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Variable sample size and sampling interval (VSSI) X  control charts have been shown superior to 

standard Shewhart (SS) X  control charts for detection of a small or moderate shift in process mean. 
However, they might utilize more resources by a more frequent sampling rate and a large sample size to 
improve its performance. Recently, some economic models were used to express the long-run cost per 

hour of operating the VSSI X  control charts and gain insight into the way to design the charts. The 
usual assumption for the models is the normality of the underlying data or measurements. However, 

this assumption may not be true in practice. In this paper, an economic design of the VSSI X  control 
charts for skewed non-normal data is conducted by using the Markov chain approach and genetic 

algorithms. Two types of VSSI X  charts are considered and compared with the SS X  charts over 
several numerical examples: the symmetric control limits and asymmetric control limits. Moreover, 

effects of non-normality on the performance of the VSSI X  charts with respect to the costs of operating 

the charts are studied. It is shown that the reduction in cost can be achieved by using the VSSI X  

charts instead of the SS X  charts. However, an increase on the skewness coefficient results in a 
decrease on the cost savings. In addition, the asymmetric control limits is a better choice with respect 
to the costs and the false alarm rate. 
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INTRODUCTION 
 
The control chart technique can be considered as a 
graphical expression of statistical hypothesis testing in 
the industrial process control for detecting a process 
change. The standard Shewhart (SS)   control chart used 
to detect process mean shifts is one of the most popular 
control chart techniques. Since it takes samples of fixed 
size with a fixed time interval between samples, it is also 
called the fixed sampling rate (FSR) control chart. The 
advantage of the SS   control chart is its simplicity, but its 
efficiency (in terms of the speed with which process shifts 
are detected) is poor when the process mean shift is 
small or moderate. In recent years, it has been found that 
performance of the SS control chart can be improved by  
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varying the rate of sampling as a function of the data from 
the process. Several ways are used for variable sampling 
rate. One way is to vary the sampling interval, in which a 
short sampling interval is used when there is an 
indication of process change and a long sampling interval 
is used when there is no indication of process change. 
The resulting control chart is called the variable sampling 
interval (VSI) control chart (Reynolds et al., 1988; Reynolds 
and Arnold, 1989; Runger and Pignatiello, 1991; Baxley, 
1996; Reynolds, 1996). Another way to vary the sampling 
rate is to vary the sample size, in which a large sample 
size is employed when there is an indication of process 
change, and a small sample size is employed when there 
is no indication of process change. The resulting control 
chart is called the VSS chart (Prabhu et al., 1993; Costa, 
1994). The VSI and VSS schemes can be used together 

for improving the performance of the SS X  control chart,  



 
 
 
 
and the resulting control chart is called the VSSI control 
chart (Rendtel, 1990; Prabhu et al., 1994; Costa, 1997). 

The use of control chart requires the user to select 

several parameters. For the SS X  control chart, the 
sample size, control limits and the sampling interval 
should be predetermined. Since the work by Duncan 

(1956), the economic design for the SS X  control charts 
has received much attention (Montgomery, 1980; Vance, 
1983; Woodall, 1986; Pignatiello and Tsai, 1988). The 
usual approach to the economic design is to develop a 
cost model for a particular type of industrial process, and 
then derive the optimal parameters by minimizing the 
long-run expected cost per hour. For the VSI, VSS or 

VSSI X  control chart, there are additional parameters of 
multiple sampling interval lengths and/or sample sizes 
and warning limits to choose. As compared with the SS 

X  control chart, little work has been done on the 

economic design of the variable sampling rate X  control 
chart. Park and Reynolds (1994) studied the economic 

design of the VSS X  control chart. In 1998, Bai and Lee 

considered the economic design of the VSI X  control 
chart. Moreover, Park and Reynolds (1999) developed 

the economic design of the VSSI X  control chart. The 
models they adopted are similar to that of Duncan (1956). 

Traditionally, when the issue on designing control chart 
is discussed, one usually assumes the measurements in 
each sample (or say population) are normally distributed; 

therefore, the sample mean X  is also normally 
distributed. However, the assumption may not be tenable 
in practice. For example, the distributions of 
measurements from chemical processes, semiconductor 
processes, or cutting tool wear process are often skewed 
(Chang and Bai, 2001). Surely, if the sample size is large 

enough, the statistic X  will be distributed normally 
according to the central limit theorem. However, this is 
often expensive. The non-normal behavior of measure-
ments may imply that the traditional design approach is 
improper for the operation of control charts. Facing the 
impropriety, Rahim (1985) presented an economic model 

of the SS X  charts under non-normality assumption. 
Likewise, Chou et al. (2000) used the Burr distribution to 
represent various non-normal distributions and construct 

an economic-statistical model for the SS X control 
charts. Recently, Chen (2004) presented an economic 

design of the VSI X  charts for non-normal measure-
ments. This economic model is an extension of the works 
by Bai and Lee (1998) and Chou et al. (2000). However, 

the economic designs of VSS and VSSI X  charts by 
taking the effect of non-normality into consideration have 
not appeared in the literature. 

The main objective of this paper is to present an 

economic design of the VSSI X  chart for positively 
skewed process data. The rest of this paper is structured 

as followed; the VSSI X  chart for process data with 
normal and gamma distribution, which stands for a wide- 
ranging skewed distribution; the cost function associated  
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with the long-run cost per hour of operating the VSSI X  
control chart is developed by means of the Markov chain 
approach; a searching method based on genetic 
algorithms (GAs) is introduced for finding the optimal 
design parameters so that the cost function is minimized; 
numerical illustrations and comparisons are made; 
concluding remarks. 

 
 
BACKGROUND 

 
In this area, we briefly explain the operation of the VSSI 

X  control chart and the gamma distribution, which is 
used to represent a generally skewed distribution. 

 
 

Review of the VSSI X  chart 

 
Prabhu et al. (1994) and Costa (1997) separately 

proposed the X  control chart with variable sample size 
and variable sampling interval. To simplify the 

implementation of the VSSI X  chart, the sample size 
and sampling interval length are considered to vary 
between two values.  

Assume that the distribution of the measurements from 
the process is normal with mean   and standard 

deviation , and the objective is to detect the shifts in   

from the target value
0

 . In the SS X  control chart, a 

random sample of size 
0

n  is taken every 
0

h  hour, and the 

sample mean is plotted on the control chart with the 

control limits
X

k 
0

. The search for assignable cause 

is carried out when sample mean falls outside the control 
limit. 

In the VSSI X  control chart, random samples of 
variable size are taken at the intervals of variable length. 

Let ),(
11

hn  be a pair of minimum sample size and longest 

sampling interval, and ),(
22

hn  be a pair of maximum 

sample size and shortest sampling interval. These pairs 

are chosen such that 
201

nnn   and
102

hhh  . The 

decision to switch between the two pairs of the 

parameters is made through the warning limits 
X

w 
0

 

and control limits
X

k 
0

. For the sake of simplicity on 

presentation, the sample points plotted on the control 
chart will be standardized sample means, that is 

X
X  /)(

0
 . In the case, the warning limits and control 

limits will be w  and k  respectively. If the sample point 

falls into the central region of ),( ww , then the pair 

),(
11

hn  is used to relax the control. If the sample mean 

falls into the warning region of ],( wk   or ),[ kw , then the 

pair ),(
22

hn  is used to tightening the control. Otherwise, 

a signal is produced to indicate the process
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Figure 1. The VSSI X  control chart. 

 
 
 
being out-of-control (Figure. 1). 

Since no sample is taken at the start of the process, the 
first sample size and sampling interval cannot be 
determined by above switching rule. Prabhu et al. (1994) 
and Costa (1997) explained that the first sample size and 
sampling interval can be taken at random. It has a 

probability of 
0

p  of being ),(
11

hn  and a probability of 

(
0

1 p ) being ),(
22

hn , where 
0

p  can be simply defined 

as the conditional probability of a sample mean falling 
into the central region, given that it did not fall outside two 
control limits. As an alternative opinion, it may be 
preferable in practice to use the tightening control--the 
large sample size and the shortest sampling interval, 
because it gives additional protection against problems 
that arise during start-up (Bai and Lee, 1998) (Figure 1). 
 
 

VSSI X  chart for process data with gamma 
distribution 
 

In the economic model, the distribution of the underlying 
measurements (or data) from the process is assumed to 
follow the gamma distribution which is a positively 
skewed distribution.  

Let 
)(21

,,,
in

XXX   be the measurements of the thi

sample. These measurements are independently from 

the identical gamma distribution, ),( Gam  , with the 

probability density function, 
 

0      ,
)(

)( 1 


  xexxf x






                  (1) 

 

By means of its moment generating function, it is  easily 

found that the sample mean 
i

X  also follows a gamma 

distribution, ))( ,)(( Gam  inin . In monitoring the 

skewed sample means like the afore-mentioned, a 
control chart with asymmetric control limits may be 
preferred to the traditional control chart with symmetric 
control limits (Tagaras, 1989; Yourstone and Zimmer, 
1992). Thus, the warning and control limits of the VSSI 

X  control chart can be replaced in the asymmetric 

condition by 'w , w , 'k , and k , respectively.  

In order to examine the effect of non-normality on the 

economic design of the VSSI X  control chart, The nine 
cases of  0.5, 1, 2, 3, 4, 5, 10, 20, and 30 while 

holding 1  are considered. Figure 2 presents partial 

cases along with a normal distribution with the same 
mean and variance. These values of   and   

correspond to those used by Schilling and Nelson (1976). 

 
 
DEVELOPMENT OF COST FUNCTION 

 
In the economical model, a process is assumed to start 

with an in-control state (
0

  ) but after a random time 

of in-control operation it will be disturbed by a single 
assignable cause that causes a fixed shift in the process 

mean ( 1
  ). After the shift, the process remains out-

of-control until the assignable cause is eliminated (if 
possible). The inter-arrival time of the assignable cause 
disturbing the process is assumed following an 
exponential distribution with a mean of 1/ʎ hours.
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Figure 2. Various gamma and the normal distributions with the same mean and variance. 
 
 
 

sample is taken at each sampling time to compute the 
sample mean. If the sample point falls within the control 
limit, its position on the chart will be used to decide the 
next sample size and the next sampling interval. 
Otherwise, the process is stopped and a search starts to 
find the assignable cause and adjust the process. The 

economic design of the VSSI X  control charts is 
undertaken by specifying a cost function, and searching 
the optimal design parameters for minimizing the cost 
function over a production cycle. The production cycle 
length is defined as the average time from the start (or 

restart) of production until the assignable cause is 
identified and eliminated. Once the expected cycle length 
is determined, the cost over the production cycle can be 
converted to an index—long run expected cost per hour 
(Ross, 1970). The optimal values of the design 
parameters based on the cost function can be 
determined by certain optimization techniques such as 
the grid search, nonlinear programming, or genetic 
algorithms. 

Figure 3 depicts the production cycle, which is divided into 
four time intervals of in-control period, out-of-control 
period, searching  period due to false alarm, and the time 

 



530         Afr. J. Bus. Manage. 
 
 
 

 
 
Figure 3. Production cycle considered in the cost model. 

 
 
period for identifying and correcting the assignable 
cause. Individuals are now illustrated before they are 
grouped together. 

(T1) The expected length of in-control period is /1
and (T2) The expected length of out-of-control represents 
the average time needed for the control chart to produce 
a signal after the process mean shift. This average time is 
called the adjusted average time to signal (AATS), which 
is the most widely used statistical measure for comparing 
the efficiencies of different variable sampling rate control 
charts. The memoryless property of the exponential 
distribution allows the computation of AATS using the 
Markov chain approach. Costa (2001) and Lin and Chou 

(2005) used this approach to calculate AATS of VSSI X  
chart. Here we basically follow the process developed by 
Costa. The fundamental concepts of the Markov chain 
approach can be found in Cinlar (1975). 

Let M  be the average time from the start of the cycle 
to the time the chart first signals after the process shift. 
Then,  
 

1 MAATS .                            (2) 

 
At each sampling moment during the period M, one of the 
four transient states is reached according to the status of 
the process (in or out-of-control) and the position of 
sample mean (warning region or central region): 
 

State 1: Sample point falls in the central region and the 
process is in-control at sampling moment; 
State 2: Sample point falls in the warning region and the 
process is in-control at sampling moment; 
State 3: Sample point falls in the central region and the 
process is out-of-control at sampling moment; 
State 4: Sample point falls in the warning region and the 
process is out-of-control at sampling moment; 
The control chart produces a signal if the sample point 
goes beyond the control limits. At this time, if State 1 or 2 
are arrived, the signal is a false alarm; if State 3 or  4 are 

arrived, the signal is a true alarm. We define the 
absorbing state-- State 5, which arrives if a true alarm is 
signaled. The transition probability matrix is given by 
 


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where 
lm

p  denotes the transition probability that l  is the 

prior state and m  is the current state. Thus, we have 
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where U  represents the remaining time until the process 

shift, from the th)1( i  sampling moment, that is 

exponentially distributed with parameter  ; )(
1,1


 nn
F  is 

the distribution function of gamma function, 

), 
11

 (Gam nn . If we denote )(
01,11 Xnn

ka 


 F , 

)(
01,11 Xnn

wb 


F , )'(
01,11 Xnn

wc 


 F , and 

)'(
01,11 Xnn

kd 


F  to facilitate the presentation, 

then 
11

p  can be rewritten as 
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Similarly, we have 
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where 
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According to the elementary properties of Markov Chains 

(Cinlar, 1975), 
1)(' QIr  provides the average number 

of transitions in each transient state before the true alarm 

signals, where ),,,(
14131211

' ppppr   is the vector of 

starting probability; I  is the identity matrix of order 4; and 
Q  is the transition matrix where the elements associated 

with the absorbing state have been deleted. The product 
of the average number of transitions in the transient state 
and the corresponding sampling interval, determines the 
period M , 

 

tQIrM 1)('  ,                          (5) 

 
where ),,,(

2121

' hhhht   is the vector of the next 

sampling   intervals  corresponding  to  the  four  transient  
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states. (T3) Let 
0

t  be the average amount of time wasted 

searching for the assignable cause when the process is 
in-control, and )(FAE  be the expected number of false 

alarms per cycle given by 
 

fQIrFAE 1)(')(                            (6) 

 

where )0,0,,(
21

' f  gives the probability of 

producing false alarms in each transient state. Then, the 
expected length of searching period due to false alarm is 

given by )(
0

FAEt . 

(T4) The time to identify and correct the assignable 

cause following an action signal is a constant 
1

t . 

As a result, the expected length of a production cycle 
can be aggregately represented as 
 

10
)()( tFAEtMTE                          (7) 

 

If one defines 
0

V  as the hourly profit earned when the 

process is operating in control state; 
1

V  as the hourly 

profit earned when the process is operating in out-of-

control state; 
0

C  as the average search cost if the given 

signal is false; 
1

C  as the average cost to discover the 

assignable cause and adjust the process to in-control 
state; and s  as the cost for each inspected 

measurement, then the expected net profit from a 
production cycle is given by 

 
)()()1()1()(

1010
NsECFAECMVVCE         (8) 

 
where )(NE  is the average number of observations 

(measurements) to signal (ANOS) during production 
cycle, and it is given by 
 

1)(')(  QIrNE                          (9) 

 

where ),,,(
2121

' nnnn  is the vector of the sample 

sizes corresponding to the four transient states taken for 
next sampling. 

Finally, the expected loss per hour )(LE  is given by 

 

)(/)()(
0

TECEVLE                     (10)                 

 
 
SEARCHING METHOD 

 
The cost function (10) is a function of the process 

parameters (
0

t ,
1

t , , , , ) the cost parameters ( s ,
0

C

,
1

C ,
0

V ,
1

V ),  and  the design parameters (
1

n ,
2

n ,
1

h ,
2

h , w , 
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'w , k , 'k ). The economic design of a control chart for a 

particular application is to derive the design parameters 
that minimize the cost function, provided the process and 
cost parameters are given. In doing so, we apply the 
genetic algorithms (GAs) since the minimization problem 
has a non-linear objective function with the following 

constraints: 
1

n  and 
2

n
Ζ  (positive integers), 

21
0 nn  , 0

21
 hh , kw 0 , and ''0 kw  that 

result in mixed continuous-discrete decision variables 
and a discontinuous and non-convex solution space. If 
typical non-linear programming techniques are used to 
solve this optimization problem, they may be inefficient 
and time-consuming. 

GAs are global search and optimization techniques 
motivated by the process of natural selection in a 
biological system (Davis, 1991; Goldberg, 1989). They 
have been used successfully in the optimization field of 
the parameters of quality control charts (Aparisi and 
Garicía-Díaz, 2003; He et al., 2002; He and Grigoryan, 
2002; Chen, 2004). GAs are different from other search 
procedures in the following ways (Karr and Gentry, 1993): 
(1) GAs consider many points in the search space 
simultaneously, rather than a single point; (2) GAs work 
directly with strings of characters representing the 
parameter set, not the parameters themselves; and (3) 
GAs use probabilistic rules to guide their search, not 
deterministic rules. Since GAs considers many points in 
the search space simultaneously, there is a less chance 
of converging to local optima. Furthermore, in a con-
ventional search, based on a decision rule, a single point 
is considered, and that is unreliable in multimodal space. 

The primary distinguishing features of GAs include 
encoding, fitness function, selection mechanism, 
crossover mechanism, mutation mechanism, and culling 
mechanism. The algorithm for GAs can be formulated 
based on the following steps: 

 
1) Randomly generate an initial solution set (population) 
of N individuals and evaluate each solution (individual) by 
a fitness function. Usually an individual is represented as 
a numerical string. 
2) If the termination condition is not met, repeatedly do 
{Select parents from population for crossover. 
Generate offspring; mutate some of the numbers; merge 
mutants and offspring into population; 
cull some members of the population.} 
3) Stop and return the best fitted solution. 

 
When applying GAs to the minimization problem, a 
decimal encoding of individuals is adopted so that each 
individual in the form of decimal string represents a 

possible solution for (
1

n ,
2

n ,
1

h ,
2

h , w , 'w , k , 'k ). The 

fitness value of each individual is evaluated by its cost 
value. Based on the “elitist” strategy of the afore-
mentioned algorithm, that is, the survival of the fittest, the 
evolution  of   a  population  of   N   individuals  has  been 

 
 
 
 
pursued. The termination condition is achieved when the 
number of generations is large enough or a satisfactory 
fitness value is obtained. 
 
 
NUMERICAL COMPARISONS 
 

In this area, the SS X  charts and the VSSI X  charts 
with symmetric or asymmetric control limits are compared 

with respect to their operating cost. In the SS X  charts, 

)(LE  can be obtained by letting 21
nn  , 21

hh  , 

0'  ww , and 'kk  , which implies that 

0
2111
 pp  and 

13
p =

23
p =

33
p =

43
p  =0. 

The process and cost parameters used for the 
comparisons borrows directly from Costa (2001). Table 1 

gives the values of s , 
0

C , 
1

C , 
0

V , 
1

V , 0t , 
1

t ,  , and   

for each example. A genetic optimization package 
(EVOLVER 4.0.2) is coded to minimize the cost function 

)(LE  of the SS and VSSI X  control charts. The following 

settings of control parameters for the package 
manipulation have been used: population size N=50; 
crossover probability =0.5; mutation rate =0.25; the 
number of generation =200,000. Since the minimum time-
period between samples has to take into consideration to 

generate the required sample size, it requires 01.0
2
h  in 

the following numerical comparisons. 
Table 2 shows the optimal design parameters and the 

values of )(LE  for the SS X  charts and VSSI X  charts 

with symmetric or asymmetric control limits. The 
distribution of the underlying process data is assumed to 

follow a gamma distribution, )2,1(Gam , in these 

examples. The percent reduction (%) in )(LE  defined by 

  

100
)(

)()(




SS

VSSISS

LE

LELE
 

 
is also given in the table. Several findings from Table 2 
are spelled out as follows. 

 

1) The values of )(LE  for the VSSI X  charts are 

consistently smaller than that for the corresponding SS 

X  charts. In addition, asymmetric control limits utilized 

on the VSSI X  charts has a larger percent reduction in 

)(LE  than symmetric control limits. 

2) The VSSI X  charts seem to require frequent sampling 
with smaller sample size and larger control limits than the 

SS X  charts, which results in its provision of better 
protection against false alarm, )(FAE . 

3) Percent reduction is small when , 
1

t , or   is large 4) 

The lower control limit coincides with the lower warning 
limit  when the asymmetric control  limits are taken into
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Table 1. The process and cost parameters borrowed from Costa (2001). 

 

EX. s  
0C   0V  

1V  0t  
1t      

1 5 500 500 500 0 5 1 0.01 1 

2 10 500 500 500 0 5 1 0.01 1 

3 5 250 500 500 0 5 1 0.01 1 

4 5 500 500 250 0 5 1 0.01 1 

5 

6 

5 

5 

500 

500 

500 

500 

500 

500 

0 

0 

2.5 

5 

1 

1 

0.01 

0.01 

1 

1.5 

7 5 500 50 500 0 5 1 0.01 1 

8 5 500 500 500 0 5 10 0.01 1 

9 5 500 500 500 0 5 1 0.01 0.75 

10 5 500 500 500 0 5 1 0.01 0.5 

11 5 500 500 500 0 5 1 0.05 1 

 

 
 

Table 2. The optimal designs of the SS and VSSI X  charts with symmetric/asymmetric control limits for process data of Gamma distribution Gam(1,2). 
 

EX. 
SS 

 VSSI 

 Symmetric  Asymmetric 

n h k E(FA) E(L)  n1 / n2 h1 / h2 w / k E(FA) E(L) %  n1 / n2 h1 / h2 w' / k' w / k E(FA) E(L) % 

1 17 6.07 2.82 0.1 43.50  7/13 4.12/0.01 1.43/3.74 0.03 35.31 19  7/14 4.30/0.09 3.74/3.74 1.19/3.68 0.04 34.37 21 

2 14 7.88 2.53 0.16 54.24  7/12 5.87/0.01 1.41/3.40 0.05 45.4 16  7/12 6.10/0.09 3.74/3.74 1.14/3.34 0.05 43.64 20 

3 16 5.87 2.77 0.12 43.24  7/14 4.08/0.01 1.47/3.74 0.03 35.23 19  7/12 4.29/0.01 3.74/3.74 1.13/3.72 0.03 33.56 22 

4 14 7.93 2.57 0.14 29.81  7/13 5.87/0.01 1.45/3.50 0.04 25.19 15  7/11 6.10/0.01 3.74/3.74 1.13/3.43 0.04 24.04 19 

5 15 5.72 2.61 0.18 42.03  7/13 4.07/0.01 1.44/3.61 0.05 34.88 17  7/11 4.27/0.01 3.74/3.74 1.09/3.54 0.05 33.20 21 

6 10 4.70 3.26 0.06 34.51  7/8 4.07/0.01 2.03/3.74 0.03 29.93 13  7/9 3.95/0.01 3.74/3.74 1.98/4.26 0.01 29.50 15 

7 17 6.04 2.83 0.1 39.22  8/15 4.30/0.01 1.55/3.81 0.03 31.14 21  9/14 4.66/0.01 4.24/4.24 1.35/3.75 0.02 30.38 23 

8 16 6.13 2.77 0.11 79.46  7/13 4.28/0.01 1.43/3.74 0.03 72.38 9  7/13 4.44/0.01 3.74/3.74 1.17/3.76 0.03 70.91 11 

9 26 7.47 2.6 0.13 52.12  11/22 5.10/0.01 1.40/3.44 0.04 43.31 17  11/18 5.43/0.01 4.69/4.69 1.00/3.36 0.05 40.57 22 

10 45 9.85 2.28 0.22 68.01  23/41 7.39/0.01 1.35/2.94 0.07 58.96 13  21/35 7.50/0.02 6.48/6.48 0.93/2.89 0.07 54.06 21 

11 16 2.86 2.73 0.05 114.74  8/14 2.12/0.01 1.53/3.47 0.02 102.09 11  8/13 2.18/0.01 4.00/4.00 1.26/3.44 0.02 99.59 13 

 
 
 
consideration for the VSSI X  chart. We call the 

VSSI X  chart with such a feature the half-VSSI 
X  chart for convenience. The minimum sample 

size and longest sampling interval are used for the 
next sampling if the current sample mean falls into 
the lower side of the chart. Table 3 continues  the 

first example and shows the optimal design 
parameters under various gamma distributions (

=0.5, 1, 2, 3, 4, 5, 10, 20, 30   while   holding

1C
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Table 3. The optimal designs of the SS and VSSI X  charts with symmetric/asymmetric control limits for Gamma distributed process data with various parameters. 
 

Process data SS 
 VSSI 

 Symmetric  Asymmetric 

Distribution α3 α4 n h k E(FA) E(L)  n1 / n2 h1 / h2 w / k E(FA) E(L) %  n1 / n2 h1 / h2 w' / k' w / k E(FA) E(L) % 

Gam(1,.5) 2.83 15.00 18 6.61 2.87 0.13 44.46  20/21 6.60/0.01 2.40/3.16 0.07 42.91 3.5  19/21 6.54/0.03 3.08/3.08 2.30/3.90 0.02 41.33 7.0 

Gam(1,1) 2.00 9.00 17 6.26 2.82 0.12 43.90  12/15 5.42/0.01 1.76/3.46 0.05 37.40 14.8  12/16 5.33/0.01 3.46/3.46 1.64/3.82 0.02 36.75 16.3 

Gam(1,2) 1.41 6.00 17 6.07 2.82 0.10 43.50  7/13 4.12/0.01 1.43/3.74 0.03 35.31 18.8  7/14 4.30/0.09 3.74/3.74 1.19/3.68 0.04 34.37 21.0 

Gam(1,3) 1.15 5.00 17 6.02 2.83 0.09 43.36  7/14 4.02/0.01 1.48/3.75 0.03 35.24 18.7  7/13 4.20/0.01 4.58/4.58 1.17/3.72 0.03 33.57 22.6 

Gam(1,4) 1.00 4.50 16 5.77 2.8 0.10 43.27  7/14 4.00/0.01 1.49/3.71 0.02 35.20 18.7  7/13 4.17/0.01 5.28/5.29 1.18/3.68 0.02 33.51 22.6 

Gam(1,5) 0.89 4.20 16 5.75 2.8 0.10 43.22  6/13 3.71/0.01 1.41/3.68 0.03 35.11 18.8  7/13 4.14/0.01 5.59/5.69 1.19/3.65 0.02 33.43 22.7 

Gam(1,10) 0.63 3.60 16 5.68 2.82 0.09 43.12  6/13 3.65/0.01 1.43/3.60 0.02 34.98 18.9  7/12 4.11/0.01 6.55/8.37 1.15/3.53 0.02 33.29 22.8 

Gam(1,20) 0.45 3.30 16 5.65 2.82 0.09 43.08  6/13 3.61/0.01 1.44/3.55 0.02 34.90 19.0  5/11 3.52/0.01 8.04/10.00 1.01/3.52 0.02 32.22 25.2 

Gam(1,30) 0.37 3.20 16 5.64 2.83 0.09 43.06  6/13 3.59/0.01 1.45/3.54 0.02 34.87 19.0  4/11 3.16/0.01 6.70/10.52 0.97/3.52 0.02 31.92 25.9 

                       

Norm(2,2) 0.00 3.00 15 5.34 2.81 0.09 43.04  6/13 3.55/0.01 1.46/3.46 0.02 34.83 19.1  --- --- --- --- --- --- --- 
 

3
  and 

4
  symbolize the skewness and kurtosis of distributions, respectively. 

 
 
 
 =1) as well as a contrastive normal distribution,

)2,2(Norm , which has the same mean and variance 

as )2,1(Gam . The results of Table 3 show that; 

 
 
1) Decreasing the value of   will reduce the 

percent reduction. In other words, skewed non- 
normal distribution will limit the saving per hour 

operation in the VSSI X  chart, especially when 
the distribution is highly skewed. 

2) Asymmetric control limits on the VSSI X  chart 
offers more robust protection against false alarm 
to skewed non-normality in comparison with 
symmetric one. 

3) The half-VSSI X  chart is well suited to highly 
skewed process data. Oppositely, the ordinary 

VSSI X  chart, where the control limit and warning 
limit did not coincide, is well suited to near 
normally distributed process data. 

CONCLUDING REMARKS 

 
An economic design of the VSSI control chart for 
control of those processes whose observations 
are drawn from positively skewed distributions, 
has been presented to achieve a reasonable 
balance between the cost of administering and the 
cost due to delays in trying to detect changes in 
the mean. In the modeling procedure, the 
assumption of the time the process remains in 
control following an exponential distribution 
allowing the probability structure on the process 
the same as the Markov chains. Using the well-
known properties of the Markov chains, statistical 
measures of performance, such as AATS and 
average number of observations to signal (ANOS) 
are obtained.  

Such measures were put together to arrive an 
expression of average loss per unit time, which is 
regarded as a cost function of the process 

parameters, cost parameters, and design 
parameters.  

The cost function was minimized by genetic 
algorithms to acquire the optimal design 
parameters of the chart, given the process 
parameters and cost parameters. Numerical 

comparisons between the SS X  chart and VSSI 

X  chart with symmetric or asymmetric control 
limits have been made over 11 examples and 9 
gamma distributions, each of which is positively 
skew with various degrees. 

The result of the numerical comparisons reveals 
that the VSSI X  chart with asymmetric control 

limits can be more efficient than both the SS X  

chart and the VSSI X  chart with symmetric 
control limits in terms of average loss per unit 
time. Another advantage of putting asymmetric 
control limits to use is that it provides fairly robust 
protection  against false alarm to highly  skewed



 
 
 
 
non-normality. 

Also, the result of the economic designing for the VSSI 

X  chart may be affected by non-normality. The loss 

savings resulting from the use of the VSSI X  charts are 
substantially limited when monitoring highly skewed 
process data. 
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