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This paper presents a forward looking model for selection of hedge fund investment strategies. Given 
excess skewness observed in hedge funds’ return distributions, we assume that the historical returns 
have a skew student t distribution. We implement a Bayesian framework to derive the parameters of the 
posterior return distribution. The predictive return distribution is easily obtained once the posterior 
parameters are estimated by assuming that the unknown future expected returns are equal to the 
posterior distribution multiplied by the likelihood of the unknown future expected returns conditional 
on available posterior parameters. We derive the predictive mean, predictive variance and predictive 
skewness from the predictive distribution after twenty-one thousand simulations, and solve a multi-
objective portfolio selection problem using a data set of monthly returns of investment strategy indices 
published by the Hedge Fund Research group. Our results show that the methodology presented in this 
paper provides the highest rate of return (16.79%) with a risk of 2.62% compared to the mean-variance 
method, which provides 0.8% rate of return with 1.41% risk, respectively. 
 
Key words: Predictive distribution, skew t distribution, posterior distribution, prior distribution, MCMC 
simulations, Gibbs sampler. 

 
 
INTRODUCTION 
 
Markowitz’s (1952) mean-variance portfolio selection 
model assumes that asset returns are normally 
distributed and uses its historical parameters (mean and 
standard deviation) as key inputs to portfolio selection. 
Despite its theoretical importance, the mean-variance 
portfolio selection model does not provide any forward 
looking framework for asset allocation. Two major 
limitations are worth mentioning here: firstly, the use of 
historical standard deviation as a measure of risk is 
inappropriate (Sharpe, 1964; Sortino and van der Meer, 
1991). Secondly, the idea that asset returns can be 
modelled by a normal distribution is somewhat dubious, 
especially for hedge funds due to the structure of 
investment strategies they employ to exploit market 
inefficiencies (Gehin, 2006). There is a growing need 
from finance practitioners for portfolio selection models 
that provide a forward-looking approach following the 
sub-prime financial crisis. Portfolio managers want to 
allocate their fund to different investments by taking into 
account not only the history  (historical  mean  and 

variance) as in the original Markowitz (1952) but also 
incorporating the future (future expected parameters) in 
their investment decision making.  

This paper is a response to the growing need in the 
hedge fund industry for an allocation model that provides 
a forward looking approach. The presence of such a 
forward looking allocation model is crucial in that it can 
help fund managers to consider only investments that will 
perform well in the future and generate the highest rate of 
return at the lowest cost. This paper presents a Bayesian 
forward looking framework for the investment strategies 
allocation problem under skew t distribution. We first build 
a predictive expected return distribution based on the 
posterior distribution with a skew t distribution and use its 
predictive parameters (that is, predictive mean, predictive 
standard deviation and predictive skewness) as key 
inputs to the portfolio selection model.  

By using the predictive parameters we account for 
estimation risk, which arises as a result of the use of 
historical   parameters.   As  Scott   and   Horvath   (1980)  
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pointed out, the inclusion of skewness in the selection 
model is also important: under non-normality assumption 
investors exhibit a preference for positively skewed 
portfolios. We allow for different levels of attitude toward 
risk and skewness. In practice, most hedge funds are 
unregulated; their use of leverage and short selling is 
unlimited and depends on their appetite for risk and/or 
skewness. Therefore in this paper we formulate a multi-
objective portfolio selection problem that reflects the risk 
appetite, leverage and short selling behaviour witnessed 
in hedge funds.   

We compare our portfolio selection model with the 
original Markowitz (1952) model by making use of a 
dataset of monthly investment strategy indices published 
by the Hedge Fund Research group. The data set 
extends from January 1995 to June 2010 and includes 
different bull and bear market trends. Our results show 
that the methodology presented in this paper provides the 
highest rate of return (16.79%) with a risk of 2.62%, 
compared to the mean variance, which provides 0.8% 
rate of return with 1.41% risk respectively.  
 
 
METHODOLOGY 
 

Suppose that a fund manager has a holding period of lengthτ ; the 
fund manager’s objective is to maximize his wealth at the end of the 

investment period τ+T  where T is the sample period. Denote 

by τ+Υ
T the unobserved next τ  period’s expected returns; the 

predictive returns distribution can be written as: 
 

∫ ΣΣΣ∝ ++ dSddYSpSYpYYp nTnT µµµττ )/,,(),,/()/(
            (1) 

 

where nY
is a 

( )NT ×
 matrix of historical returns of all 

investment strategies during the past T  periods. 

)Y/S,,(p nΣµ
 is the joint posterior distribution of investment 

strategy returns assumed to be a skew student t distribution with 

first, second and third moments given by 
S and , , Σµ

respectively. This distribution summarizes the uncertainty about the 
future expected returns distribution. 

),,/( SYp
T

Σ+ µτ is a multivariate skew student t distribution for 

the next τ period future expected returns, and ∝ : is a 
proportionality sign. 

We account for estimation risk by averaging in (1) over the 

posterior distribution of the parameters
S and , , Σµ

. Therefore 

the distribution of τ+T
Y

will not depend on unknown parameters, 

but only on the past returns series n
Y

assumed to be skew student 
t distribution. 

The analytical solution of (1) is computationally difficult to obtain; 
often numerical methods such as the Markov Chain Monte Carlo 
(MCMC) simulations (that is, Metropolis-Hasting or the Gibbs 
sampler algorithm) are used to obtain the predictive distribution. In 
this paper the Gibbs sampler algorithm is used for this purpose. 

 
 
 
 

Substituting the predictive returns distribution into the fund 
manager’s objective functions, the following multi-objective portfolio 
selection problem is formulated: 
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represents the 

predictive mean, predictive covariance matrix, predictive co-
skewness matrix of future expected returns, aversion to change in 
risk, aversion to change in skewness, and the kronecker product.  

To obtain the predictive moments of future expected returns, we 
use a skew t distribution derived from the skew elliptical class of 
distributions presented by Sahu et al. (2003). The general form of 
elliptical distribution is given by: 
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Equation (3) 
becomes a multivariate student t distribution under the condition 

that the vector of random variables X is transformed as follows: 
 

εµ ++= DZX
                                                                 (4) 

 

where Z is a vector of unobservable random variables whose 
distribution is elliptical with mean zero and identity covariance 

matrix p
I

 ; 

Pℜ∈µ
vector of mean; D , is a 

pp ×
matrix of 

skewness and co-skewness:         
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random variable). Consequently Sahu et al. (2003) show that the 

conditional distribution of a random variable 
)0/( >= ZXY

given 
υµ  and ,,, DΣ

 has the following multivariate skew t 
distribution: 
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                     (5) 
 

where υ  is the degree of freedom for a skew student t distribution. 
It is now possible to implement a Bayesian investment selection 

model under the assumption that hedge fund returns have excess 
skewness characteristic that is, have a skew student t distribution. 
This implementation is done using the MCMC simulations with a 
Gibbs sampler that requires us to first specify the likelihood function 
and the priors before computing the predictive moments of future 
expected returns. We specify the likelihood for each observation as: 

 













 Σ
+→Σ

w
DzwDzx

iiii
,N ,,,,/ p µµ

                           (6) 
 

where 









Γ→→

2
,

2
 wand    ;),0( i

υυ
Ppi INz

  
 

For the informative prior scenarios we consider the conjugate 
priors distribution for the unknown parameter

D and , ,given  υµ Σ
, and the unknown parameter Σ , which 

has a multivariate inverted Wishart distribution: 
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Notice that δ is a parameter that adjusts the degree of our belief 
about the skewness in the distribution of the data, and a prior value 
of this parameter must be specified in the informative prior settings.   
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The same goes for the mean vector d , which reflects our prior 
information. 

Following Polson and Tew (2000), and Harvey et al. (2004), we 
obtain the predictive moments of future expected return distribution: 
 

         (8) 
 

where τττµ +++ Σ TT S
~
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~
 ,~

T are the predictive moments, and 

S ,,Σµ
 are the posterior moments obtained with the Gibbs 

sampler (Geman and Geman, 1984). 
To implement the Gibbs sampler algorithm we need to be able to 

sample from the posterior distribution
)/,,( YSp Σµ

. The 
algorithm proceeds by drawing iteratively from the posterior 
distribution. We set the starting values to be equal to our 

informative prior: 
),,( )0()0()0( SΣµ

, and draw posterior 
parameters iteratively as follows: 
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Geman and Geman (1984) showed that for the 

sample obtained after N iterations we 
need:

 

 
 
Once the predictive parameters are computed, the optimization 
problem in Equation (2) can be solved with different levels of 

aversion to risk and skewness (
) and ck

 respectively using a 
numerical optimization method such as the genetic algorithm. 

 
 
EMPIRICAL RESULTS 
 
We consider a set of returns of hedge fund indices pro-
vided by Hedge Fund Research group. The Hedge Fund 
Research  group  database  is  the  most  comprehensive 

resource available for hedge fund investors which include 
many investment strategies and is classified into seven 
broad main strategies. The monthly returns series are 
Hedge Fund Research group’s strategy indices repre-
senting the equally weighted returns, net of fees of hedge 
funds classified into each strategy. The database is 
updated bi-weekly with new funds information (removed 
and/or newly included funds). The dataset on these 
strategy indices spans January 1995 to June 2010; to 
account for survivorship bias we consider only the 
sample   periods  of  after  1994.  Following  Capocci  and  
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Figure 1. Risk reward trade-off. 

 
 
 
Hubner (2004) hedge fund data starting after 1994 are 
more reliable and do not contain any survivorship bias.  

The seven broad main investment strategies include: 
the equity hedge (EH) which consists in taking long 
equity positions hedged with short sales of stocks and/or 
stock market index options. The event driven (ED); an 
investment strategy that focuses on exploiting pricing 
inefficiencies caused by anticipated specific corporate 
events. The relative value (RV) investment strategy aims 
at pricing inefficiencies between related assets that are 
mispriced; for example mispricing in fixed income market. 
The fund of composite currency (FCC) which is the 
weighted fund of investments made in a specific 
currency. The fund of funds (FoF) invests with multiple 
managers through funds or managed accounts in order to 
design a diversified portfolio of managers with the 
objective of significantly lowering the risk of investing with 
an individual manager. The macro (MCRO) investment 
strategy which attempts to anticipate the movements of 
global macroeconomic variables in order to profit from the 
impact these have on equity, fixed income, currency and 
commodity markets. The emerging market (EM) invest-
ment strategy focuses on investments (stocks, bonds, 
currency, interest rates) in emerging markets. More 
detailed definition on these investment strategies can be 
found on Hedge Fund Research group’s website 
www.hedgefundresearch.com. 

Table 1 reports the estimates of the first, second and 
third moment (in percentage term) of the empirical 
distribution of each investment strategy. Two investment 
strategies (event-driven and macro) exhibit positive 
skewness while the rest of  investment  strategies  exhibit 

negative skewness. Skewness measures the deviation of 
the empirical distribution from the theoretical one. A 
positive skewness is an indication that the empirical 
distribution exhibits a long right hand tail with higher 
probability of extreme positive returns. One economic 
reason that can explain the presence of positive 
skewness in event driven and macro strategies is that 
both strategies attempt to anticipate major economic 
changes at corporate and macro level and take 
advantage of their implications. In the presence of non-
normality assumption; investors tend to prefer positive 
skewness in anticipation for the occurrence of positive 
extreme returns. In the same way, negative skewness 
indicates that the empirical distribution exhibits a long left 
hand tail with higher probability of extreme losses. 

However, in the risk-reward trade-off analysis carried 
out in Figure 1 we find that emerging market investments 
are more risky than any investment strategy that exists in 
the hedge fund universe: They exhibit the highest 
annualized risk during our sample period, and are ranked 
third in terms of return. The relative value investment 
strategies are the least risky investment strategy during 
the same period, followed by fund of funds, which have 
the lowest rate of return. The equity hedge investment 
strategies have the highest rate of return during the same 
sample period. The macro and weighted composite in 
currencies have almost the same rate of return but with a 
different risk profile, and the lowest risk corresponds to 
macro investments. 

To obtain the first, second and third posterior moments 
we use 21 000 MCMC Gibbs sampler simulations using 
WinBUGS package. The posterior means,  MCMC  error,   
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Table 1. Estimates of sample moments. 
 

Estimate ED EH EM FOF FWC MCRO RV 

Mean 0.914 0.956 0.876 0.53 0.81 0.8086 0.727 

Var 2.046 2.778 4.208 1.805 2.136 1.8932 1.299 

Skew 1.37 -0.23 -1.03 -0.75 -0.69 0.42 -3.07 
 
 
 

Table 2. Predictive optimal allocations for the aggressive, moderate and conservative fund 

manager in percentage term. 
 

Aversion ED EH EM FoF FWC MCRO RV 

k = c =0.5 13.50 38.60 18.55 01.17 12.20 10.00 05.98 

k =0.5 and c  =1 44.08 16.07 09.78 06.79 06.78 06.71 09.79 

k =1 and c =0.5 44.07 16.06 09.79 06.76 06.77 06.67 09.79 

k = c =1 04.49 32.30 13.55 10.46 15.49 10.36 13.35 

k =1 and c =2 02.44 37.91 13.75 10.71 10.73 10.62 13.75 

k =2 and c =1 99.79 0.10 0.00 0.00 0.20 0.00 0.00 

k = c =2 99.80 00.10 0.00 0.00 0.19 0.00 0.00 

k = c =3 19.05 16.25 18.09 13.09 13.47 13.26 6.79 

k = c =9 31.73 12.91 12.89 12.98 11.31 11.56 6.53 

k = c =10 78.47 3.60 3.60 3.60 3.58 3.57 3.57 

 
 
 

2.5 percentile, median, and 97.5 percentiles of the 
posterior parameters are shown in Tables A, B and C of 
the appendix, respectively. 

Predictive mean, predictive skewness and predictive 
covariance are obtained using expressions in Equation 8. 
In fact, the predictive mean is equal to the posterior 
mean, and the predictive variance and predictive skew-
ness equal the posterior means of variance and 
skewness plus additional terms that account for uncer- 
tainty about the unknown future true parameters. We use 
these predictive parameters as proxy for the unknown 
future expected returns to solve the investment selection 
problem in Equation 2 using a numerical optimization 
technique known as the genetic algorithm technique. The 
predictive optimal weights are shown in Table 2, where 

k and c  are aversion to risk and skewness 
respectively.  

We distinguish aggressive fund managers from mode-
rate and conservative fund managers. This categorization 
follows Waggle and Gisung, (2005), who showed that 
reasonable values of aversion should be in the range of 1 
to 10. They classify an aggressive investor as having an 
aversion coefficient between 1 and 2. A moderate 
investor has a coefficient of aversion between 2 and 5. 
They argue that a conservative investor would have a 
coefficient of aversion between 5 and 10. They call an 
investor with a  coefficient  of  aversion  of  3  an  average 

investor. 
Table 2 shows that whenever the aversion to risk is 

higher than the aversion to skewness (that is, k =2 andc

=1 or k = c =2), an aggressive fund manager would have 
to invest heavily in event-driven investments. However, 
his expected return will be maximized only if his 
skewness aversion is higher than his risk aversion (that 

is, k =1 and c =2) (Table 3); in this case he would largely 
attempt to increase his holdings in equities.  

The computed predictive portfolio mean return, 
predictive portfolio risk and predictive portfolio skewness 
are reported in Table 3. These are estimates of portfolio 
mean return, portfolio risk and portfolio skewness of 
unknown future expected returns. 

Clearly, a more aggressive fund manager (with a risk 
aversion equal to 1 and a skewness aversion of 2) will 
expect 16.8% of portfolio predictive mean return, with an 
overall portfolio predictive risk of 2.6% and a positive 
predictive skewness of 6.4%. This result is interesting in 
the sense that positive skewness means that the 
likelihood of extreme positive returns is possible. 

Table 3 shows only two possible investment options 
that can produce positive skewness: the first is the case 
where both  risk  and  skewness  aversions  are  equal  to 
unity; in this case the overall portfolio predictive rate of  
return is 14.8%,  with  2.6%  predictive  risk.  The  second  
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Table 3. Portfolio predictive mean returns, risk and skewness. 
 

Aversion Pred.port.mean ret (%) Pred. portf risk (%) Pred.portf.skew (%) 

k = c =0.5 15.1202 2.7267 -0.6072 

k =0.5 and c =1 1.2808 2.6505 -7.9655 

k =1 and c =0.5 1.2548 2.6197 -7.9801 

k = c =1 14.7576 2.6284 5.3038 

k =1 and c =2 16.7917 2.6196 6.3887 

k =2 and c =1 -12.8618 2.7554 -24.2254 

k = c =2 -12.8618 2.7554 -24.2254 

k = c =3 6.9979 2.6083 -2.3831 

k = c =9 4.0908 2.5990 -4.6545 

k = c =10 -8.0860 2.6308 -18.1032 

 
 
 

 
 

Figure 2. Histogram of weights per risk and skewness aversion. 
 
 
 

case is where the skewness aversion is greater than the 
risk aversion (risk aversion equals one and skewness 
aversion equals two); in this case one would expect fund 
managers who always attempt to generate abnormal 
rates of return to be risk lovers and to be more skewness 
averse.  

In other words, changes that can affect the skewness 
are likely to affect the occurrence of extreme positive 
returns; hence, the possibility of generating abnormal 
rates of return becomes difficult. The message here is 
clear: a fund manager would take any risky position as 
long as it does not alter his/her aversion to the portfolio 
skewness. Figure 2 shows different investment alloca-
tions corresponding to each investment strategy: for 
example, if the risk aversion is greater than the skewness 

aversion (k=2 and c =1) then the optimal investment is to 
allocate 100% of capital to event-driven investments. One 
explanation for this allocation is that event-driven 

managers are capable of taking advantage of private 
information that they may have obtained during merger 
and acquisitions events or during the acquisition of a 
distressed company and trading on this information in  
order to make abnormal rates of return.  

Figure 3 exhibits a stacked bar chart for an aggressive 

fund manager: for instance, for a fund manager with k= c

=2, the optimal allocation would be to invest in event-
driven funds only. If the principle of diversification 
matters, then the optimal allocation obtained when  k =2 
and c = 1) with positive predictive skewness would be a 

clever allocation. The stacked bar chart shows that the 
optimal investment option allocates more capital to 
equities, followed by emerging markets; less capital is 
allocated to event-driven funds. As mentioned earlier, 
equities and even-driven funds are two of the most risky 
investments and one would expect a risk-taker fund 
manager to have such positions as long as his predictive  
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Figure 3. Stacked bar aggressive fund manager. 

 
 
 

 
 
Figure 4. Pie of optimal mean-variance weights. 

 
 
 

portfolio skewness is not altered that is, remains positive 
and according to his expectations.  

The Markowitz (1952) mean-variance analysis has also 
been carried out for comparison purposes; Figure 4 
shows that the optimal portfolio is made up of 32.5% 
event-driven, 32.2% macro and 35.32% relative value 
funds only. The portfolio expected mean return is 0.80% 
with the portfolio risk of 1.41%, which is far less than the 
16.79% of the predictive portfolio mean return (with 
predictive 2.62% risk) obtained with  our  forward  looking 

selection model. 
Figure 5 shows the mean-variance efficient frontier with  

a negatively sloped down Sharpe ratio (blue line), 
meaning that as the fund manager’s targeted return 
increases; the ratio of the mean return to risk decreases 
inversely. The efficient frontier has only three points: 
these correspond to 32.5% of event-driven, 32.2% of 
macro and 35.32% of relative value investments. This 
allocation does not consider the diversification principle 
according to which investment  capital must  be  allocated 
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Figure 5. Corresponding mean-variance efficient frontier. 

 
 
 

across all available investments in order to spread the 
overall risk. 
 
 

Conclusion 
 

This paper presents a forward looking way of selecting 
hedge fund investment strategies by taking into account 
the skewness, variance and mean of the predictive 
distribution of future expected returns. Based on monthly 
return indices, we have shown that a predictive return 
distribution can be built in Bayesian settings by first 
assuming that the historical distribution is a student t 
distribution, and that the predictive return distribution is 
equal to the posterior distribution multiplied by the 
likelihood of the unknown future expected returns con-
ditional on available posterior parameters. We generate 
21 000 simulations from this predictive distribution using 
Gibbs sampler to obtain the predictive mean, predictive 
variance and predictive skewness that are used as key 
inputs to the portfolio optimization process. Based on 
different levels of risk and skewness aversions, we found 
that our portfolio selection model provides a higher rate of 
return than the mean variance model. In financial markets 
past performance is not indicative of future performance; 
hence, the use of predictive rather than historical 
parameters is of great importance in asset allocation. 
 
 
 
 
 
 

REFERENCES 
 
Capocci D, Hübner G (2004). An Analysis of Hedge Fund Performance. 

J. Emp. Financ. 11:55-89. 
Gehin W (2006). The Challenge of Hedge Fund Performance 

Measurement: A toolbox rather than a Pandora’s Box, Working Paper 
EDHEC-risk and Asset Management Research Center, December.  

Geman S, Geman D (1984). Stochastic Relaxation, Gibbs Distributions 
and the Bayesian Restoration of Images, IEEE Trans. Pattern Anal. 
Machine Intell. 6:721-741. 

Harvey C, Liechty J, Liechty W, Müller P (2004). Portfolio Selection with 
Higher Moments, Working Paper, Duke University.  

Markowitz H (1952). Mean-Variance Analysis in Portfolio Choice and 
Capital Markets, J. Financ. 7:77-91. 

Polson NG, Tew BV (2000). Bayesian Portfolio Selection: An Empirical 
Analysis of the S&P 500 Index 1970-1996. J. Bus. Econ. Stat. 
18(2)164-173. 

Sahu SK, Dey DK, Branco MD (2003). A New Class of Multivariate 
Skew Distributions with Applications to Bayesian Regression 
Models. Can. J. Stat. 31:129-150. 

Scott RC, Horvath PA (1980). On the Direction of Preference for 
Moments of Higher Order than Variance. J. Financ. 35(4): 915-919. 

Sharpe W (1964). Capital Asset Prices: A Theory of Market Equilibrium 
under Conditions of Risk. J. Financ. 19(3):425-442.   

Sortino F, Van der Meer R (1991). Downside Risk: Capturing what’s at 
Stake in Investment Situations. J. Port. Manage. Summer, 17(4): 27-
31 DOI: 10.3905/jpm.1991.409343 

Waggle D, Gisung M (2005). Expected Returns, Correlations, and 
Optimal Asset   Allocations. Financ. Serv. Rev. 14:253-267. 

 
 
 
 
 
 
 
 
 
 



Mwamba         10023 
 
 
 
APPENDIX: 
 

Table A. Posterior mean. 

 

Node Mean MC error 2.50% Median 97.50% 

Mean[1] -0.130 0.210 -61.810 0.037 61.710 

Mean[2] 0.438 0.222 -61.760 0.760 62.470 

Mean[3] -0.158 0.220 -61.830 -0.361 62.080 

Mean[4] 0.136 0.207 -61.950 -0.030 61.510 

Mean[5] 0.145 0.212 -61.740 -0.004 62.330 

Mean[6] 0.205 0.216 -61.160 -0.087 62.260 

Mean[7] -0.18 0.21 -62.1 0.02 61.95 
 
 
 

Table B. Posterior skewness. 

 

Node Mean MC error 2.50% Median 97.50% 

Skewness[1] -0.2431 0.2429 -63.44 -0.1829 62.35 

Skewness[2] 0.1772 0.2158 -60.74 0.2247 61.25 

Skewness[3] -0.3082 0.2261 -63.56 -0.3862 61.85 

Skewness[4] 0.2781 0.2208 -61.51 0.4952 62.81 

Skewness[5] 0.09323 0.2285 -61.64 -0.2194 61.97 

Skewness[6] -0.0258 0.2255 -62.17 0.08094 62.6 

Skewness[7] 0.05794 0.2101 -62.03 -0.1172 62.4 
 
 
 

Table C. Posterior covariance matrix. 
 

Node Mean MC error 2.50% Median 97.50% 

tau[1,1] 0.9999 0.0036 0.2447 0.9051 2.286 

tau[1,2] -0.0057 0.0026 -0.7797 -0.0034 0.7596 

tau[1,3] -0.0039 0.0027 -0.7574 -0.0017 0.7485 

tau[1,4] -2.7E-04 0.0027 -0.7677 9.7E-04 0.7717 

tau[1,5] 8.4E-04 0.0023 -0.7727 0.0021 0.7777 

tau[1,6] -0.0046 0.0024 -0.7785 -0.0026 0.7497 

tau[1,7] 0.0019 0.0025 -0.7482 2.4E-04 0.7794 

tau[2,1] -0.0058 0.0026 -0.7797 -0.0034 0.7596 

tau[2,2] 1.002 0.0038 0.2399 0.9132 2.287 

tau[2,3] -0.0038 0.0027 -0.7645 -0.0034 0.7687 

tau[2,4] 0.0017 0.0026 -0.7635 0.0024 0.7536 

tau[2,5] 0.0018 0.0024 -0.7471 -0.0027 0.7805 

tau[2,6] 0.0032 0.0022 -0.7646 0.0033 0.7644 

tau[2,7] 0.0032 0.0024 -0.7678 0.0052 0.7769 

tau[3,1] -0.0039 0.0027 -0.7574 -0.0017 0.7485 

tau[3,2] -0.0038 0.0027 -0.7645 -0.0032 0.7687 

tau[3,3] 0.9953 0.0036 0.2437 0.9036 2.288 

tau[3,4] 2.3E-04 0.0024 -0.7679 2.3E-05 0.7417 

tau[3,5] 0.0017 0.0026 -0.7505 5.9E-04 0.7672 

tau[3,6] 9.0E-04 0.0025 -0.7566 0.0013 0.7546 

tau[3,7] -8.7E-04 0.0026 -0.7901 -0.0010 0.7719 

tau[4,1] -2.7E-04 0.0027 -0.7677 9.7E-04 0.7717 

tau[4,2] 0.0017 0.0026 -0.7635 0.0024 0.7536 

tau[4,3] 2.5E-04 0.0024 -0.7679 2.3E-05 0.7417 
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Table C. Contd. 
 

tau[4,4] 0.9925 0.0038 0.2455 0.9045 2.274 

tau[4,5] -0.0016 0.0027 -0.7655 -0.0036 0.7554 

tau[4,6] -8.1E-04 0.0027 -0.7578 6.6E-05 0.7586 

tau[4,7] -6.1E-04 0.0028 -0.7483 -3.4E-0 0.7462 

tau[5,1] 8.4E-04 0.0023 -0.7727 0.0021 0.7777 

tau[5,2] 0.0018 0.0024 -0.7471 -0.0027 0.7805 

tau[5,3] 0.0017 0.0026 -0.7505 5.9E-04 0.7672 

tau[5,4] -0.0016 0.0027 -0.7655 -0.0036 0.7554 

tau[5,5] 1.001 0.0038 0.2416 0.9115 2.296 

tau[5,6] 0.0019 0.0025 -0.7804 0.0016 0.7818 

tau[5,7] 0.0018 0.0029 -0.75 0.0023 0.7628 

tau[6,1] -0.0046 0.0024 -0.7785 -0.0026 0.7497 

tau[6,2] 0.0032 0.0023 -0.7646 0.0033 0.7644 

tau[6,3] 9.0E-04 0.0025 -0.7566 0.0013 0.7546 

tau[6,4] -8.1E-04 0.0027 -0.7578 6.6E-05 0.7586 

tau[6,5] 0.0019 0.0025 -0.7804 0.0016 0.7818 

tau[6,6] 1.002 0.0035 0.2379 0.9055 2.297 

tau[6,7] -0.002 0.0026 -0.7557 -0.0034 0.7583 

tau[7,1] 0.0019 0.0025 -0.7482 2.4E-04 0.7794 

tau[7,2] 0.0032 0.0024 -0.7678 0.0052 0.7769 

tau[7,3] -8.7E-04 0.0027 -0.7901 -0.0011 0.7719 

tau[7,4] -6.1E-04 0.0028 -0.7483 -3.4E-0 0.7462 

tau[7,5] 0.002 0.0029 -0.75 0.0023 0.7628 

tau[7,6] -0.002 0.0026 -0.7557 -0.0034 0.7583 

tau[7,7] 0.9971 0.0039 0.2383 0.907 2.258 

 
 
 


