African Journal of
Business Management

  • Abbreviation: Afr. J. Bus. Manage.
  • Language: English
  • ISSN: 1993-8233
  • DOI: 10.5897/AJBM
  • Start Year: 2007
  • Published Articles: 4137

Full Length Research Paper

Tourism forecasting by search engine data with noise-processing

Li Xiaoxuan
  • Li Xiaoxuan
  • School of Economics and Management, University of Chinese academy of sciences, China.
  • Google Scholar
Wu Qi
  • Wu Qi
  • Institute of Geology and Geophysics of the Chinese Academy of Sciences, China.
  • Google Scholar
Peng Geng
  • Peng Geng
  • School of Economics and Management, University of Chinese academy of sciences, China.
  • Google Scholar
Lv Benfu
  • Lv Benfu
  • School of Economics and Management, University of Chinese academy of sciences, China.
  • Google Scholar


  •  Received: 09 October 2015
  •  Accepted: 22 January 2016
  •  Published: 28 March 2016

References

Atsalakis GS, Valavanis KP (2009). Surveying stock market forecasting techniques–Part II: Soft computing methods. Expert Syst. Applications 36(3):5932-5941.
Crossref

 

Bangwayo-Skeete PF, Skeete RW (2015). Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach. Tourism Manage. 46:454-464.
Crossref

 
 

Beldona S (2005). Cohort analysis of online travel information search behavior: 1995-2000. J. Travel Res. 44(2):135-142.
Crossref

 
 

Bin GF, Gao JJ, Li XJ, Dhillon BS (2012). Early fault diagnosis of rotating machinery based on wavelet packets-Empirical mode decomposition feature extraction and neural network. Mechanical Systems and Signal Processing, 27:696-711.
Crossref

 
 

Bollen J, Mao H, Zeng X (2011). Twitter mood predicts the stock market. J.Comput.Sci. 2(1):1-8.
Crossref

 
 

Bordino I, Battiston S, Caldarelli G, Cristelli M, Ukkonen A, Weber I (2012). Web search queries can predict stock market volumes. PloS one, 7(7), e40014.
Crossref

 
 

Buhalis D,Law R (2008). Progress in information technology and tourism management: 20 years on and 10 years after the Internet-the state of eTourism research. Tourism Manage. 29(4):609-623.
Crossref

 
 

Chen CF, Lai MC, Yeh CC (2012). Forecasting tourism demand based on empirical mode decomposition and neural network. Knowledge-Based Syst. 26:281-287.
Crossref

 
 

Chen KY (2011). Combining linear and nonlinear model in forecasting tourism demand. Expert Systems with Applications, 38(8):10368-10376.
Crossref

 
 

Chen MC, Wei Y (2011). Exploring time variants for short-term passenger flow. J. Transport. Geogr. 19(4):488-498.
Crossref

 
 

Cho V (2003). A comparison of three different approaches to tourist arrival forecasting. Tourism Manage. 24(3):323-330.
Crossref

 
 

Cho V (2003). A comparison of three different approaches to tourist arrival forecasting, Tour. Manage. 24:323-330.
Crossref

 
 

Dzielinski M (2012). Measuring economic uncertainty and its impact on the stock market. Finance Research Letters, 9(3):167-175.
Crossref

 
 

Fondeur Y, Karamé F (2013). Can Google data help predict French youth unemployment? Economic Modelling, 30:117-125.
Crossref

 
 

Gawlik E, Kabaria H, Kaur S (2011). Predicting tourism trends with Google Insights. Retrieved from. 

View

 
 

Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L (2009). Detecting influenza epidemics using search engine query data. Nature 457(7232):1012-1014.
Crossref

 
 

Gunter U, Önder, I (2015). Forecasting international city tourism demand for Paris: Accuracy of uni-and multivariate models employing monthly data. Tourism Manage. 46:123-135.
Crossref

 
 

Haykin S (1999). Neural network: a comprehensive foundation, Prentice-Hall, Englewood Cliffs, NJ, NY.

 
 

Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society A: Math. Phys. Eng. Sci. 454:903-995.

 
 

Huang SL (1998). Ecological energetics, hierarchy, and urban form: a system modelling approach to the evolution of urban zonation. Environment and Planning B, 25:391-410.
Crossref

 
 

Huang X, Zhang L, Ding Y (2013). Study on the predictive and relationship between tourist attractions and the Baidu Index: a case study of the Forbidden City. Tourism Tribune 28(11):93-100.

 
 

Ju K, Zhou D, Zhou P, Wu J (2014). Macroeconomic effects of oil price shocks in China: An empirical study based on Hilbert–Huang transform and event study. Appl. Energy 136:1053-1066.
Crossref

 
 

Liu Y, Chen Y, Wu S, Peng G, Lv, B (2015). Composite leading search index: a preprocessing method of internet search data for stock trends prediction. Annals of Operations Research, 1-18.
Crossref

 
 

McLaren N, Shanbhogue R (2011). Using internet search data as economic indicators. Bank England Q. Bull. 51(2):134-140.

 
 

Ni SH, Xie WC, Pandey MD (2013). Generation of spectrum-compatible earthquake ground motions considering intrinsic spectral variability using Hilbert–Huang transform. Structural Saf. 42:45-53.
Crossref

 
 

Palmer A, Montano JJ, Sesé A (2006). Designing an artificial neural network for forecasting tourism time series. Tourism Manage. 27(5):781-790.
Crossref

 
 

Qiu X (2013). Scenic area apologized and denied being attacked. Available online at 

View.

 
 

Rothberg MB, Pekow PS, Priya A, Zilberberg MD, Belforti R, Skiest D, Lindenauer PK (2014). Using Highly Detailed Administrative Data to Predict Pneumonia Mortality. PloS one 9(1):e87382.
Crossref

 
 

Roveri N, Carcaterra A, Platini M (2011). Health monitoring of marine vehicles structures by phase-based FBG detectors. Sustainable Maritime Transportation and Exploitation of Sea Resources, 419 p.
Crossref

 
 

Smith GP (2012). Google Internet search activity and volatility prediction in the market for foreign currency. Finance Res. Lett. 9(2):103-110.
Crossref

 
 

Song H, Li G (2008). Tourism demand modelling and forecasting-A review of recent research. Tourism Manage. 29(2):203-220.
Crossref

 
 

Song H, Gao BZ, Lin VS (2013). Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system. Int. J. Forecast. 29(2):295-310.
Crossref

 
 

Song L, Wang Q, Guan L, Wang Y (2012). Denoising of electrocardiogram signal based on Hilbert-Huang transform. In Strategic Technology (IFOST), 2012 7th International Forum on (pp. 1-5). IEEE.
Crossref

 
 

Takeda F, Wakao T (2014). Google search intensity and its relationship with returns and trading volume of Japanese stocks. Pacific-Basin Finance J. 27:1-18.
Crossref

 
 

Varian HR, Choi H (2009). Predicting the present with Google Trends. Google Research Blog 

View.

 
 

Vaughan L, Chen Y (2015) Data mining from web search queries: A comparison of google trends and baidu index [J]. J. Assoc. Inform. Sci. Technol. 66(1):13-22.
Crossref

 
 

Vosen S, Schmidt T (2011). Forecasting private consumption: survey‐based indicators vs. Google trends. J. Forecast. 30(6):565-578.
Crossref

 
 

Wu TY, Chen JC, Wang CC (2012). Characterization of gear faults in variable rotating speed using Hilbert-Huang Transform and instantaneous dimensionless frequency normalization. Mechanical Syst. Signal Process. 30:103-122.
Crossref

 
 

Yan J, Lu L (2014). Improved Hilbert–Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis. Signal Process. 98:74-87.
Crossref

 
 

Yang X, Pan B, Evans JA, Lv B (2015). Forecasting Chinese tourist volume with search engine data. Tourism Manage. 46:386-397.
Crossref

 
 

Yao X, Sun X, Yang Y, Wu D, Liang X (2014). Features Extraction and Reconstruction of Country Risk based on Empirical EMD. Proc. Comput. Sci. 31:265-272.
Crossref

 
 

Zhang L, Teng W, Chen Y (2013). Based on Information Fusion Technique with Data Mining in the Application of Finance Early-Warning. Proc. Comput. Sci. 17:695-703.
Crossref