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The climate risk concept is crucial for agricultural production in vulnerable regions. In this work the 
climate conditions that influence the climate risk for rice crop in Casamance are presented. The future 
occurrence of drought and extreme precipitation conditions in the most critical phases of the rice plant 
evolution has been evaluated. Regional climate models (RCMs) outputs projections from CORDEX 
under two scenarios emissions (RCP4.5 and RCP8.5) in the mid of the twenty-first century were used to 
highlight the change in four extreme climate indices in the germination (JJ) and the flowering (Oct) 
stages of the rice plant in the Casamance region. The results suggest a potential risk in rice crop yield 
losses in the germination phase due to persistent drought conditions in the mid-twenty-first century 
namely in the low Casamance and the Middle Casamance; also increasing future occurrence of heavy 
rainfall may cause juvenile rice plant submersion that could contribute to rice production reduction. The 
flowering stage will present less climate risk situation in the future; the distribution of drought 
conditions seems to follow the normal north-south distribution; however hazardous extreme conditions 
could be expected in the future. There is a need to better plan agronomic and water management 
policies. 
 
Key words: Regional climate model, future projection, extreme precipitation, climate risk, rice crop, 
Casamance. 

 

 
INTRODUCTION 

 
The West African Sub-Saharan is a region where 
populations are still confronted with high climate 
variability, and is particularly vulnerable to climate change 

due to a combination of climate variability, high reliance 
on rain-fed agriculture and limited economic and 
institutional capacity to cope with and to adapt  to  climate 
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variability and change (Sultan and Gaetani, 2016; 
Challinor et al., 2007; M ller et al., 2010; Roudier et al., 
2011). Extreme weather events are increasing and their 
intensity also tends to increase, along with the social and 
economic impacts and many parts of West Africa (Niger, 
Burkina Faso, Guinea, Mauritania, Mali, northern Nigeria, 
Senegal and Sierra Leone) have already felt and will 
continue to feel the effects of extreme weather events 
(Busby et al., 2014). The populations that live in these 
regions are vulnerable to enormous risk from flooding, 
soil erosion, desertification, droughts, and crop failure 
(Odoulami and Akinsanola, 2017; Sylla et al., 2016; 
Panthou et al., 2014). Several factors contribute to 
increasing the vulnerability of African populations 
(economic and social context, governance, resource 
management, etc.), and sectors that are essential for 
development as agriculture, water resources, and health 
are the first to be exposed to the effects of these 
changes. To face these situations, West African countries 
have adopted several agricultural policies and the most 
relevant are the Regional Agricultural Policy for West 
Africa in 2005 (Aboudou et al., 2015), the West African 
Agricultural Productivity Program in 2007 (Aboudou et al., 
2015; ECOWAS,2017), and more recently the West 
African Alliance for Climate Smart Agriculture in 2015 
(ECOWAS, 2017). These policies have been 
implemented to increase crop productivity, and to assess 
the relationship between climate change, land-use and 
crop growth. 

Since the beginning of the 1970s, the Casamance 
region as most of west African countries (Janicot et al., 
1996; Giannini et al., 2003; Rodriguez-Fonseca et al., 
2009) has undergone strong climatic variabilities with 
often disastrous environmental and socio-economic 
consequences. For example, rice production systems of 
the region have become increasingly threatened by a 
decrease in precipitation, rise in temperature, prolonged 
droughts and soil degradation due to salinization, 
acidification and silting up (Sane et al., 2010; Fiorollo et 
al., 2020) causing a decline in lowland cultivation and 
productions. Mendez del Villar (2019) estimated that in 
Casamance, local rice production covers only between 
30 and 40% of household consumption whereas in the 
1950s, local rice covered totally the household 
consumption. As agriculture in the Casamance region is 
mainly dependent on rainfall which remains the most 
variable parameter both in monthly or year to year 
variability and also from spatial variability; the primary 
cause of crop success or failure is therefore rainfall 
variability. The relationship between climate and 
agriculture is obvious. Bacci (2017) has quantified the 
trends of climate risk for rice crop in the Casamance 
region by using the return period of extremes like 
droughts or wet conditions during the vulnerable phases 
of   the   rice   crop.   Given   the    climatic    disturbances  

 
 
 
 
experienced in this area, efforts to mitigate the impacts of 
climate change will involve reducing vulnerability in this 
area by taking into account future climate change 
emission scenarios. 

The objective of this study is to evaluate the future 
potential risks of climate change on rice crops in the 
Casamance region, using selected climate extreme 
indices derived from regional climate models (RCMs) of 
CORDEX. Two types of greenhouse gas emission 
scenarios (RCP4.5 and RCP8.5.) have been taken into 
account and change in medium-term in Casamance is 
evaluated. The paper is organized as follows, a 
description of the study area, the data and methodology 
used are described in data and methods. The results 
section is dedicated to the analysis and interpretation of 
the results. Summary and Conclusions are reserved for 
the last part of the paper. 
 
 

MATERIALS AND METHODS 
 

Site description 
 
Senegal is a country in Western Sahel bordered by the North 
Atlantic Ocean; it goes from 12°30N and 16°30N in latitude and 
from 11°30W and 17°30W in longitude. The Casamance region is 
located to the south of Senegal (Figure 1) and has experienced the 
highest rainfall amounts and then is the wettest region in Senegal 
(Thiam and Singh, 1997; Ndong, 1995; Sané et al., 2008). The 
Casamance region (Portuguese: Casamansa) is a historic and 
natural region that bordered the Casamance River. It stretches from 
east to west, on either side of the river that gave it its name. It is 
bounded to the west by the Atlantic Ocean, to the east by the 
Koulountou (a tributary of the Gambia River), the north by the 
Republic of Gambia, the south by the Republic of Guinea Bissau, 
and the south-east by the Republic of Guinea (Sané et al., 2010). 
The Casamance region is divided into three distinct geographical 
areas: the lower Casamance (LC) in the west, the mid-Casamance 
(MC), and the upper Casamance (UC) in the east. The LC is the 
wettest and is characterized by two distinct plant formations: the 
forest with tall and powerful species on the plateau and the 
mangrove on the bank of the Casamance River and backwater. The 
MC is located between the LC and the UC and is quite humid with a 
semi-dry forest limited only to the edges of rivers. The UC, current 
administrative region of Kolda, receives lesser water than the LC 
and the MC and is characterized by open forests pierced by grassy 
expanses (Sané et al., 2008, 2010). 

The Casamance region has a Sudano-Guinean tropical climate 
and is often hot and humid with an average annual temperature of 
27°C. Temperatures are always quite high during the day and drop 
rarely below 20°C at night; the months of December and January 
are the coolest. The climate is characterized by an alternation 
between a dry season from November to May and a wet season 
which lasts almost five months, from June to October. The 
contributions of May and November are almost negligible in the 
annual average total which is defined by rainfall greater than 1000 
mm in the region (Thiam and Singh, 1997, 2002; Malou, 1992). 
With a flat and low relief overall, the Casamance has a diverse 
range of soils and a dense hydrographic network suitable for rice 
production namely in the LC and MC (Fiorillo et al., 2020). In 
general, there are tropical ferruginous and sandy or clayey-sandy 
soils  on  plateaus  and  terraces,   mainly   used  for  rainfed   crops  
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Figure 1. Location of Casamance region (shapefile is obtained in 
https://gadm.org/download_country_v3.html). 

 
 
 
(peanuts, cowpeas, rice cultivation); slope soil characterized by 
good suitability for arboriculture and market gardening; hydro-
morphic soils conducive to the development of off-season crops 
and rice growing, and finally acidified or salty soils (tannes), 
unsuitable for agriculture generally located on the lower parts of the 
Casamance River (Sané et al., 2010; CSE, 2011). These rich and 
varied soils, on the whole, are nested in a landscape of plateaus 
that descend towards the coast dotted by an increasingly dense 
hydrographic network of alluvial valleys and permanent backwaters 
(Sané et al., 2010). 
 
 
Observations 
 
Observation products used to evaluate the models' skill in depicting 
extreme rainfall indices are from the Climate Hazards Group 
InfraRed Precipitation with Stations data (CHIRPS). The CHIRPS 
consists of a combination of daily gauge-calibrated and infrared 
precipitation estimates (Funk et al., 2015). It is widely used for the 
extreme precipitation calculation in West Africa (Diatta et al., 2020a; 
Athia et al., 2020 and references therein). The dataset used in this 
study spans from 1982 to 2016 with a resolution of 0.05° × 0.05 and 
is only available over land. The CHIRPS data have shown 
remarkable performance and are suitable for drought monitoring, 
rainfall variability, and extreme analysis. A general agreement 
between CHIRPS and other observational data was reached by 
Maidment et al. (2015) and Bichet and Diedhiou (2018a) on annual 
trends over Africa. Bichet and Diedhiou (2018b) have also found a 
very similar statistical distribution for mean precipitation in AMJ and 
SON seasons between CHIRPS and rain gauge observations from 
the BAse de DOnnees PLUviometrique (BADOPLU) database; and 
a comparison of a corresponding time-series between the 2 
datasets   indicates  that  the  distribution  and  to  some  extent  the 

temporal variability agree in both seasons showing a better fit for 
mean precipitation and number of wet days. They agree on the 
good confidence of the use of CHIRPS data in this region. 
 
 
Models 
 
Dynamically downscaled daily rainfall from six RCMs simulations 
from the Coordinated Regional Climate Downscaling Experiment 
(CORDEX, http://www.cordex.org) project has been used in this 
study, in addition to their ensemble mean (Ensmean) defined here 
as the average of the RCMs. The CORDEX project is a world 
climate research program (WCRP) initiative for the assessment and 
comparison of RCM skills in diverse regions, particularly CORDEX-
Africa, a set of state-of-art simulations and projections for the West 
African climate at high resolution as stated in Nikulin et al. (2012). 
Table 1 shows the characteristics of the RCM models with the 
institutions that maintain the RCMs with the corresponding forcing 
General Circulation Models (GCMs). The projections are forced by 
the Representative Concentration Pathways (RCPs) as described in 
Moss et al. (2010) and van Vuuren et al. (2011). They represent the 
prescribed greenhouse-gas concentration pathways throughout the 
twenty-first century and correspond to different radiative forcing 
stabilization levels by 2100. Two RCPs have been used in this 
study: the RCP4.5 and the RCP8.5 that respectively represent mid- 
and high- level emission scenarios. In this study, we selected four 
extreme indices (Table 2) derived from the indices used by Expert 
Team on Climate Change Detection and Indices (ETCCDI). The 
ETCCDI indices were widely used and provided a good mixture of 
daily statistics to assess changes in temperature and precipitation 
regimes in terms of duration, intensity and occurrence (Frich et al., 
2002; Zhang et al., 2011; Sillman et al., 2013; Diatta et al., 2020a). 
Complementary information regarding the extreme  indices  can  be  
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Table 1. RCMs from CORDEX project used in this study. 
 

Models Institution Forcing Resolution References 

RACMO Royal Netherlands Meteorological Institute EC-EARTH 0.44 x 0.44 
Van Meijgaard et al. 
(2008) 

CanRCM4 Canadian Center for Climate Modelling and Analysis CCCma-CanESM2 0.44 x 0.44 Scinocca et al. (2016) 

CCLM4 Climate Limited-area Modeling Community (CLMcom) CNRM-CM5 0.44 x 0.44 Dee et al. (2011) 

RCA4 
Swedish Meteorological and Hydrological Institute, 
Rossby Center 

CNRM-CM5 0.44 x 0.44 
Samuelsson et al. 
(2011) 

HIRHAM DMI, Danmark NCC-NorESM1-M 0.44 x 0.44 
Christensen et al. 
(2006) 

REMO Max Planck Institute, Germany CNRM-CM5 0.44 x 0.44 Jacob et al. (2007) 

 
 
 

Table 2. List of extreme indices used in this study. 
 

Indices 
acronyms 

Indices name Description Units 

CDD Consecutive dry day 
Maximum annual number of consecutive dry days (when PR < 
1.0 mm) 

Days 

CWD Consecutive wet day 
Maximum annual number of consecutive wet days (when PR > 
1.0 mm) 

Days 

RX5DAY Max 5-day PR Maximum 5-day PR total mm 

R95PTOT 
Total PR percent due to heavy rain 
days 

Percentage annual sum of daily PR > 95th percentile % 

 
 
 
found on the ETCCDI8.5website, 
http://etccdi.pacificclimate.org/list_27_indices.shtml. The most 
critical periods for rice plant are during the germination (June-July) 
and flowering (October) stages (Bacci, 2017). These periods are 
the most vulnerable periods of rice crop to rainfall anomalies. 
Therefore, all the selected indices are calculated for the two 
periods: June-July and October for both historical and future 
scenario simulations. The CHIRPS resolution is sufficient to 
describe dynamics of rainfall in the Casamance region and to 
describe also phenomena over the entire domain and help to 
produce risk maps at very local levels. Therefore, the outputs from 
models have been regridded to the CHIRPS’ resolution using the 
bilinear interpolation method and then facilitate convenience 
comparisons. Indeed, the regridding of the model’s outputs do not 
qualitatively alter much the raw data as the data in the raw grid are 
splited and even some additional information is added.  The model 
evaluation analysis is carried out by considering a common period 
across observations and simulations (1982-2005) and both 
germination and flowering periods have been investigated, as the 
CHIRPS dataset is only available from 1982 to present and the 
historical outputs of models span from 1976 to 2005. The root mean 
square error (RMSE) is used to assess the models’ performance in 
depicting extreme precipitation indices during the germination and 
the flowering phases of the rice crops.  The analysis of projected 
risk for rice crops is focused on the mid-twenty-first century (2038-
2067) relative to the 30-year historical period (1976-2005) under the 
rcp4.5 and rcp8.5 projection scenarios. The percentage of change 
(%C) of selected extreme precipitation indices is then calculated  for 

both the germination and the flowering phases using the following 
formula: 
 

 
 
and the statistical significance of the change is evaluated using a 
student t-test. 
 
 
RESULTS 
 
Evaluation of simulated extreme precipitation indices 
during the vulnerable phases of rice crops 
 
Figure 2 presents the performance of each selected 
index relative to the CHIRPS observations in the 
Casamance region using the root mean square error 
(RMSE). For the CDD index, the models show a relatively 
low RMSE value and namely for ENSMEAN suggesting a 
reduction in systematic errors that are seen in almost all 
individual RCM members. Simulations exhibit large errors 
for RX5DAY namely with REMO, RACMO, CCLM4, and 
CanRCM4 in the germination phase, while CCLM4 and 
REMO   show   the   highest   RMSE   values   during  the  

%𝐶 =
𝑀𝑜𝑑𝑒𝑙  − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
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Figure 2. Root mean square error (RMSE) for the selected extreme precipitation indices between 1982-2005 for both 
germination and flowering phases; the CHIRPS observations datasets were used as a reference.  

 
 
 
flowering period (Figure 2b). Except for CCLM4 during 
the flowering phase, the R95PTOT seems to be 
simulated with lower uncertainties by the models. A very 
similar pattern is observed when using the mean absolute 
error (MAE) as a performance metric for the RCMs; the 
same large errors are exhibited but the same indices with 
the same models (Figure 1 in supplement material) 
Figure 3 presents the spatial distribution of the 
consecutive dry days (CDD) over the Casamance region 
for CHIRPS and the models including the Ensmean in the 
germination phase. The maximum of the CDD is 
locatedin the western part of Casamance in the LC in the 
CHIRPS dataset, while the lowest is observed in the MC 
and UC. The models except for the CCLM4 realistically 
reproduce the distribution of CDD in Casamance but the 
CanRCM4 slightly overestimates it in the western part,  
whereas the Ensmean does show a little underestimation 
of the CDD. The CCLM4 overestimates the CDD in all the 
Casamance region.  

The spatial distribution of R95PTOT is presented in 
Figure 4. CHIRPS observations show values lesser than 
25% of R95PTOT in almost all the Casamance region 
with a little increase (higher than 25%) in the north of UC 
(Figure 4a). The models show various skills in 
reproducing the  R95PTOT.  RACMO,  HIRHAM,  REMO, 

and CCLM4 overestimate the R95PTOT over the 
Casamance region but with different behavior, for 
example, RACMO presents the highest values in the UC 
(around 50%) and the lowest in the LC (around 25%) as 
seen in Figure 4b. The HIRHAM presents almost the 
same range value of R95PTOT in all Casamance region 
(Figure 4c), and the same pattern is also observed with 
REMO and CCLM4 but the signal is more intense (Figure 
4d-f). The RCA4, the CanRCM4, and the Ensmean show 
a realistic reproduction of the distribution of the 
R95PTOT; however, the CanRCM4 presents a little 
overestimation of R95PTOT in the western part of the LC 
(Figure 4g) and the RCA4 in the MC and UC. Diatta et al. 
(2020b) have shown a relatively good performance of 
RCA4 in simulating the R95PTOT in the Casamance 
River Basin. The ensemble mean of the models gives the 
best representation of the R95PTOT in the Casamance 
region. 

The evaluation of extreme precipitation in the flowering 
phase is emphasized by using the maximum 5-day 
precipitation total (RX5day). The CHIRPS observations 
locate the maximum of the RX5day in the south-east of 
UC; whereas the minimum is observed in the north of all 
the Casamance region. The RCMs show different 
behavior   in   representing   the   RX5day;   four   models  
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Figure 3. Distribution of consecutive dry days (CDD) for the period 1982-2005 during the 
germination phase for a. CHIRPS, b. RACMO, c. HIRHAM, d. REMO, e. RCA4, f. CCLM4, g. 
CanRCM4, h. RCM-ensmean. 

 
 
 
overestimate the RX5day in the all Casamance even if 
few of them do capture the signal of the maximum 
RX5day in the LC (Figure 5c-f). The CanRCM4 
underestimates the RX5day in all Casamance region; the 

RACMO and the Ensmean seem to capture well the 
pattern of the RX5day minimum located in the northern 
part of Casamance. However, they fail to represent the 
maximum  observed  in  the  south  of  the  LC.  A  similar  
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Figure 4. As in Figure 3 but with the percentage of precipitation due to 95 percentile (R95PTOT). 

 
 
 
pattern is observed when considering the CDD’s 
distribution in the flowering phase (Figure 2S in 
supplement materials), also four overestimate the CDD in  
all Casamance region, even if the HIRHAM shows a 
closer   pattern  to   observation.   The  RACMO  and  the 

Ensmean (Figure 2S.b, h) reasonably simulate the CDD 
distribution but they slightly underestimate it namely in 
the MC. We should note also that a similar pattern is also 
observed with the R95PTOT in the flowering phase 
(Figure    3S    in   supplement   materials).   The      CWD 
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Figure 5. Distribution of maximum 5-day precipitation total (RX5DAY) for the period 1982-2005 
during the flowering phase for a. CHIRPS, b. RACMO, c. HIRHAM, d. REMO, e. RCA4, f. 
CCLM4, g. CanRCM4, h. RCM-ensmean. 

 
 
 
distribution is overestimated by the Ensmean and the 
other models except the CCLM4 that seems to 
reasonably simulate the CWD in the Casamance region 
(Figure 4S in supplement materials). 

The overall pattern of these indices is reasonably well 
represented in the simulations namely in the ensemble 
mean of the models. The magnitude varies consistently 
precipitation and the R95PTOT. These  validation  results  



 
 
 
 
 
 
are similar to Akinsanola and Zhou (2008) who validated 
among the models especially with the maximum 5 day 
two RCMs simulations in the West Africa with two 
observation datasets.   
 
 

Projected change in rice crops during the vulnerable 
phases 
 

In this section, the projected changes in selected extreme 
indices for the mid of the twenty-first century (2038-2067)  
during the most vulnerable stages (germination and 
flowering phases) of the rice crops are presented. The 
changes are analyzed under the RCP4.5 and the 
RCP.8.5 emissions scenarios and their significances are 
tested with a t-test. 
 
 
Germination phase 
 

The first critical stage for rice plant development is the 
germination phase. A prolonged dry condition is critical 
for rice plants as the roots are weakly developed and are  
not able to absorb moisture in the deepest ground; and 
heavy rains can cause prolonged submersion of small 
plants and soil erosion phenomena (Bacci, 2017). The 
spatial distribution of the projected future change in CDD  
during the germination phase over Casamance under the 
RCP4.5 and RCP8.5 is presented respectively in Figures 
6 and 7. All the models except the CCLM4 and to a 
lesser extent the RCA4 do show an increase of the CDD 
during the germination phase over the entire Casamance 
region (Figure 6). The change is significant in all the 
Casamance region with the RACMO simulations (Figure 
6a) with the longer dry spells located in the MC; the  
REMO and the Ensmean do show significant increase 
changes in the LC and a high percentage of change in 
the UC that are not significant (Figure 6c and e). Contrary 
to the previous models, the CanRCM4 exhibits an 
increasing significant change in the middle of the UC but 
the maximum of the change that is not significant is 
located in the border of the LC and MC (Figure 6f). 
Significant decreasing changes of the CDD are depicted 
by the CCLM4 and the RCA which shows also a low 
increase in the MC. On average, under the RCP4.5 
scenario in the germination phase, an increasing change 
in the CDD is observed in the Casamance region that is 
significant in some specific regions. A similar pattern is 
observed when considering the RCP8.5 scenario (Figure 
7); all the models do show a positive percentage of 
change in CDD that is higher than the RCP4.5 scenario. 
However, the increasing positive change is not significant 
except for the RCA4 and the CCLM4 models (Figure 7d-
e). We should note that CCLM4 presents a low positive 
percentage of change in the LC and MC and no change 
in  the UC.  The projected changes in the R95PTOT  over  
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the Casamance region during the germination phase 
have been also investigated under both the RCP4.5 and 
the RCP8.5 scenarios (in supplement materials, Figures 
5S and 6S). All the models exhibit an increasing 
percentage of change in the R95PTOT index (see in 
supplement materials, Figure 5S), suggesting the 
possibility of having more heavy precipitations in the 
future that could lay to flooding and submersion of 
juvenile rice plants. These changes are significant in the 
UC as observed in almost all the models, whereas in the 
LC the significance of the changes is depicted in the 
CCLM4 and the Ensmean (Figsures 5S.e-g), and in the 
south-west of the LC in the RCA4 and CanRCM4 models 
(Figure 5S.d-f). Under the RCP8.5 scenario, the changes 
are also positive and more intense than the previous 
scenario (Figure 6S), namely in the MC. However, the 
changes in the R95PTOT are not significant except in a 
few areas depicted in the CCLM4 and RACMO 
simulations (Figures 6S.a-e).  

Similar results have been highlighted by Akinsanola 
and Zhou (2018) in the summer monsoon period. They 
found an increasing change in the CDD and the 
R95PTOT in the western Sahel including our study 
region. The larger magnitude of the change obtained 
under the RCP8.5 scenario is consistent with Sun et al. 
(2016)’s findings; they reported that the magnitude of the 
index change was generally larger for higher emission 
scenarios. Our results point out the potential risk for rice 
crop yield loss in the future in the Casamance region 
especially in the LC and the MC; all the conditions that 
contribute to the vulnerability of the rice plant are met. 
Our findings are in line with the results of Bacci (2017). 
He has shown using extreme return periods that 
significant likelihood of a long series of CDD may occur in 
the Casamance region. He pointed out also that the 
maximum number of consecutive dry days per year in the 
region during the germination phase is expected to be 
from 6 to 10 but may be almost double with a 5% 
probability of record. Bacci (2017) projects also a return 
period of the maximum daily amount of rain in the month 
of July that can reach over 80 mm/day in 1 year every 20 
in the MC and UC. 

 
 
Flowering phase 
 

The other vulnerable stage of the rice crop is the 
flowering phase that normally occurs in October in the 
Casamance region (Bacci, 2017). As in this stage, the 
rice plant needs to receive a sufficient amount of rain, 
and the projected changes in the RX5DAY in the mid-
twenty-first century are then analyzed. Figure 8 presents 
the spatial distribution of the projected future change in 
the RX5DAY during the flowering stage over Casamance 
under the RCP4.5. The models show  different  behaviors  
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Figure 6. Distribution of projected multi models changes in CDD for the period 2038-2067 under 
the RCP4.5 emission scenario, relative to 1976-2005 during the germination phase.  Stippling 
point indicates points with changes that are statistically significant according to t-test (5% 
significance level). 

 
 
 
in simulating future RX5DAY patterns. The REMO and 
the CCLM4 models simulate a significant increasing 
RX5DAY in the future in the LC and some parts of the 

MC, whereas a significant decrease is observed in the 
UC (Figures 8.c-e). The RACMO model shows a similar 
decrease in the RX5DAY in all Casamance region except  



 
 

Diatta et al.         79 
 
 
 

 
 

Figure 7. As in Figure 6 but under the RCP8.5 scenario. 

 
 
 
in the south of LC. An opposite behavior is observed 
when considering the HIRHAM model, a significant 
negative (positive) percentage of change is depicted in 
the LC and the MC and the western part of the UC (The 
eastern part of the UC) as seen in Figure 8b.  The  RAC4 

and the CanRCM4 projections exhibit a significant 
increase of the RX5DAY in the future in all Casamance 
region (Figure 8.d-f) even if a low to nil decrease is 
observed in the eastern LC with the CanRCM4. The 
ensemble average of the models shows the  same  dipole  
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Figure 8. Distribution of projected multi models changes in the RX5DAY for the period 2038-
2067 under the RCP4.5 emission scenario, relative to 1976-2005 during the flowering phase.  
Stippling point indicates points with changes that are statistically significant according to t-test 
(5% significance level). 

 
 
 
as seen earlier with a significant increase (decrease) of 
RX5DAY in the LC and the MC (the LC) as presented in 
Figure 8g. However, the intensity of the changes is much 
lower than for the  models  individually  taken.  Under  the 

RCP8.5 scenario, some models show similar patterns in 
the RX5DAY projection changes as under the RCP4.5 
scenario and others present quite different patterns 
(Figure   9).   The  RACMO  model  simulates  the   same 
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Figure 9. As in Figure 8 but under the RCP8.5 scenario. 

 
 
 
significant decreasing projection change in the UC, but in 
the MC and the LC, it prevents an intense increasing 
RX5DAY in  the  future  that  is  seen  under  the  RCP4.5 

(Figure 9a). Both the HIRHAM, REMO, and RCA4 exhibit 
opposite patterns as previously (Figure 9b-c-d); the 
changes are significant and the intensities seem to  be  in 
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the range. Similar behaviors as under the RCP4.5 are 
simulated by the CCLM4, CanRCM4, and RCMs 
ensemble mean. The signal changes in the CCLM4 and 
the CanRCM4 are more intense under the RCP8.5 as 
seen in Figure 9.e-f. The ensemble mean of the models 
exhibits a lower intensity of change and is significant in 
almost all the Casamance region (Figure 9g). So, the 
averaged model predicts less maximum 5-day 
precipitation total in the future in the UC that could lay to 
risk conditions on the rice yield loss; while in the MC and 
LC the risk is very low and non-existence in the northern 
part. Drought stress in this phase could also generate 
yield loss. The projected spatial distributions in the CDD 
in the flowering phase are also evaluated (not shown, see 
Figure 7S. in supplement materials). It appears that the 
change in the CDD is decreasing under the RCP4.5 in 
the Ensmean but the decrease change is not significant. 
The models individually taken show low negative change 
that is significant except for the RACMO in the northern 
UC. Under the RCP8.5 scenario, the Ensmean and four 
other models depict a decrease change in the CDD in the 
LC (Figure 8S, in supplement materials).  

Our findings suggest that the risk of losing rice crop 
yield is not really established in the LC and MC for the 
mid twenty-first century future. However, the climate 
conditions remain uncertain as the models show very 
different behaviors during the flowering phase. Sultan 
and Gaetani (2016) have concluded that, despite 
diverging future projections of the monsoonal rainfall, 
which is essential for rain-fed agriculture, a robust 
evidence of yield loss is emerging in West Africa. They 
attribute this yield loss to the increase in mean 
temperature; while potential wetter or drier conditions as 
well as elevated CO2 concentrations can be modulated. 
By analyzing the distribution of dry spells in October in 
the Casamance region, Bacci (2017) found that the 
distribution will follow isohyets with a north south gradient 
from wetter conditions, suggesting almost a normal 
situation.  
 
 
Conclusion 
 
The potential risk of climate change on rice crops in the 
Casamance region is evaluated during the two vulnerable 
stages of the rice plant: germination and flowering; and 
future changes either in drought stress occurrences or 
flooding and wet conditions have been highlighted. First, 
validation with the CHIRPS observation datasets reveals 
different patterns in the extreme climate simulations with 
RCMs.  A reasonable agreement is observed with the 
CDD and the CWD, whereas the extreme rainfall indices 
show low agreement with the CHIRPS dataset with 
REMO and CCLM4 showing the largest disagreement in 
the germination and flowering phase. 

 
 
 
  
In the germination phase, future changes in the CDD 
index on multi-model projections indicate a statistically 
increase with the majority of the models in some specific 
areas and all the Casamance (with two models). Under 
the RCP4.5, the multi-model ensemble mean projections 
indicate a potential persistence of drought conditions in 
the future that constitute a risk for rice yield loss in the 
germination phase, especially in the LC and in the 
western part of the MC. This situation is exacerbated 
under the RCP8.5 scenarios with more intensities. The 
potential risk of rice yield loss in the LC and the MC is 
also stated by the future increasing percentage of heavy 
rain events that could participate in rice plants’ 
submersion and soil erosion and then reduce the rice 
productivity. More extreme rainfall during the flowering 
phases in the LC and the MC as described by RX5DAY is 
indicated by the majority of the models. The RX5DAY is 
projected to increase in the LC and the MC (except for 
two models); the multi-model ensemble mean indicates 
the same pattern with significantly increase in the LC and 
MC. A decreasing percentage of rainfalls that could 
become extreme is indicated in the UC. According to the 
multi-model’s ensemble mean projections in the mid 
future under the RCP4.5 scenario, the risk of losing rice 
crop yields in the LC and the MC is very low and the 
climate conditions are favorable for the rice crop 
productivity. In the UC, the future climate conditions 
present certain risks that could favorite rice crop yields 
loss with a probable persistence of dry conditions during 
the flowering phase that could be unfavorable for rice 
crop production. The climate conditions and patterns of 
extreme agro-climate indices are more intense under the 
RCP8.5 scenario due to the different climate sensitivities 
and feedback mechanisms compared to the RCP4.5. The 
climate conditions expected in the Casamance region in 
the future should involve the implementation of adaption 
strategies and mitigation measures with the introduction 
of new rice varieties that could resist longer dry spells; 
but also require the improvement of drainage design and 
the hydraulic systems and an effective water 
management strategy. In another line, the impact of 1.5 
and 2°C global warming on climate risk in Casamance 
should be investigated, as it can be a good guide for 
decision makers to better manage policies in straight line 
of the Paris initiative. 
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SUPPLEMENTARY MATERIALS 
 

 
 

Figure 1S. Mean absolute error (MAE) for the selected extreme precipitation indices between 1982-2005 for both germination and 
flowering phases; the CHIRPS observations datasets were used as a reference. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

 
 

Figure 2S. Distribution of consecutive dry days (CDD) for the period 1982-2005 during the flowering phase for 
a. CHIRPS, b. RACMO, c. HIRHAM, d. REMO, e. RCA4, f. CCLM4, g. CanRCM4, h. RCM-ensmean. 



 
 
 
 
 
 

 
 

Figure 3S. As in Figure 1S but with the R95PTOT. 



 
 
 
 
 
 

 
 

Figure 4S. As in Figure 1S but with the CWD. 



 
 

 
 
 
 

 
 

Figure 5S. Distribution of projected multi models changes in CDD for the period 2036… under the RCP4.5 
emission scenario, relative to 1976-2005 during the germination phase.  Stippling point indicates points with 
changes that are statistically significant according to t-test (5% significance level). 



 
 
 
 
 
 

 
 

Figure 6S. As in Fig.4S but under the RCP8.5 scenario.  



 
 

 
 
 
 

 
 

Figure 7S. As in Fig.4S but with the CDD.  



 
 
 
 
 
 

 
 

Figure 8S. As in Fig. 6S but under the RCP8.5 scenario. 

 


