110022). I am grateful to Professor Klaus 
Reiner Schenk-Hoppé and Professor Jia’an Yan. This 
paper was initiated by Professor Schenk-Hoppé while I 
visited the University of Leeds in 2005 and the main work 
was done while I visited Chinese Academy of Sciences in 
2007. A substantial revision is made in this version and 
all remaining errors are mine. The authors are grateful to 
the anonymous referee for the comments. 
 
 
REFERENCES 
 
Blume L, Easley D (1992). Evolution and market behavior. J. Econ. 

Theory, 58: 9-40.  
Buchmann B, Weber S (2007). A continuous time approximation of an 

evolutionary stock market model. Int. J. Theoretical Appl. Finance, 10: 
1229-1253.  

Evstigineev IV, Hens T, Schenk-Hoppé KR (2006). Evolutionary stable 
stock markets. Econ. Theory, 27: 449-468.  

Farmer JD, Lo W (1999). Frontiers of finance: evolution and efficient 
markets. Proceedings of the National Academy of Sciences, 96: 
9991-9992.  

Hens T, Schenk-Hoppé KR (2005). Evolutionary stability of portfolio 
rules in incomplete markets. J. Math. Econ., 41: 43-66.  

Lucas R (1978). Asset prices in an exchange economy. Econometrica, 
46: 1429-1445.  

Yang ZJ, Ewald CO (2008). Continuous time evolutionary market 
dynamics: the case of fix-mix strategies. Invest. Manage. Finan. 
Innov., 5: 34-42. 

 
 
 
 
 
 
 
 
 
 
 
 


