African Journal of
Environmental Science and Technology

  • Abbreviation: Afr. J. Environ. Sci. Technol.
  • Language: English
  • ISSN: 1996-0786
  • DOI: 10.5897/AJEST
  • Start Year: 2007
  • Published Articles: 963

Full Length Research Paper

Assessment of hydrological pathway and water quality of the songor wetland, Ghana

Klubi Emmanuel
  • Klubi Emmanuel
  • Marine and Fisheries Sciences Department, School of Biological Sciences, College of Basic and Applied Sciences, P. O. Box LG 99, Legon, Ghana.
  • Google Scholar
Addo Samuel
  • Addo Samuel
  • Marine and Fisheries Sciences Department, School of Biological Sciences, College of Basic and Applied Sciences, P. O. Box LG 99, Legon, Ghana.
  • Google Scholar
Akita Lailah Gifty
  • Akita Lailah Gifty
  • Marine and Fisheries Sciences Department, School of Biological Sciences, College of Basic and Applied Sciences, P. O. Box LG 99, Legon, Ghana.
  • Google Scholar


  •  Received: 16 October 2019
  •  Accepted: 19 November 2019
  •  Published: 31 December 2019

Abstract

Wetlands regulate sediment accumulation, minimize pollution load and act as a buffer against coastal erosion. However, the overflow of seawaters into closed lagoons and wetlands could cause an excessive build-up of solutes through evaporation and could threaten the health of the aquatic life. This study examined hydrological regime, water quality and spatial distribution of flora within the Songor Wetland, Ghana using standard methods. The results indicate hyperhaline (46‰) condition at the west and limnetic [freshwater] (≤ 0.5‰) at the east with mesohaline (±18 - ± 5‰) and oligohaline (±5 - ±0.5‰) in between the east and the west. Natural and anthropogenic barriers are impeding the hydrological connectivity and are creating hyperhaline water conditions that are flowing in the eastward direction.  High levels of nitrate (3.5 mg/L) and ammonia (0.25 mg/L) suggested possibilities of toxicity of TDS (41 g/L) and sulphate (4245 mg/L) effect on the biota at the west. While levels of phosphate (1.71 mg/L) and silicate (24.3 mg/L), indicated anthropogenic contamination at the east. Principal Component Analysis (PCA) displayed salinity as the major environmental variable contributing to the spatial variation of the water quality in the wetland. The flow of hypersaline waters in the west-east direction is also confirmed by perfect second-order polynomial relationship between conductivity, salinity and sulphate levels. There exist significant (p<0.01, p<0.05) correlation among the environmental variables.

 

Key words: Wetland, salinity, sulphate, water quality, principal component analysis (PCA), Songor.