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discharged by these industries. Wepener and Vermeulen 
(1999) reported the estuary as having a low freshwater 
input in winter and floods occur during summer in the 
Richards Bay area. These floods initiate in the upper 
reaches and the freshwater may flush heavy metals into 
the estuary from the upper reaches. 

The adjacent harbour is periodically dredged and the 
dredger spoil is either discharged on the beach or a few 
kilometres offshore. In both instances, there is a 
possibility of the dredger spoil finding its way into the 
estuary (Cyrus and Wepener, 1998).  

The possibility of spoil ingression was predicted by the 
CSIR (1993) and observed by Begg (1978) who reported 
the ingression of the fine sediment from the dredger spoil 
south towards the mouth of the estuary during visual 
environmental audits. Cyrus and Wepener (1998) also 
reported the ingression of the fine sediment into the 
mouth of the estuary. A dramatic increase in the 
percentage of mud (<63 m) was observed around the 
estuary in the area south of the Mhlathuze estuary (CSIR, 
1993; Cyrus and Wepener, 1998). The mud fraction is 
known to be the component of sediment on to which most 
of the metals will adhere (Newman and Watling, 2007). 
This ingression brought about physical change and was 
reported as having impacted on certain components of 
the biota (CSIR, 1993).  

Metals occur in aquatic environments either as 
dissolved ions or as metals bound to particular matter. 
The dissolved fraction is usually the bioavailable fraction 
however it is toxic to biota in estuarine environments 
(Silva et al., 2006). The particulate fraction is adsorbed to 
organic matter, organic fluvic and humic acids (Krupadam 
et al., 2006). A high amount of heavy metals may be 
locked onto sediments. These are metals that have been 
scavenged from the water column on to the particulate 
matter and later onto proximal sediments (Sarkar et al., 
2004). In shallow estuaries such as the Mhlathuze 
Estuary, metals have a potential to be resuspended and 
thus become bio-available (Wepener and Vermeulen, 
2005). They may also be available to benthic and bottom 
feeding organisms during feeding (Shirneshan et al., 
2012). As the normal estuarine function rely on the 
mixing of both sea water and freshwater from the river, 
the type of metal species present in the particular system 
is determined by the chemistry of that freshwater/sea 
interface. 

There is very little information available concerning the 
environmental and physicochemical processes that 
regulate the existence of metals in South African 
estuarine systems. Generally, in estuarine and marine 
environment, the behavior of heavy metals is governed 
by a number of physicochemical and environmental 
factors such as salinity, valence state and association 
with organic radicals, dissolved oxygen and pH (Cox and 
Micaela, 2005). These processes can remove metals 
dissolved in water by adsorption of metals onto 
particulate matter or cause resuspension of metals from 
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sediment (Sarkar et al., 2004). Any physicochemical 
change that reduces the hydrophylic complexation of 
dissolved trace metals enhances the bioavailability of that 
metal by increasing the concentration of the free metal 
ions (Krupadam et al., 2006); thereby causing the 
bioavailable metal becomes toxic to biota. Since physical 
and chemical factors such as pH and salinity are dynamic 
in estuaries, metals behave differently across estuarine 
environments. Mhlathuze estuary is a marine dominated 
estuary with salinity normally ranging from 20-35 ppt.  

In view of possible harbour expansion and the 
introduction of a metal mining plant in the catchment, the 
objectives of this study were to determine baseline 
information on the bioaccumulation of metals in water 
and sediment of the Mhlathuze Estuary.  
 
 
MATERIALS AND METHODS 
 
Quarterly water and sediment samples were collected in the 
Mhlathuze Estuary from April 1996 to December 1997. Samples 
were collected from the sampling sites (Figure 1). 
 
 
Water samples 
 
The surface water variables were determined in situ at each site 
using a Surveyor 3 Hydrolab connected to an H2O water quality 
multiprobe: pH, water temperature, dissolved oxygen and 
percentage oxygen saturation, turbidity, and salinity. Water samples 
collected at each site were analysed by the analytical laboratory of 
Mhlathuze Water Scientific Services for orthophosphates, sulphates 
and fluorides. Two surface water samples were collected at each 
site, one was filtered through a 0.45 m cellulose acetate filter and 
the other unfiltered.  

The unfiltered sample represents total metal concentrations 
whereas the filtered sample represents dissolved metal concen-
trations. The samples were frozen until analysed for metal 
concentration in the laboratory. The samples were thawed and pre-
concentration was carried out by acidifying 250 ml water with 10 ml 
of 55% nitric acid and 5 ml perchloric acid in Erlenmeyer flasks and 
evaporating to 5 ml on a hotplate (Standard Methods, 1998). 
Samples were made up to 50 ml with double distilled water.  
 
 
Metal analyses  
 
Aluminium, Cr, Cu, Fe, Mn and Zn in water and sediment were 
measured by flame furnace atomic absorption spectrophotometry 
using a Varian SpectrAA 50B spectrophotometer fitted with a 
deuterium arc background corrector. Calibration was carried out 
using matrix matched calibration standards. Analytical accuracy 
was determined using Standard Reference Material (SRM) of the 
National Bureau of Standards: standard for trace elements in water 
(SEM 1643c) and Buffalo River sediment (SRM 2704). Recoveries 
were within 10% of the certified values. 
 
 
Statistical analyses 
 
Statistical analyses of the data were performed using Tukey 
ANOVA multiple comparison test to measure ad hoc significant 
differences. Significance was regarded at the P-<0.05 significance 
level. Baseline normalization was performed using Fe as a 
normalizing metal [metal (µg/g)/Fe (µg/g)]. The principal component 
analysis (PCA) was used to determine the relationships between
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Table 1. Quarterly physico-chemical values recorded at five sites in the Mhlathuze Estuary for the sampling period from April 
1996 to December 1997. Historical data in the original estuary before the construction of the harbour are represented by A after 
the construction of the harbour are presented by B. 
 

Season  Site 
Temp 

(C) 
Turbidity(NTU) 

O2 
(mg/l) 

O2 
(%) 

Salinity (‰) pH 
PO4 

(mg/l) 
NO3 

(mg/l) 
SO4 

(mg/l) 

Historical data A1  21.00 6.00 7.58 101.00 28.00 8.10 0.02 0.00 NA 
Historical data B2  NA NA NA NA 32.8 NA 0.017 0.067 NA 
Autumn 1996 1 21.00 3.7 7.07 98.5 36.5 7.87 0.23 ND 2583 
Autumn 1996 2 20.09 4.6 6.91 96.9 36.5 7.92 0.09 ND 2667 
Autumn 1996 3 22.95 DL 6.84 94.3 36.7 7.79 0.24 ND 2639 
Autumn 1996 4 19.91 31.7 6.34 88.2 29.2 7.72 0.16 ND 2222 
Autumn 1996 5 19.86 BDL 8.00 89.4 0.8 7.91 0.25 0.80 107 
Winter 1997 1 19.09 5.0 8.53 119.5 34.0 4.19 BDL ND 2600 
Winter 1997 2 20.15 19.6 7.42 98.8 30.4 5.40 BDL ND 3100 
Winter 1997 3 17.36 4.4 7.82 108.2 34.5 8.78 BDL ND 3000 
Winter 1997 4 16.31 6.0 7.41 96.8 30.5 7.56 BDL ND 2600 
Winter 1997 5 21.45 6.5 8.31 88.6 8.1 7.49 BDL ND 410 
Spring 1996 1 21.03 6.0 7.63 108.2 34.4 7.82 0.18 ND 3860 
Spring 1996 2 20.96 26.0 7.66 109.5 34.4 7.86 0.12 ND 3700 
Spring 1996 3 21.88 24.0 7.74 110.3 34.4 7.88 BDL ND 3140 
Spring 1996 4 24.12 5.0 7.48 107.2 34.2 7.78 BDL ND 3860 
Spring 1996 5 25.47 14.0 8.01 108.1 22.2 7.67 BDL ND 2420 
Summer 1996 1 23.62 8.0 7.74 115.3 34.6 8.58 0.10 ND 3300 
Summer 1996 2 24.00 5.0 7.88 115.2 34.9 8.44 0.17 ND 2700 
Summer 1996 3 25.84 4.0 8.23 12.2 34.9 8.49 0.17 ND 3150 
Summer 1996 4 30.41 15.0 7.57 114.8 34.0 8.52 0.20 ND 2850 
Summer 1996 5 24.58 28.0 7.94 114.7 14.2 8.44 ND ND ND 
Autumn 1997 1 22.10 16.0 6.94 101.4 32.3 8.45 BDL ND 4000 
Autumn 1997 2 24.05 12.0 6.80 90.9 32.9 8.40 0.21 ND 3500 
Autumn 1997 3 23.80 18.0 7.46 108.1 32.5 8.52 0.09 ND 2900 
Autumn 1997 4 23.20 14.0 6.42 88.2 24.2 8.32 0.19 ND 2200 
Autumn 1997 5 19.51 26.0 7.50 86.6 0.3 8.25 0.45 0.50 32 
Winter 1997 1 19.18 15.0 5.84 105.6 34.2 8.40 0.21 0.07 2881 
Winter 1997 2 19.16 22.0 8.01 105.7 35.1 8.40 0.21 0.07 2959 
Winter 1997 3 19.04 20.0 8.12 105.1 35.1 8.40 0.20 0.06 3026 
Winter 1997 4 14.76 24.0 8.22 94.8 6.5 7.74 0.18 0.06 189 
Winter 1997 5 20.22 46.0 9.11 91.2 0.4 7.27 0.11 0.49 24 
Spring 1997 1 21.15 14.0 7.62 103.8 35.0 8.82 0.17 BDL 2928 
Spring 1997 2 20.03 28.0 7.45 98.4 36.5 8.64 0.13 0.14 1806 
Spring 1997 3 18.71 17.5 20.30 102.0 35.3 8.80 0.22 0.12 3137 
Spring 1997 4 21.72 10.0 7.03 89.8 29.4 8.36 0.13 0.11 2285 
Spring 1997 5 21.42 29.0 21.42 78.4 0.3 8.68 0.06 0.21 32 
Summer 1997 1 22.67 20.0 7.16 84.2 4.1 7.70 0.08 0.28 370 
Summer 1997 2 22.66 25.0 6.58 76.1 0.2 7.43 0.06 0.46 185 
Summer 1997 3 21.76 17.0 7.37 86.5 5.5 7.66 0.10 0.36 477 
Summer 1997 4 22.48 45.5 7.36 85.4 0.7 7.78 BDL 0.35 46 
Summer 1997 5 22.16 10.00 5.10 59.70 0.20 7.19 0.07 0.28 12 

 

BDL = Below detection limit.  ND = No data. 1Hemens et al..(1971) and 2Hemens et al. (1976). 
 
 

mouth of the estuary and embayment (Cyrus and 
Wepener, 1998). This ingression was attributed to 

dredging activities in Richards Bay Harbour. Salinity 
remained  constant  throughout  the  system  during  the  
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study with the exception of summer 1997 where the 
salinity at all sites was below 6‰. The reduced salinity 
during summer 1997 was a result of the flood that 
occurred during the sampling trip.  

Salinity measured at site 5 was consistently lower than 
other sites during a particular survey. Dissolved oxygen 
was also constant throughout the estuary. Site 3 which 
was the site located at the mouth of the estuary had 
consistently elevated dissolved oxygen concentrations.  

This was also the case for sulphate and fluoride. 
Concentrations at site 5 were consistently different from 
those measured at any of the other sampling sites during 
the particular survey.  

During summer 1997, sulphate concentrations were 
lower as compared to those measured in other seasons. 
Nutrients (nitrates and orthophosphates) showed little 
variations during the study (Table 1).  

During the construction of the harbour, nutrients level 
increased due to redistribution of anaerobic silt dredge 
from several meters below the surface.  

Hemens et al. (1976) speculated that this was due to 
the bottom consisting of redeposited silt that had been 
depleted of its soluble nitrogen, or that the release of 
nitrogen from dead and decaying plankton had 
decreased, together with plankton densities, due to the 
opening of the new mouth.  

The present study showed substantially higher nutrient 
levels than during the 1970s. It is unlikely that runoff from 
the catchment could contribute to the high nitrate 
concentrations measured at Sites 5 and 4, since low 
nutrient levels were recorded in the lower reaches of the 
river and at Site 1 (Table 1).  

According to Wepener and Vermeulen (1999), the 
source of the nutrients is possibly related to fixation of 
nitrogen by blue-green algae in the muds of the vast 
mangrove areas.  

Another potential source of nutrients they mentioned 
was sewage runoff from the surrounding rural settlements 
was indicated by high faecal coliform counts the authors 
obtained (Wepener and Vermeulen, 1999).Seasonal and 
spatial organic content (mean ± standard error) of 
sediment samples from the Mhlathuze Estuary are 
presented in Table 2.  

Mean organic content were highest during summer 
1996 and lowest during autumn 1996. The highest mean 
organic content was recorded at Site 4 with the lowest 
levels measured at site 3. 
 
 
Metals in water 
 
Temporal and spatial variations of metals in water 
 
Metals in the water column generally did not show any 
significant differences between seasons with the 
exception of December 1997 where concentrations were 
significantly different from the rest of the seasons. During  

 
 
 
 
Spring 1997, Cu and Pb concentrations were also 
significantly higher. 

The increase in metals during summer 1997 was 
probably related to resorption of metals bound to 
suspended particles during river flood conditions that 
prevailed during the sampling trip. A general trend of a 
reduction in metals was observed during autumn 1997. 
This reduction was attributed to dilution of waterborne 
metals by freshwater due to floods. According to 
Krupadam (2006) wide variations in water-borne metal 
concentration within estuaries are normally related to the 
degree of fresh water contribution or the presence of 
industrial effluents.  

Total metal concentrations in water samples showed 
little spatial variation (Table 2). Only Pb concentrations 
significantly differed between Site 3 at the mouth and Site 
5 which is located up the Mhlathuze River. This is 
probably related to the short residence time of water in 
the estuary.  

About 90% of water from the estuary is being drained 
during each tidal cycle (Begg, 1978). The residence time 
of water may be too short to allow for major spatial 
variations of metals in water. The highest Pb concen-
trations in water recorded at Site 3 suggests the mouth 
as the source of lead pollution into the estuary. Lead may 
have been discharged with the fine sediments during 
dredger spoil on the breach, which were transported into 
the estuary through the mouth.  

The elevated concentrations of Fe, Al, Zn and Cr 
recorded in the water from the Mhlathuze Estuary are in 
agreement with the results reported by Vermeulen and 
Wepener (1999, 2005) for metals in water from the 
adjacent Richards Bay Harbour (Table 4). When 
compared with historical concentrations reported from the 
original Richards Bay Estuary, only Zn concentrations 
were higher during the present study. Hemens et al. 
(1976) commented on the high Zn concentrations 
recorded at that time as “reason for concern”. Their study 
was, however, conducted before the completion of the 
harbour.  

The high metal concentrations measured in this study 
could therefore be related to subsequent activities in the 
catchment and adjacent harbour area. Wave borne 
metals could also enter the estuary from the harbour via 
tidal gates. These tidal gates that are no longer in use 
were built to serve as a connection between the water in 
the harbour and the estuary. During high tide water can 
be observed overtopping over the tidal gates (personal 
observation) and it is therefore highly likely that metals 
originating in the harbour will find its way into the estuary. 
The concen-trations of metals from this study were 
slightly elevated when compared with metal 
concentrations in the water of other estuaries on the east 
coast of South Africa (Table4). It must be borne in mind 
that surveys by Hemens et al. (1970, 1976) were 
undertaken between 20 and 30 years ago and that these 
concentrations may have increased in the intervening



Mzimela et al.         675 
 
 
 

Table 2. Comparisons of dissolved metal concentrations in water (A) and metals in sediment (B) in the Mhlathuze Estuary with 
corresponding metal concentrations in other estuaries on the eastern seaboard of South Africa and in other countries. 
 

Estuary 
Al 

(g/l) 
Cr 

(g/l) 
Cu Fe 
(g/l) 

Fe 
(g/l) 

Mn (g/l) 
Pb 

(g/l) 

Zn 

(g/l) 
Reference 

Water 
Mhlathuze 990.0 48.0 39.1 907.0 48.2 130.15 66.5 This study 
Kynsna - 0.1 0.2 81 5 0.6 0.3 a 
Gamtoos - - 0.6 372 41 0.6 1.1 c 
Swartkops - - 3.9 275 41 1.5 3.6 d 
Sundays - 1.3 3.2 334 18 0.7 2.4 e 
Bushmans - 0.4 1.8 302 10.2 0.2 0.5 f 
Kosi Bay - - 1.1 - - 1.0 5.7 i 
St Lucia E - - 3.3 68.8 - 39.2 2.3 j 
St Lucia E - - 17 2000 - - 11.7 i 
Richards Bay - - 1.7 - - 1.9 - k 
Richards Bay - - 4.0 - - 4.2 3.8 i 
Richards Bay 504.4 23.6 50.8 782.4 80.7 - 85.4 l 
Durban - - 27 800 - 117 287 i 
East London   42.4 183.0 16.3 23.9 27.6 Fatoki 
Port Elizabeth   11.3 21.9 4.2 16.8 16.2 Fatoki 
Sunderban    175.0  0.20 9.7 GandK 
 

Sediment 
Mhlathuze 18677.4 64.4 12.2 20606.9 13.5 45.6 45.6 This study 
Kynsna - 21 5 - 14 17 17 a 
Gamtoos - 15 5 9180 7 16 16 c 
Swartkops - 5 18 20800 31 55 55 d 
Sundays - 38 16 72 18 57 57 e 
Bushmans - 22 3 7330 5 13 13 f 
Kosi Bay - 150 61 60000 19 72 72 i 
St Lucia E - 7 2 3000 0.8 3.4 3.4 i 
St Lucia E -  9.9 23640 24 98 98 k 
Richards Bay - 74.8 24.04 5814 17.47 87.16 87.16 j 
Richards Bay - 110.3 19.22 31762.7 - 95.54 95.54 l 
Richards Bay 31323.4 388 57 40000 117 287 287 i 
Durban -  183.0 18114.0 549.0 332.0 332.0 m 
East London   82.3 15182.0 499.0 126 126 m 
Port Elizabeth    10068 25.15 3448.4 3448.4 n 
Sunderban    16600 29 54 54 o 
Victoria  16.0 9.0      

 

References: a, Watling and Watling, 1982a; c. Watling and Watling, 1982c; d, Watling and Watling, 1982d; e, Watling et al., 1982; f, Watling 
and Watling, 1983b; g, Watling et al.., 1985, 1985; I, Cloete et al.., 1979; j, Oliff et al.., 1986; k, Connell et al.., 1975 I; Vermeulen and 
Wepener, 1999; m., Fatoki and Mathabatha 2001; n. Guhathakurta and Kariva 2000 , Tanner et al., 2000. 

 
 
 
period.  

Metals such as Zn and Cr are important constituents of 
industrial mining and domestic effluents (Khan et al., 
2005). High concentrations of these metals may be a 
direct consequence of anthropogenic contamination from 
these activities. It is not possible to comment on the high 
Al levels since there is no historical data (Hemens et al., 
1976) to compare with it. However, it is highly likely that 
the current levels are due to a combination of 

anthropogenic sources (the nearby aluminium smelter 
complexes, dredging of sediments in Richards Bay 
Harbour and natural leaching and weathering processes 
in the catchment). 
 
 
Metals in sediment 
 
Metals concentrations in the sediment were in elevated 
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orders of magnitude above the concentrations recorded 
in water. According to Soumady and Asokan (2011), 
sediments represent the most concentrated pool of 
metals in aquatic environments, metals that can be 
assimilated by aquatic organisms resident in those 
sediments. Since those organisms form a primary food 
source for bottom feeding fish, the accumulation of 
metals by such fish potentially depends on uptake from 
food as well as from water (Shulkin et al., 2003; Silva et 
al., 2006). Various bioaccumulation studies also found 
concentrations of metals in the estuarine environments 
which were in orders of magnitude higher in sediments 
than in water (Allen, 1993; Lim et al., 2012). 

No significant temporal differences were recorded for 
metals in the sediment. This may be due to most metals 
being present in sediment as precipitates or in an un-
dissolved state.  

In estuarine systems, these metals are not bio-
available except to organisms that are resident in 
sediment (Williams et al., 1998). Metals would be taken 
up and absorbed through the skin, or be ingested with 
food particles in benthic feeders. 

Highest metal concentrations in the sediment were 
recorded for Fe, Al and Zn (Table 4). These metals also 
displayed the highest accumulation in the particulate 
matter in the water column. Watling and Watling (1982a-
d) also reported high concentrations of Fe and Zn from 
sediments in Gamtoos, Swartkops, and Sunday River 
estuaries (Table 4), although concentrations in these 
estuaries were lower than those in this study. 

There were significant spatial variations in metals 
concentrations (Table 3). With the exception of Al and 
Pb, most metals differed significantly between Sites 3 
and 4. Metals concentrations were highest at Site 4, and 
with the exception of Cu, all metals had lowest 
concentrations at Site 3. The reasons could be attributed 
to the differences in substrate types and the amount of 
organic material.  

Site 4 is in the middle of the embayment and contains 
mainly fine sediment. It is also the site with the highest 
organic content when compared with the rest of the sites. 
Site 3 is at the mouth of the estuary and is dominated by 
coarse sand. It is also the lowest in terms of organic 
content (Table 3).  

The metals in the Mhlathuze Estuary probably exist as 
particulate matter or precipitated metals. Their presence 
in sediment may be predominantly due to a result of 
anthropogenic activities and ingression with fine dredged 
spoil from the harbour (Van den Hurk et al., 1997).  

The metals are then precipitated onto and into the 
sediments. According to Sarkar et al., 2004 and Magesh 
et al. (2011), high loads of heavy metals are normally 
concentrated in the fine sediments. It is likely that most of 
the particulate bound  metals entered the estuary during 
the ingression of into the Mhlathuze Estuary which took 
place when dredger spoil was deposited on the beach 
north of the estuary (Wepener and Cyrus, 1997; Mackay  

 
 
 
 

and Cyrus, 1999). Wave action and the near-shore 
current would have resulted in contaminated fine silt 
drifting into the estuary. The very high levels of Al in 
sediment may either be from geological leaching, as the 
area is known for its high Al metal content (Kwazulu Natal 
Business, 2013), or from pollution effects such as 
dredger spoil (Wepener and Cyrus, 1997).  

Concentrations of Cu and Pb in sediment were low, 
ranging from 20-50 g/g. These metals exist mostly as 
dissolved ions in the water column hence their low 
concentrations in sediment.  

Copper is also known to form complexes with organic 
matter (Sarkar et al., 2004). The highest Cu 
concentrations in the sediment (at site 4) could be 
attributed to the complexation of Cu with organic ligands 
since the highest organic content was also recorded at 
this site (Table 4). The presence of high organic content 
in estuaries can decrease toxicity of metals such as 
copper by binding copper to organic ligands (DePalmer et 
al., 2011). 

Chromium concentrations were elevated in sediments 
of the Mhlathuze Estuary (Table 4). High concentrations 
of Cr may be a result of contamination from the harbour 
due to sediment bound metals entering the estuary as 
discussed in the previous paragraphs. The results 
suggest equal amounts of Cr being exchanged between 
dissolved fractions in pore water and particulate fractions 
in sediment. This is because the percentage of 
particulate and dissolved Cr reported in this study were 
almost equal and also both the fractions were 
significantly different between seasons. Studies in 
estuarine areas show that dissolved and particulate Cr 
are present in almost equal quantities with the 
flocculation processes increasing Cr3+ concentrations in 
the salinity that are below normal sea water (Zwolsman 
and van Eck, 1999). 

Results of this study show that metals vary spatially 
and temporally in water at the Mhlathuze estuary. 
Although there are minor variations of metals in sediment 
these results, the concentrations are higher than those 
recorded in other estuaries along in the eastern seaboard 
(Table 2). Seasonal variation in the Mhlathuze Estuary 
may be as a result of the metal loads that may be 
delivered by the river or sea. Spatial differences may be 
as a result of behaviour of metals in response to 
gradients in the chemistry of the water body and the 
nature of the sediment. 

The important factor that results in variation of metals 
between sites closer to the mouth in the Mhlathuze 
Estuary is the residence time of water in the estuary. The 
tidal cycle in the estuary affects the sites next to the 
mouth (Site 1, 2 and 3). Water from these sites is almost 
completely replaced during a tidal cycle. The quality of 
water brought in during each tidal cycle would be similar 
resulting in more or less similar values for sites next to 
the mouth (sites 1, 2 and 3). Salinity values form these 
sites are also similar and was close to sea water. Sites 4  
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Table 3. Spatial heavy metal concentrations (means  standard error) in water (total dissolved and particulate) (µgL-1) and 
sediment (µg.g-1) in the Mhlathuze Estuary. All references to significant differences are made in the text and are not indicated in 
the table. 
 

Parameter  Turbidity Salinity Organic Dissolved 02 pH Total Suspended Dissolved 

Aluminium         
Turbidity 
Salinity 
Organic  
Dissolved O2 
pH 
Total 
Suspended 
Dissolved 

1 
-0.64* 
0.02 
0.06 
-0.18 
0.23 

-0.28* 
0.05 

 
1 

-0.27 
0.11 
0.45* 
-0.24* 
0.36* 
0.03 

 
 
1 

0.10 
-0.04 
-0.19 
-0.21* 
-0.32* 

 
 
 

1 
0.22* 
-0.11 
-0.37* 
0.13 

 
 
 
 
1 

-0.58* 
-0.15 
-0.22* 

 
 
 
 
 

1 
0.117 
0.44* 

 
 
 
 
 
 

1 
0.35* 

 
 
 
 
 
 
 

1.00 
         
Chromium         
Turbidity 
Salinity 
Organic  
Dissolved O2 
pH 
Total 
Suspended 
Dissolved 

1.00 
-0.70* 
-0.02 
0.01 

-0.19* 
-0.02 
0.24* 
0.25 

 
1.00 
-0.16 
0.10 
0.40* 
0.08 

-0.29* 
-0.05 

 
 

1.00 
-0.04 
-0.01 
-0.28* 
0.01 

-0.29* 

 
 
 

1.00 
0.11 
-0.17 
-0.34 
-0.02 

 
 
 
 

1.00 
0.19 
0.33* 
-0.23* 

 
 
 
 
 

1.00 
0.66* 
0.51* 

 
 
 
 
 
 

1.00 
0.26* 

 
 
 
 
 
 
 

1.00 
         
Copper         
Turbidity 
Salinity 
Organic  
Dissolved O2 
pH 
Total 
Suspended 
Dissolved 

1.00 
-0.53* 
-0.10 
-0.07 
-0.10 
-0.20* 
-0.07 
0.07 

 
1.00 

-0.26* 
0.12 
0.34* 
0.44* 
0.12 
0.30* 

 
 

1.00 
-0.05 
-0.06 
0.17 

-0.46* 
-0.06 

 
 
 

1.00 
0.28* 
0.14 
-0.16 
-0.09 

 
 
 
 

1.00 
0.55* 
-0.27* 
-0.11 

 
 
 
 
 

100 
-0.12 
0.29* 

 
 
 
 
 
 

1.00 
0.11 

 
 
 
 
 
 
 

1.00 
         
Manganese         
Turbidity 
Salinity 
Organic  
Dissolved O2 
pH 
Total 
Suspended 
Dissolved 

1.00 
-0.61* 
-0.06 
0.01 

-0.19* 
0.11 
0.48* 
0.11 

 
1.00 

-0.26* 
0.17 
0.46* 
0.03 

-0.51* 
0.03 

 
 

1.00 
-0.10 
-0.09 
-0.41* 
0.17 

-0.23* 

 
 
 

1.00 
0.19 
-0.06 
-0.36* 
-0.09 

 
 
 
 

1.00 
0.01 
-0.10 
-00.03 

 
 
 
 
 

1.00 
0.13 
.52* 

 
 
 
 
 
 

1.00 
-0.13 

 
 
 
 
 
 
 

1.00 
         
Iron         
Turbidity 
Salinity 
Organic  
Dissolved O2 
pH 
Total 
Suspended 
Dissolved 

1.00 
-0.52* 
-0.22* 
-0.04 
-0.11 
0.11 
0.62* 
-0.07 

 
1.00 
-0.22 
0.22* 
0.43* 
0-.09 
0-.42 
0.20* 

 
 

1.00 
-0.20* 
-0.04 
-0.30* 
-0.23* 
-0.52* 

 
 
 

1.00 
0.27* 
0.08 
-0.13 
-0.12 

 
 
 
 

1.00 
-0.50* 
-0.43* 
0.08 

 
 
 
 
 

1.00 
0.508* 
0.36* 

 
 
 
 
 
 

1.00 
0.05 

 
 
 
 
 
 
 

1.00 
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Table 3. Contd. 
 

Parameter  Turbidity Salinity Organic Dissolved 02 pH Total Suspended Dissolved 

Lead         
Turbidity 
Salinity 
Organic  
Dissolved O2 
pH 
Total 
Suspended 
Dissolved 

1.00 
-0.60* 
-0.05 
0.06 

-0.18* 
-0.20* 
-0.11 
-0.16 

 
1.00 

0-.27* 
0.18* 
0.44* 
0.44* 
0.14 
0.35* 

 
 

1.00 
-0.13 
-0.02 
0.05 
0.07 

-0.18* 

 
 
 

1.00 
0.16 
0.13 

-0.28* 
0.19 

 
 
 
 

1.00 
0.58* 
0.27* 
-0.06 

 
 
 
 
 

1.00 
-0.00 
0.41* 

 
 
 
 
 
 

1.00 
-0.63* 

 
 
 
 
 
 
 

1.00 
         
Zinc         
Turbidity 
Salinity 
Organic  
Dissolved O2 
pH 
Total 
Suspended 
Dissolved 

1.00 
-0.62* 
0.03 
0.06 

-0.20* 
0.01 
0.20* 
0.12 

 
1.00 

-0.29* 
0.13 
0.43* 
0.10 

-0.34* 
0.01 

 
 

1.00 
-0.12 
-0.02 
-0.22* 
0.08 
0.04 

 
 
 

1.00 
0.24* 
0.32* 
-0.39* 
-0.23* 

 
 
 
 

1.00 
-0.11 
-0.04 
0.12 

 
 
 
 
 

1.00 
0.21* 
0.16 

 
 
 
 
 
 

1.00 
0.15 

 
 
 
 
 
 
 

1.00 
 
 
 
and 5 however were different. Site 4 is in the basin and 
site 5 up the river. There is limited tidal influence on these 
sites and consequently they have different levels of 
metals in comparison to the former sites. The low levels 
of metals consistently reported in water and sediment up 
river at site 5, when compared with the other sites lead to 
the conclusion that the ingression of sediment from the 
harbour as the source of most of the high metal 
concentrations found in sediments of the Mhlathuze 
Estuary. Harbour sediments have been reported by 
various authors as highly polluted environments, and a 
possible source of metal contamination in surrounding 
water bodies e.g. Victoria Harbour, (Tanner et al., 2000) 
East London and Port Elizabeth (Fatoki and Mathabatha, 
2001), Tolo Harbour (Owen and Sandhu, 2000), Richards 
Bay Harbour (Vermeulen and Wepener, 2005) and 
Klaipeda Harbour (Galkus et al., 2012). 

Temporal variations of metals in sediment could not be 
observed in the Mhlathuze Estuary. This is because of 
the relative stability of metals in sediments as well as 
variation of metals concentrations at different sites. 
Metals varied spatial because of the different substrates 
found in the Mhlathuze Estuary and their variability in 
accumulation of metals. According to Cox and Micaela 
(2005), heavy metal distribution in estuarine and marine 
deposits is influenced by sediment texture, clay content, 
organic carbon, iron hydrous oxides and carbonates. 
These components differ in the manner in which they 
adsorb metals (Newman and Watling, 2007). The clay-
rich sediment and organic carbon rich sediment tend to 
contain higher metal content as compared to sand 

dominated regions. Mud has a very fine texture and it 
usually accumulates most of the metals. According to 
Herut and Sandler (2006), clay minerals readily absorb 
heavy metal and consequently clay-rich sediments tend 
to contain higher contamination levels than sand-
dominated deposits. Fine sediments contribute by having 
large specific areas with many attachment sites for 
metals. Organic coating also occurs easily in fine 
sediments (Mortimer and Rae, 2000). Types of substrate 
sediments in the Mhlathuze Estuary are described in 
Cyrus and Wepener (1998). Sites 1, 2 and 4 have high 
mud and organic content (Table 3). They also had high 
metals concentration when compared with sandy sites 
such as sites 3 and 5, which had low concentrations of 
heavy metals in the sediment (Table 4). 

One method used to determine the level of conta-
mination of metals in sediment is the simple ratio 
between the concentration of a metal and the concen-
tration of the normaliser. The conditions that are consi-
dered in selecting a normalizer is that the metal should 
be abundant, naturally occurring and should not be 
influenced by anthropogenic sources. Because of these 
conditions, metals that are considered as suitable for the 
normalization of metals in sediment are Al and Fe 
(Newman and Watling, 2007). For this study, Fe was 
considered more suitable due to the presence of 
aluminium smelters located around the harbour area with 
a possibility of estuarine sediment contamination from 
thesmelters’ effluents. An attempt to normalize the 
sediment metals using Al showed results with very low 
R2  values, a high number of data points that behaved as 
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Table 4. Mean seasonal heavy metal concentrations in water (total, dissolved and particulate) (µg.g-1) in the Mhlathuze 
Estuary. All references to significant differences are made in the text and are not indicated in the table. 
 

Sample Site 1 Site 2 Site 3 Site 4 Site 5 

Organic content 5.121.18 4.551.05 2.510.76 11.171.73 4.53±1.73 
      

Aluminium 

Total 1995.8 1554.2 427053159.8 2060.0  1554.3 5814.2 4973.1 2630.02029.6 

Dissolved 632.8 281.9 721.0403.6 990.3  580.4 1546.51090.4 939.3522.0 

Particulate 513.5 347.9 564.3356.6 537.3  234.2 837.0408.0 332.8143.5 

Sediment 22044.9 7119.2 21202.1 6081.8 10303.3  3514.6 29118.47631.0 17230.94012.4 
  

Chromium 

Total 37.513.0 61.826.7 32.813.8 47.027.3 26.316.2 

Dissolved 46.010.7 65.310.8 46.312.1 48.817.7 33.515.1 

Particulate 44.814.3 51.015.2 50.516.8 53.820.6 40.016.5 

Sediment 84.115.1 42.412.2 41.78.9 107.916.5 55.610.8 
      

Copper 

Total 53.110.2 51.37.2 48.36.6 38.39.0 21.86.0 

Dissolved 42.013.4 52.316.2 50.815.9 38.315.9 14.54.4 

Particulate 2.31.2 19.011.2 9.311.2 9.35.9 5.23.0 

Sediment 12.11.8 8.42.5 8.82.3 22.72.0 11.72.7 
      

Iron 

Total 1732.51054.9 3900.82817.1 1872.51241.4 4119.53286.1 2585.02077.8 

Dissolved 655.0218.8 787.1292.4 961.8584.7 1317.5864.6 730.0406.7 

Particulate 1542.5869.0 5598.34224.3 2067.5954.3 1142.5315.4 1797.5857.7 

Sediment 23132.32303.6 18715.94456.7 12585.833473 31280.73428.7 21048.55641.2 
      

Manganese 

Total 77.811.7 110.524.7 69.812.0 109.046.9 82.820.2 

Dissolved 42.88.2 88.039.6 45.89.1 40.06.4 61.320.2 

Particulate 36.88.5 60.813.0 43.814.9 121.758.74 70.518.8 

Sediment 274.244.2 308.289.4 165.338.7 731.5141.2 335.566.6 
      

Lead 

Total 168.822.9 233.537.8 240.041.5 193.055.0 78.819.7 

Dissolved 167.572.2 129.535.8 186.062.8 130.365.8 37.512.5 

Particulate 59.027.76 57.823.47 67.035.6 62.525.97 39.519.5 

Sediment 18.03.8 14.13.5 9.12.1 18.74.2 12.32.8 
      

Zinc 

Total 66.83.8 76.26.4 63.04.3 119.559.1 43.85.2 

Dissolved 68.88.3 83.513.1 74.56.5 64.518.7 59.87.3 

Particulate 41.810.4 69.014.3 47.012.5 114.259.8 47.09.9 

Sediment 54.74.6 35.09.0 33.17.1 74.14.7 37.77.0 
 
 
 
outliers and metals Cr, and Zn were not significantly 
different  (P<0.05). Normalization plots of metals using Fe 
are presented in Figure 2. The ratios of metals to Fe were 
calculated and linear regressions were represented for 
metals Al, Cr, Mn, Pb and Zn. The R2 values recorded 
are displayed in the graph. The regression recorded was 
significantly different for all metals. The outliers observed 
in the regression graphs for metals Al, Cr and Cu 

indicated increased concentrations of metals due to 
anthropogenic influence. Regression of Al and Fe was 
the lowest as compared to other metals suggesting an 
increase of Al from background concentrations. In the 
comparison of metals and physicochemical parameters 
using principal component analysis, the two axes 
retained 60.8% of the variances from the sample data. 
The multivariate PCA analysis, based on metals in water,



680          Afr. J. Environ. Sci. Technol. 
 
 
 

 
 
Figure 2. Normalised linear regression plots of Al, Cr, Mn, Pb and Zn concentrations (µg/g) to Fe (µg/g).  

 
 
 
sediment and physicochemical data is plotted in Figure 3. 
The data for metals from the different phases and the 
physicochemical parameters influencing them formed 
three distinct groups. A fourth group consisted of 
nutrients and water quality parameters.  

The first group consisted of sediment metals and the 
organic content. The correlation of metals in sediment 
suggested the increase of metals in sediment with an 

increase in the sediment organic content. Sediment 
metals in the estuary increased and were found in high 
concentration in the areas such as the basin at Site 4 that 
had high organic matter. The mouth area, however, had 
less organic content and low concentrations of metals. 

The particulate concentrations of Al, Pb Cu and Zn 
formed the second group that increased with an increase 
in dissolved oxygen, pH and temperature. These
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Figure 3. Principal component analysis biplots of particulate (P), dissolved (D) and sediment (S) concentrations 
(60.8% of variance explained) 

 
 
 
conditions were found in the shallow waters towards the 
mouth of the estuary. This suggests that precipitation is 
the important process for the increased of these metals in 
the particulate phase. In the third group, the dissolved 
concentrations of Al, Cr and Fe and the particulate 
concentrations of Cr, Mn and Fe were correlated with 
turbidity, suggesting increasing concentrations of these 
metals in the basin where turbidity was high due to re-
suspension as a result of the shallow nature of the 
estuary and the very fine bottom sediment. Dissolved Zn 
and Mn concentrations were both influenced by different 
factors to the other dissolved metal concentrations. This 
was also observed in the behaviour of dissolved Mn and 
Zn in other estuaries on the KZN eastern seaboard 
(unpublished data) where dissolved concentrations of 
both Mn and Zn increased in areas of high salinity and 
high turbidity. The correlations of dissolved Cu and Pb 
concentrations were probably related to the very low 
dissolved concentrations of these metals recorded in the 
Mhlathuze Estuary. The increase in salinity and percen-
tage oxygen at the mouth of the estuary coincided with 
increases in sulphates and fluoride concentrations as 
identified by the water quality group. This suggests the 

sea as the source of the fluorides and sulphates in the 
estuary as these chemicals are observed in very low 
concentrations in the upstream sites.  

Heavy metals discharged directly from industrial 
effluents, as well as those diffusing from activities in the 
harbour and from runoff storm water; result in 
contamination of water and harbour sediments 
(Vermeulen and Wepener,1999). Material that was 
dredged from the harbour was deposited on to the beach 
north of the estuary mouth. The dredge spoil is then 
taken up by wind and currents to the estuary mouth 
thereby transferring metal contamination into the estuary. 
The harbour authority has been looking at various ways 
of disposing of the spoil as an environmental exercise to 
mitigate the potential pollution of the estuary. The method 
that was recommended by CRUZ (Wepener and Cyrus, 
1997; Cyrus and Wepener, 1998) of disposal a few 
kilometres offshore is environmentally sustainable. This 
would result in the pollution from the spoil becoming more 
diffuse and not drifting towards the Mhlathuze Estuary.  

The value of an estuary for resource harvest, habitat for 
fish and other invertebrates and for aesthetic beauty can 
never be overestimated (Breen and McKenzie, 2001). 
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The idea of keeping the southern side of the original 
Richards Bay Estuary for resource protection proved to 
be a good environmental exercise. It was to ensure 
perpetuation of biodiversity and resource protection. It is 
however being affected by activity in surrounding areas. 
This is shown by the findings of this study in terms of 
metal pollution in the Mhlathuze Estuary.  

Further studies are needed to clearly point to the actual 
sources of pollutants in the Mhlathuze Estuary. Activities 
such as mining on the boundary waters (Armah et al., 
2010), and periodic dredging of the harbour have been 
found to have a marked effect on the accumulation of 
metals in estuarine environments (Van der Hurk et al., 
1997; Galkus et al., 2012). A high concentration of these 
metals has an effect on biota of estuaries. This could be 
made worse by a number of factors. Plans are underway 
to expand the Port if Richards Bay. The operation of 
EXARRO Sands, a heavy metal company that has 
recently built on the catchment of the Mhlathuze River, 
has been in operation for about 10 years. Both these and 
other future developments may impact negatively on the 
estuary in terms of metal pollution. 
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