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This study tries to tackle the tourism forecasting problem using online search queries. This 
recent-developed methodology is subject to several criticisms, one of which is how to choose satisfying 
search queries to be built in the forecasting model. This study compares two popular candidates, which 
are the Bayesian Model Averaging (BMA) approach and the Least Absolute Shrinkage and Selector 
Operator (Lasso) approach. Evidence shows that the two approaches produce similar forecasting 
performance but different query selection results. 
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INTRODUCTION 

 
In recent years, much attention on forecasting based on 
user generated content (UGC) has been paid. One 
representative is the data from search engine services. 
The users of search engines search certain key words, or 
queries, to acquire some information on purpose, which 
leaves the service providers a new route to analysis 
users' motivation and information demand.  

In addition to these analyses, forecasting on certain 
issues can be conducted. A typical example is the Google 
Flu Trends (GFT), initialized in 2008, which has made 
several successful forecasts of flu outbreaks in US. The 
first paper on this issue is Ginsberg et al. (2009).  

However, GFT is not as successful as it was initialized, 
and it has gone through many criticisms. Those criticisms 
come from the worries about the uncertainties of the 
query data generation  process  (DGP)  and the model  

instability (Butler, 2013) for example. Nevertheless, the 
forecasting on other aspects based on query data still 
contributes knowledge to both practitioners and 
academia, for example in tourism forecasting 
(Bangwayo-Skeete and Skeete, 2015; Yang et al., 2015; 
Li et al., 2017). The difference of the performance in 
different areas using search query data emerges partially 
from the variable selection approaches and forecasting 
models.  

In most research, variable selection procedures based 
on correlation coefficient, purely subjective index 
compositing or other criteria might be problematic. 
Several researches try to improve the forecasting model 
by introducing variable selection models, such as spike 
and slab (Scott and Varian, 2014) and other pioneer 
approaches. As  pointed  by  Brynjolfsson et al. (2015),
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successful forecasting based on query data has several 
problems to be settled, one of which is to solve the 
variable selection problem. 

This study employed two frequently-used models with 
variable selection property to build the forecasting model 
on tourists forecasting. They are the Bayesian Model 
Averaging (BMA) approach and the Least Absolute 
Shrinkage and Selector Operator (Lasso) approach. 
Lasso is first proposed by Tibshirani (2011), and has 
many successful variants in predicting genome, economic 
amounts etc. BMA is sufficiently described in Hoeting et 
al. (1999), and it also has several follow-up updates. 

In general, the two approaches can both select 
variables and conduct forecasting; however the 
mechanisms are totally different. The BMA approach, 
presumably, believes uncertainties exist in each model. 
Instead of choosing the best model, it advocates to 
combine those top models selected through Bayesian 
Factor or other criteria. Lasso applies soft-thresholding by 
introducing a penalty on model parameters when 
minimizing its squared error objective. Due to the different 
originalities of the two approaches, the theoretical 
comparison becomes extremely hard and, even, trivial. 

However, from a practitioner's point of view, choosing 
between the two approaches is extremely useful. Except 
for the forecasting performance, the best model sizes and 
which variables are selected through BMA and Lasso also 
contribute to the forecasting practitioners. 
 
 
Forecasting models 
 
This section is to recap the main specification of the 
Bayesian Model Averaging (BMA), Least Absolute 
Shrinkage and Selector Operator (Lasso). Without loss of 
generality, we assume the underlying true model is of 
linear form, as shown in Equation 1: 
 

                     (1) 
 
where   is the constant, X contains K covariates with N 

observations, and   is the     vector. Besides, in this 
model, we assume homoscedastic standard errors. 
Based on this specification, we now discuss the main 
results of BMA and Lasso. 
 
 
Bayesian model averaging 
 
To allow model uncertainties, we rearrange model (1) as 
 

                (2) 
 

with   as the model index, where           . Each 
model of (2) in the Bayesian framework requires 
assumptions on priors of coefficient parameters   and 

variance    .  Following   the   tradition  assumption,  
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(Feldkircher, 2012; Moral-Benito, 2015), we assume   

follows a normal distribution with parameter Zellner's   in 
Feldkircher (2012): 
 

                      (3) 
 

where different specifications of Zellner's   would yield 
different model performance and model size. The choice 
of   could be fixed, for example, N (Unit Information 

Prior), empirical Bayes   whose idea is to use the 
information in the data to help improve the models, and 

Hyper-  prior who gives the ratio 
 

   
 a Beta prior and 

usually we set     therefore  
 

   
 

 

   
. Importantly, 

 

   
 acts as a shrinkage factor because from Equation (3) 

we have 
 

              (4) 
 

hence smaller   yields harder shrinkage on parameter 
estimates, which can be regarded as a way of variable 
selection. 

The variance     has a non-informative prior 
 

                                (5) 
 

In addition, each model    is assigned with a prior 

probability     . Normally, the priors of the models can 

be of any form, as long as it follows the subjective 
knowledge of the person who conducts forecasting. The 
most convenient priors are the Uniform, the Binomial and 
the Beta-Binomial (Doppelhofer and Miller, 2004; Ley and 
Steel, 2009). After specifying all the priors, we can then 
calculate the posterior model inclusion probabilities 
through 
 

                     (6) 
 

where    |   is the integrated likelihood, and it can be 
calculated through 
 

                    (7) 
 

After estimating the in-sample posterior densities of 
models and parameters, we can then conduct 
out-of-sample forecasting    according to 

 

 (8) 

y =  + X + ϵ, ϵ ∼ N 0,   2I , 

y =   + X   +  ϵ, ϵ ∼ N 0,   2I , 

  |g ∼ N 0, 2  
1

g
X′X 

−1

 , 

E    y, X, g, M  =
g

1 + g
   

OLS
, 

p   ∝  −1. 

p M  y, X =
p y M , X p(M )

p(y|X)
, 

p y|X =  p y|Ms , X p(Ms)

2K

s=1

 

p yf|y =  p(Mi|y) p(yf|θi , y, Mi)p(θi|y, Mi)

2K

i=1

dθi , 
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where θ         ′ 

  , while     |θ        is the 

out-of-sample likelihood and   θ |      is the posterior of 

parameters in model  . When the number of regressors 
becomes larger, the enumerate methods seem to be 
implausible, instead MCMC sample is the best choice to 
approximate the posterior densities of models. At any 
state, for instance  , staying at model   will jump to 

model   at state     according to the transition density 
   . However, in general, the transition density is neither 

known nor reversible. Therefore, the most frequently-used 
algorithm is the Metropolis-Hastings algorithm in this case 
and we adopt a random walk kernel during the sampling, 
the transition from model   to model   is based on 
 

                         (9) 
 
then we can approximate all the relevant posteriors we 
need. 
 
 
Lasso 
 
The Lasso estimator on model (1) is to minimize the 
following criterion function: 
 

                   (10) 
 

and Lasso has a nice property against Ridge regression 
estimator 
 

                 (11) 
 

is that Lasso exhibit hard threshoding property which can 
rule out some irrelevant variables stricter than Ridge 
estimator. 

Commonly, to guarantee the model stability of Lasso 
such that we can also mitigate model uncertainty to some 
degree, we apply cross-validation. Basically, we divide the 
sample into   subsamples. By taking  −   out of   
subsample we estimate Lasso and take the rest one to 
compute the prediction errors. Then taking the average of 
the results, we can have a more stable forecasting model. 
In the empirical part, we choose to split the sample into 10 
subsamples. 

Notably, one might argue that the analysis here might 
be problematic since the time series structure could be 
destroyed during the cross-validation. However, the 
cross-validation here is not simply resampling over the 
original sample, instead block sampling methods are 
employed to keep the time series structure. Moreover, to 
have a more fair comparison, this paper does not expand  

 
 
 
 
the model into ARIMA or other popular time series 
models, since the introduction of lags might offset the true 
effects from the queries. The extension could be made in 
the future, and model (1) can be extended to any desired 
form, while this paper only contributes a benchmark. 
 
 

Data collection 
 
We collect the daily tourist records from a five-star resort, 
Jiuzhaigou, in Sichuan province in China. The reason why 
we choose this resort is that this resort is a perfect 
representative of those resorts attracting considerable 
amount of tourists everyday, and it has stably long-run 
inputs than any other new started resorts. In addition, 
compared to other resorts, the data it has is 
well-recorded, thus the data quality can be guaranteed. 

The corresponding search query data is collected from 
a search engine website, provided by a dominant search 
engine service supplier, Baidu, in China. This company 
takes huge market shares so that the sample selection 
bias, on an aggregated level, is mitigated than any other 
data sources. We collect the data using an enumerate 
manner, namely we first pick several representative 
queries by our subjective knowledge and then take the 
recommended queries from the recommendation system 
of the search engine. Once either few new queries are 
recommended or the new words are totally irrelevant from 
our subjective knowledge, we stop iterating.  

Finally, we have 148 relevant queries as candidates as 
indicators for forecasting. The queries collected reflect 
numerous demands on the tours to Jiuzhaigou, as 
summarized in the following categories: the name of the 
resort and its relevant information, the detailed 
information on the scenes inside the resort, the travelling 
information regarding the plans, suggestions, routes and 
other resorts nearby etc. Since the queries are in 
Chinese, in which the forming of words are quite different 
from English, we code each of them into an English 
category plus a number as an identifier. For example, the 
fifth query about travel information is coded 
as”TravelInformation5”. It can be seen that some queries 
are intuitively important since most of the travellers will 
search them while some queries recommended by the 
website are not a must for travellers to search. Subjective 
selection of queries become invalid given huge amount of 
candidate queries. 

Therefore, it is needed to employ variable selection 
models to select the proper queries. Currently, we collect 
both the actual tourists records and the search query data 
from the 1st of June, 2012 to the 31th of August, 2014, 
with 822 observations on a daily basis. 
 
 
Empirical comparisons 
 
This section shows the comparisons of forecasting 
performance  and  variable selection between BMA and 

pij = min  1,
p Mj y, X 

p Mi|y, X 
 , 

 y − X  ′ y − X  + λ | j|

K

j=1

, 

 y − X  ′ y − X  + λ   j 
2

K

j=1

, 



 
 
 
 
Lasso. For the BMA models, the forecasting performance 
evaluation is based on the posterior means of the 
predicted tourist amounts in the out-of-sample evaluation. 
For the Lasso, we apply 10-folded cross-validation 
method, and use the best model to do out-of-sample 
evaluation. For the stability of the results, the evaluation of 
each model takes the average of 5 times evaluations. 
Compared to Lasso, some details of BMA are given, 
because the basic settings of BMA are much flexible than 
Lasso which only has one tuning parameter λ . Even 
though the Lasso is of simpler form, we also estimate 
Ridge estimator as a contrast. 

To conduct this, we will consider the effects of different 
model priors, different MCMC sampling methods and 
different Zellner's  s. Since the Zellner's    acts as a 
shrinkage element which is viewed as the most important 
feature of BMA models, in the following empirical parts we 
first compare the models with different model priors and 
MCMC methods, then choose the best model featuring 
different Zellner's   to compare with Lasso. 

Therefore after this short introduction, we then discuss 
the forecasting performance and the variable selection, 
and some estimate results of both BMA and Lasso are 
given prior to the comparison. 
 
 
Model estimates 
 
Before conducting the comparison, we first give some 
model estimates to have some straightforward ideas 
about the models involved, including the posterior 
inclusion probabilities of BMA models with different model 
priors, the quality of different MCMC methods and the 
shrinkage results of Lasso compared with Ridge 
estimator. 
 
 
BMA estimates 
 

We first estimate the BMA models. Since the performance 
model priors might be sensitive to the model's prior, that is 

     , we employ three different model priors to be 

compared for robustness, that is, uniform prior, binomial 
prior, and the beta-binomial prior. In addition, to avoid the 
case where certain MCMC sample is not effective in this 
particular research, we employ both the birth-death 
sampler and the reversible-jump sampler (Madigan et al., 
1995).  

In simple words, the birth-death sampler, in each round, 
randomly pick a variable to drop or to add, depending on 
whether the chosen variable is in the current model or not. 
The reversible-jump sampler assigns birth-death method 
a probability of 50% and for the other 50%, it swaps one 
of the variables already in the model with another one 
which is not in the current model. Importantly, the 
posterior mean of each parameter estimate is the 
weighted average across the top  200 models.  To  be  
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noticed, if a variable is not included in a certain model, the 
coefficient, that is, zero, is also accounted into this 
average. 

In Figure 1, “uniform” means the model prior is of the 
uniform type, “fixed” means that the prior is of the binomial 
type with expectation of 20, and “random” means that the 
prior is of beta-binomial type. We can see that the model 
with uniform prior shrinkages smoothly and model with 
binomial prior shows unstable performance when 
assigning inclusive probabilities to variables. 
Nevertheless, all the priors make no huge distinction with 
each other (Figure 2). 

The MCMC methods might suffer from some low-quality 
approximations, and one way to examine them is to 
compare them with the analytical results, which are those 
smooth and red lines in Figure 2. We find that the 
reversible jump MCMC has better quality than birth-death 
one. In general, the models with Beta-binomial are 
accompanied with the worst MCMC approximation, and 
the models with uniform, that is, a non-informative prior, 
are poorly approximated through MCMC because the 
uniform prior requires all the models being assigned with 
equal weights. 
 
 
Lasso estimates 
 
The algorithm used to implement Lasso is the coordinate 
descent method. We first select the penalty parameter, λ 

without cross-validation. The number of λ  sequence 
employed is 100. This is the same to ridge regression. 
Figure 3 explicitly shows the hard-threshoding property of 
Lasso. In this empirical question, we have 148 
independent variables in total. The horizontal axis is the 
penalty term realization of Equation (10) on the left panel 
in Figure 3, and the penalty term realization of Equation 
(11) on the right panel. As we can find, the shrinkage in 
Lasso is stricter than in Ridge. As the penalty becomes 
larger, given  λ , less variables will be screened out in 
Lasso; while in ridge regression, the shrinkage is milder. 
Obviously, the chosen model given λ might be unstable 
somehow, therefore when we conduct forecasting we use 
cross-validation to select proper models, and the criterion 
of model selection of the cross-validation consists of three 
types: Deviance, MAE (Mean Absolute Error), and MSE 
(Mean Squared Error). The results will be discussed in 
detail in the forecasting performance section. 
 
 
Forecasting performance  
 
Now we make use of the estimates, and employ the test 
sample to calculate the RMSE (Rooted Mean of Squared 
Errors) to make comparison. We use 800 out of 822 
observations to estimate and select the model, and let the 
other 22 to be an out-of-sample for evaluation. 

The outcome can be read from Table 1, and the overall  
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Figure 1. Posterior inclusive probabilities with different model priors. 

 
 
 

 
 

Figure 2. Osterior model probabilities of MCMC and analytical results. 
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Figure 3. Model selection of lasso and ridge regression. 

 
 
 

Table 1. Forecasting performance. 
 

Model Detail RM SE 

BMA 

Uniform, Birth-death 3892.62 

Binomial, Birth-death 3903.516 

Beta-binomial, Birth-death 3912.273 

Uniform, Reversible Jump 3644.754 

Binomial, Reversible Jump 3861.538 

Beta-binomial, Reversible Jump 4075.911 

   

Lasso 

Lasso 5214.74 

Ridge 7978.638 

Lasso-CV-deviance 3934.523 

Lasso-CV-mae 4014.339 

Lasso-CV-mse 3794.487 

   

BMA Uniform, UIP 3517.69 

   

(Zellner’s g) 
Uniform, EBL 3571.29 

Uniform, Hyper-g 4044.663 

 
 
 
distribution of residuals can be seen in Figure 4. It can be 
read that the best performance is from the BMA with 
uniform prior and the reversible jump MCMC method. In 
general, we find that the forecasts using uniform priors are 
the best, using binomial ranks second and beta-binomial 
performs worst among the BMA forecasts. This might be 
an evidence that the non-informative priors actually are 

good at forecasting. For the lasso, the forecast with MSE 
cross-validation performs best, and this might be due to 
that the criterion we use for out-of-sample evaluation is 
RMSE, which is the closest criterion to MSE. From the 
numerical results, we do not find whether BMA outperform 
Lasso, or the other way around in general. If we further 
look at Figure 4, we also find that the residual sequences  
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Figure 4. Residual plots for BMA and lasso. 

 
 
 
have similar patterns, that is, some fluctuations or 
seasonal patterns on a weekly basis. This implies that the 
models can be improved considering more complex time 
series variants such as ARIMA, ARCH, etc. However, in 
this paper, the linear model is sufficient for comparison of 
query selections so we will not complicate the settings. 

Till now, we only take various model priors and MCMC 
methods into account. As a crucial element, the Zellner's 
  seems to play more important roles in forecasting and 

model selection. We choose three types of  s in our 
research: fixed with    , the Empirical Bayes, Local 

type (Hansen and Yu (2001)), and the hyper-    type 
(Liang et al., 2008). 

Based on the “best” model, that is, model with prior 
uniform and with reversible jump sampler, we conduct the 
evaluation 5 times, and take the average. The RMSE are 
3517.69, 3571.29 and 4044.66, respectively. It can be 
read that, still, the simple rule wins, since the model with 
uniform model prior and fixed   has the best 
performance. It outperforms Lasso, but we cannot say 
BMA is definitely better than Lasso, since the 
performance difference is not huge. Nevertheless, the 
performance reached by both BMA and Lasso is 
satisfying, compared to the previous results, even though 
there is space to improve (Figure 4). 

Model size and variable selection 
 
First of all, the variable selection here is somewhat 
confusing in BMA context, since the philosophy of model 
averaging is proposed against model selection. However, 
we can treat the posterior inclusion probability (PIP) as 
the measure of likelihood that certain variables should be 
included or not. The PIPs demonstrate the posterior 
probabilities that a variable is included in the models. This 
is calculated through the summation of the posterior 
probability of those best models including this variable. 

It would be trivial to compare the variable selection if the 
model sizes are not taken into consideration. In other 
words, the larger model has more variables, and it has 
high probability to contain all the variables selected by the 
small model. Therefore, we first compare the model sizes 
across different models. 

For the BMA models, the model priors affect the model 
sizes, however, since the likelihoods dominate the 
posterior as sample size becomes larger, the model sizes 
are mainly affected by the information underlying the data. 
In Figure 5, we compare the models with different model 
priors and Zellner's  s. For the Uniform prior, the 
expected model size is around 70, while the posterior size 
is around 30. For the Binomial prior, since  we  set  the  
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Figure 5. Model size of BMA. 

 
 
 
expected model size as 20, the posterior is also around 
20. For the Beta-binomial, the prior is totally flat over the 
horizontal axis, while the posterior is still around 20. 
Zellner's   does affect the posterior model sizes, and we 

find that more complex   yields more complex posterior 
size distributions. In addition, all the models with uniform 
priors has larger model sizes because the prior “drags” 
the posterior toward it (Figure 5). The model sizes of 
Lasso with cross-validation, as in Figure 6, are around 30 
or slightly above. Cross-validation with deviance selects 
the best model with the size around 30, similar to the mae 
type. However, the MSE type are slightly larger. 

All the comparisons earlier mentioned show that the 
model sizes differ little between Lasso and BMA. This 
implies that the intrinsic model size supported by the data 
is around 30 to have a better forecasting performance. 
Therefore, it is interesting to see whether Lasso and BMA 
select similar variables or not. If they select several 
common variables, the practitioners can then pay more 
attention to those common queries. 

The variable selection results are given in Table 2, and 
the variables on the list are selected by the Lasso with 
deviance. If other methods have extra selected variables, 

then we currently do not report them in the table, since 
those variables are not important in magnitude, and this 
does not affect our results because we can see that the 
estimates of those on-the-list variables are similar. For the 
BMA estimates, we not only show the parameter 
estimates, but also give the posterior inclusive 
probabilities, which is an indicator whether certain 
variables are not important from BMA point of view. Of 
course, all the candidate variables has been assigned a 
PIP, but most of them are very low (Figure 6). 
 
 
Conclusions 
 
Forecasting tourist arrivals is beneficial. Using online 
information to conduct forecasts is of great value. In the 
past, we have no choices; while nowadays, we have too 
many choices. Selecting proper queries to be built in the 
forecasting models plays crucial roles among practitioners 
and academia. Previous research reveals the limitations 
of conducting simple index composition, or variable 
selection based on correlation coefficient or other criteria. 

Lasso and BMA are both ways to  select  statistically  
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Figure 6. Model size of Lasso. 

 
 
 

Table 2. Variable selection results. 
 

Variable Deviance 
Lasso  BMA 

MAE MSE UIP  EBL Hyper 

Object1 0.07 0.07 0.06 0.16 (0.80)  0.05 (0.30) 0.16 (0.74) 

Object2 4.60 4.78 4.76 5.06 (1.00)  4.69 (1.00) 3.84 (1.00) 

Object8 1.55 1.91 2.13 0.26 (0.09)  0.58  (0.16) 2.09 (0.68) 

ObjectInformation 5 -2.73 -3.99 -8.35 -6.13 (0.49)  -9.13 (0.71) -16.89 (1.00) 

ObjectInformation 8 7.20 7.34 7.13 0.32 (0.06)  1.12 (0.24) 4.50 (1.00) 

Scene2 3.53 3.77 5.70 2.73 (0.34)  1.56 (0.19) 9.26 (1.00) 

Scene4 0.43 1.52 4.93 6.42 (0.49)  11.77 (0.84) 15.72 (1.00) 

Scene5 14.4 14.2 14.17 5.75 (0.41)  13.01 (0.95) 11.16 (1.00) 

Scene8 6.24 6.53 7.72 3.81 (0.32)  3.86 (0.37) 10.26 (1.00) 

SceneNearby2 0.004 0.04 0.21 0.27 (0.51)  0.57 (0.98) 0.18 (0.39) 

TravelPlan3 0.04 -0.18 1.4 0.07 (0.03)  0.04 (0.03) 1.31 (0.36) 

TravelPlan10 11.03 11.06 10.12 0.53 (0.10)  0.09 (0.03) 0.59 (0.21) 

Route10 -0.45 -1.34 -4.23 -12.71 (1.00)  -12.44 (1.00) -11.59 (1.00) 

Route12 -0.73 -1.69 -4.09 -0.76 (0.15)  -1.11 (0.16) -5.56 (1.00) 

Route23 0.49 1.37 5.42 14.06 (0.98)  14.96 (1.00) 13.55 (1.00) 

Agent1 1.78 2.04 2.62 0.71 (0.14)  0.47 (0.14) 3.47 (0.75) 

Agent8 -1.38 -1.41 -1.54 -1.81 (1.00)  -1.92 (1.00) -2.17 (1.00) 

Agent10 -0.51 -0.53 -0.53 -0.03 (0.12)  0.00 (0.08) -0.10 (0.82) 

Weather2 2.60 2.55 2.50 3.58 (1.00)  3.94 (1.00) 4.21 (1.00) 

Weather4 0.10 0.17 0.14 -0.03 (0.06)  0.00 (0.00) 0.00 (0.00) 

Weather6 3.37 3.45 3.87 8.03 (1.00)  9.13 (1.00) 10.17 (1.00) 

Weather9 0.63  1 - - -0.96 (0.15)  -3.30 (0.50) -3.37 (0.58) 
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Table 2. Contd. 
 

Ticket2 1.48 1.16 0.40 0.07 (0.06)  1.01 (0.24) 0.94 (0.70) 

Ticket4 14.62 14.8 15.23 15.13 (1.00)  14.51 (1.00) 13.47 (1.00) 

Hotel1 1.96 2.17 2.35 1.26 (0.17)  0.39 (0.10) 6.14 (0.72) 

Hotel2 7.51 7.37 6.82 6.48 (0.65)  10.65 (0.97) 6.62 (0.51) 

Travel product4 1.80 2.19 3.38 7.75 (1.00)  5.66 (0.79) 0.00 (0.00) 

Other variable No No Yes Yes  Yes Yes 

RMSE 3934.523 4014.339 3794.487 3517.687  3571.288 4044.663 

 
 
 
important variables. We employ these methods to conduct 
forecasts, and the models exhibit satisfying performance. 
In addition, the difference of performance between two 
approaches is not huge, while BMA with uniform model 
priors and unit information prior on Zellner's   performs 
best. 

Lasso demonstrates strict shrinkage and selects fewer 
queries entering the models, while BMA selects queries 
based on posterior inclusive probabilities. There are 
several important queries which are both selected by 
Lasso and BMA, while some other variables chosen by 
BMA are screened out by Lasso, vice versa. 

It is still open for expanding the models featured with 
more complex components, however computational issue 
is another vital point to be studied in depth, especially with 
more queries implemented by MCMC methods. 
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