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Climate models are generally used to evaluate the climate change impacts. However, they have 
important biases at the regional or local scales. This study evaluates the future temperature projections 
in Lake of Guiers/Senegal. For this, the daily maximum and minimum temperature from the ensemble 
mean of five (5) Coordinated Regional climate Downscaling Experiment (CORDEX) regional climate 
models (RCMs) under the greenhouse gas scenarios RCP4.5 and RCP8.5 and three (3) bias correction 
methods (Linear scaling, variance scaling and quantile mapping methods) were used. The performance 
of raw ensemble mean of the models was first evaluated against the WFDEI data. The results show that 
this latter exhibits some limitations to reproduce the minimum and the maximum temperature at the 
Lake scale. In order to make temperature data more accurate, the three bias correction methods were 
used. Results show that bias correction methods improve well the simulated minimum and maximum 
temperature. The future temperature projections show an increase of temperature which are faster in 
bias-corrected data. From the results it is indicated that it is necessary to implement appropriate 
adaptation measures to address these climate changes. 
 
Key words: Climate change, regional climate models, coordinated regional climate downscaling experiment 
(CORDEX), bias correction methods, Lake of Guiers. 

 
 
INTRODUCTION 
 
Most of the studies conducted on the West African 
climate show an increase in temperatures in the Sahel 
region (IPCC, 2013; Ly et al., 2013; Giorgi et al., 2014). 
These temperature increases can impact the hydrological 
cycle and agriculture yields (Salack et al., 2011; Gelata 
and Gobosho, 2018; Sarr and Camara, 2018). They can 
also lead to problems in the supply of fresh water to 
populations   through     the     evaporation    phenomena, 

especially in Sahelian countries which are characterized 
by a short rainy season (3 to 4 months) and with 
variability in rainfall distribution (Tall et al., 2016; Luo et 
al., 2018). Therefore, climate change scenarios are 
needed in West Africa, particularly in Sahel to evaluate 
these impacts.  

In West Africa climate changes have often been 
studied  with  global  climate  models  (GCMs).  However,   
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Figure 1. Study area. 
Source: Diédhiou et al. (2019). 

 
 
 
these models have large disparities in this region. In fact, 
GCMs have difficulty simulating certain surface 
heterogeneities because of their low spatial resolution 
(200 to 300 km). Thus, these GCMs are important only 
when it comes to representing global climate change. 
That is to say on a large scale. To address these issues, 
regional climate models (RCMs) are increasingly being 
used to dynamically disaggregate global climate models 
(Paeth et al., 2011). In this context, several experiments 
have been undertaken to produce coordinated 
experiments using several regional climate models 
(RCMs). This is the case of PRUDENCE (Baguis et al., 
2010), ENSEMBLES-AMMA (Déqué et al., 2012). 
However, these coordinated experiments focused on 
limited areas. CORDEX is an international program 
implemented by several research centers which aim is to 
produce reliable climate change scenarios for impact 
studies. The ability of CORDEX RCMs to reproduce the 
present climate in West Africa has been assessed in 
numerous studies (Nikulin et al., 2012; Gbobaniyi et al., 
2014; Klutse et al., 2015; Akinsanola and Ogunjobi, 
2017). The climate change scenarios are obtained by 
forcing CORDEX RCMs by the Coupled Models 
Intercomparison Project phase 5 (CMIP5) GCMs from 
1951 to 2100 (Giorgi et al., 2009).  RCMs are the same 
basic physical principles as GCMs, but with higher 
horizontal resolution (~10-50 km). They are much more 
appropriate for impact studies because of their ability to 
represent the climate in complex areas such as West 
Africa. However, the simulated climate is not again in 
perfect agreement with observation. In fact,  these  RCMs 

also have limitations when it comes to focusing at the 
local-scale such as at the farm or basin scales. That is 
why, some authors (Hawkins et al., 2012; Kum et al., 
2014; Gumindoga et al., 2016; Grillakis et al., 2017) have 
recommended the use of bias correction methods to 
eliminate or reduce bias to produce reliable climate 
change scenarios for impact assessment purposes. 

The main objective of this study is to evaluate the 
performance of the Coordinated Regional climate 
Downscaling Experiment (CORDEX) models and the 
three (3) bias correction methods commonly used (Linear 
Scaling, Variance Scaling and Distribution Mapping) to 
simulate present and future temperature in the Lake of 
Guiers.  
 
 
METHODOLOGY 
 
Study area 
 
The study area is the Lake of Guiers (Figure 1) which is the main 
reserve of surface freshwater in Senegal. It is located in northern 
Senegal, in the upper delta of the Senegal river basin, between 
longitude 15°40’-16° West and between latitude 16°-16°30’ North. It 
extends between the south of city of Richard Toll (near the border 
with the Mauritania) and and Louga regions (toward K M SARR) 
(Figure 1). The minimum and maximum daily air temperatures in 
this city range between 22 and 36°C, respectively, while the mean 
annual rainfall is about 403 mm  (Niang, 2011; Diédhiou et al., 
2019). The main activities carried out in the semi-desert areas 
surrounding the lake are breeding, fishing, rice and sugar cane 
cultivation. The lake water is also used as a drinking water resource 
for the urban centers (165,000 m3/day for a population of 5 million 
inhabitants) (Sambou et al., 2019).  
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Table 1. Description of the regional climate models. 
 

Name GCM forcing Institution References 

CCLM4 CNRM-CM5 CLM-community Baldauf et al. (2011) 
RACMO22T EC-EARTH KNMI, The Netherlands Meijgaard et al. (2008) 
RCA4 CNRM-CM5 SMHI, Sweden Samuelsson et al. (2011) 
HIRHAM5 EC-EARTH DMI, Denmark Christensen et al. (2006) 
REMO EC-EARTH MPI, Germany Jacob et al. (2007) 

 
 
 
Datasets 
 
This study uses daily maximum and minimum temperature data 
from CORDEX RCMs. They are CCLM4, RCA4, HIRHAM, REMO 
and RACMO. The model institutions, the regional climate models 
and their reference are presented in Table 1. The spatial resolution 
of CORDEX RCMs is 0.44° (approximately 50 km). They cover the 
period 1976-2005 for the historical and 2006-2100 for future. The 
RCMs outputs are available from this website: 
https://www.cordex.org/output.html.  

These models are described in detail by Giorgi et al. (2009). Two 
periods are considered in this study: the reference period (1979 - 
2005) and the future period (2006 - 2100). The RCMs RACMO, 
HIRHAM and REMO are forced by the outputs of the GCM EC-
EARTH; while models RCA4 and CCLM4 are forced by the outputs 
of the GCM CNRM-CM5. The climate projections are obtained by 
forcing the regional climate models by the outputs of the global 
climate models under the greenhouse gas scenarios RCP4.5 and 
RCP8.5 which, respectively correspond to radiative forcing of 4.5 
and 8.5 W/m² at the horizon 2100. To evaluate the performance of 
bias correction methods, the Water and Global Change (WATCH) 
Forcing Data methodology eas applied to ERA-Interim reanalysis 
data (WFDEI) (Weedon et al., 2014). The WFDEI data are 
availbable from 1979 to 2012. Two periods are considered in this 
study: the reference period (1979- 2005), which is the common 
period between RCMs data and WFDEI data and the future period 
(2006-2100). 
 
 
Bias correction methods 
 
In this study, three bias correction temperature methods commonly 
used namely linear scaling (LS), variance scaling (VS) and 
distribution mapping (DM) are considered. The period of calibration 
of this bias correction method is 1979-1993 and the period of 
validation is 1994-2005. 
 
 
Linear scaling 
 
The Linear Scaling (LS) method (Lenderink et al., 2007) corrects 
the outputs of the climate model by using the difference in the mean 
variability between the observations and climate model. 
 

                        (1) 
 

where  are  the corrected minimum or maximum 

temperature on the dth day of mth month;  are the 
uncorrected minimum or maximum temperature on the dth day of 

mth month;  and  are the mean values of observed 
and  simulated   minimum  or  maximum  temperature  at  the  given 

month. 
 
 
Variance scaling 
 
For the linear scaling method, the biases in variance are not 
corrected. That is why the Variance Scaling (VS) method was 
implemented to bias correct the temperature time series (Terink et 
al., 2010).  It is given by Equation (3): 
 

                 (2) 
 

where  and  represent, respectively the 
standards deviation of the monthly RCMs outputs and observations 
during the reference period. 
 
 
Distribution mapping 
 
The Distribution Mapping (DM) method was used to correct the 
distribution function of the raw data (Piani et al., 2010). It is used to 
adjust mean, standard deviation and quantiles. The Gaussian 
distribution (or normal distribution) with the parameters μ (mean) 
and σ (standard deviation) is usually considered to adjust the 
temperature probability distribution (Teutschbein and Seibert, 
2012): 
 

 ;                              (3) 
 
The corrected temperature expressed in terms of Gaussian CDF 
(FN) and its inverse (F-1

N) and is given by: 
 

        (4) 
 

where  and  represent, respectively the gamma cumulative 

distribution and its inverse,  is the uncorrected minimum 
or maximum temperature during the month m and the day d of 

reference period,  and  represent, respectively 
the mean and standard deviation of the uncorrected temperature 

during  the month m and   and  are, respectively 
the mean and the standard deviation of the observed temperature. 
 
 
Performance of statistical method 
 
To evaluate the  performance  of the bias correction methods, some 
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Figure 1. Scatter plots of the simulated and the WFDEI monthly maximum temperature (left panel) and 
monthly minimum temperature (right panel) averaged from 1979 to 2005. 

 
 
 
statistical parameters such as the absolute bias (MB), the root 
mean square error (RMSE) and the Nash-Sutcliffe efficiency (NSE) 
were calculated. 

The mean bias gives an indication of the sign of errors 
(underestimation or overestimation): 
 

                                                           (5) 
 
The root mean square error (RMSE) measures the amplitude of 
errors committed by models.    
 

                                               (6) 

 
The Nash-Sutcliffe efficiency (NSE) gives the relative magnitude of 
variance of residues compared to the observed variance. It is 
between -∞ and 1 with 1 the optimal value. The NSE values less 
than 0 are considered unacceptable while those between 0 and 1 
are considered acceptable. 
 

                                              (7)                       

 

where n is the number of time steps; and are, 
respectively the time series of the simulated and the observed 
(WFDEI) temperature. 

RESULTS  
 
Performance of the multi-model ensemble  
 
Figure 2 shows the monthly maximum and minimum 
temperature simulated by the five CORDEX RCMs 
present in the ensemble-mean compared to WFDEI data 
from 1979 to 2005. The ensemble mean of the model 
was considered because numerous studies (Kim et al., 
2014; Gbobaniyi et al., 2014) pointed that it better 
reproduces the spatial distribution of the surface 
temperature. WFDEI data show the lowest minimum and 
maximum temperature (around 16 and 32°C, respectively) 
in the Lake of Guiers between December and February. 
The highest minimum and maximum temperature (around 
24 and 38°C, respectively) are recorded from April to 
June and from July to September, respectively. WFDEI 
data shows also a decrease of maximum temperature 
between the end of June and September corresponding 
to the rainy season in Senegal. The ensemble-mean of 
the models generally reproduces well the pattern of the 
monthly maximum and minimum temperature observed in 
the Lake. Also, the monthly maximum and minimum 
temperature simulated are closer to that observed, as 
shown in Figure 3 with a coefficient of determination of 
0.96 and 0.97, respectively. It should also be noted that 
the ensemble mean of the models reproduces quite well 
the minimum  temperature observed. This is confirmed by  
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Figure 2. Monthly maximum and minimum temperature averaged from 1979 to 2005 of WFDEI data and the ensemble mean 
of the models. Tmax_WFDEI and Tmin_WFDEI represents respectively the maximum and the minimum temperature of 
WFDEI and Tmax_RAW and Tmin_RAW represent respectively the raw minimum and maximum temperature simulated by the 
multi-model ensemble. 

 
 
 

Table 2. Performance measures of the raw multi-model ensemble during the period 1979-2005. 
 

Tmax  Tmin 

MB RMSE NSE R MB RMSE NSE R 

-1.92 2.02 -0.30 0.95 -0.69 1.08 0.91 0.97 
 
 
 
the results obtained in Table 2. Nevertheless, the 
simulated temperature is always biased. In fact, it 
presents an overestimation of the maximum temperature 
for all months with mean bias of -1.92. For the minimum 
temperature, it overestimates the observed values only 
between March and May. Thus, the performance of 
outputs of the multi-model ensemble can be increased by 
bias correction methods.  

Figure 4 shows the comparison of the monthly 
maximum and minimum temperature from the WFDEI 
data, raw multi-model ensemble and bias-corrected 
respectively during the calibration period (1979-1993) 
and validation period (1994-2005). The results show that 
the bias in ensemble mean of the models temperature is 
remarkably reduced. All the three bias correction 
methods improve satisfactory the outputs of the ensemble 

mean of the models. There are very slight differences 
between the WFDEI data and the bias-corrected multi-
model ensemble compared to raw data during the 
calibration data. But some contrasts exist between the 
three bias corrected multi-model ensemble mean and 
theirs performances with respect to both parameters. In 
fact, results show that Linear Scaling (LS) method is 
closer to the observed temperature followed by 
Distribution mapping (DM) method. The statistical 
performance measures of bias-corrected temperature 
during the calibration and the validation periods are 
presented in Table 3. The statistical indicators values 
reflect the good performances of the three bias correction 
methods during the calibration and validation periods. 
During the calibration period the mean bias is less than 
0.01  excepted   VS   method  for  the  monthly  maximum  
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Figure 3. Monthly maximum and minimum for the calibration period (left panel) and for the validation 
period (right panel). 

 
 
 

Table 3. Performance measures of the bias-corrected monthly maximum and minimum temperature during the calibration and 
validation periods. 
 

Parameter Methods 
Calibration period Validation period 

MB RMSE NSE R MB RMSE NSE R 

Tmax 

RAW -1.38 1.57 0.21 0.84 -2.00 2.09 -0.48 0.83 
LS < -0.01 0.87 0.73 0.86 -0.14 0.85 0.68 0.84 
VS -0.30 1.02 0.65 0.85 -0.06 0.92 0.67 0.84 
DM < 0.01 0.88 0.72 0.86 -0.10 0.88 0.67 0.84 

          

Tmin 

RAW -0.66 1.08 0.85 0.94 -0.72 1.08 0.85 0.94 
LS < 0.01 0.69 0.93 0.97 -0.06 0.69 0.93 0.97 
VS < 0.01 0.66 0.94 0.97 -0.09 0.68 0.93 0.96 
DM < 0.01 0.69 0.93 0.97 -0.05 0.70 0.93 0.97 

 
 
 
temperature.  On the other hand, VS method better 
corrects the mean bias of the monthly maximum 
temperature during the validation period. The good 
results obtained with the statistical parameters (RMSE < 
1, NSE and R values close to 1) during both periods 
highlight the ability of bias correction to improve the 
simulated monthly maximum and minimum temperature. 
We also note that the ability of the three bias correction 
methods to better correct the minimum temperature. This 
might be due to fairly good capacity of the five models 
present in the ensemble mean to better simulate the 
minimum temperature. Therefore, the minimum 
temperature become easier to bias-corrected. 

To see the performance of bias correction methods at the 
daily time scale, Figure 5 shows the 7-day mean of the 
maximum and minimum temperature from the WFDEI 
data, raw multi-model ensemble and bias-corrected, 
respectively during the calibration period (1979-1993) 
and validation period (1994-2005). Table 4 shows the 
statistical performance measures of daily maximum and 
minimum temperature. The results show that all bias 
correction methods improve also the daily maximum and 
minimum temperature during the calibration and the 
validation period. As for monthly time scale, LS and DM 
methods better improve the quality of daily maximum and 
minimum     temperature      simulated     by    multi-model  
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Figure 4. Daily mean maximum and minimum after smooth with the 7-day moving average method for the 
calibration period (left panel) and for the validation period (right panel). 

 
 
 

Table 4. Performance measures of the bias-corrected daily maximum and minimum temperature during the calibration and 
validation periods. 
 

Parameter Methods 
Calibration period Validation period 

MB RMSE NSE R MB RMSE NSE R 

Tmax 

RAW -1.38 2.78 0.02 0.50 -2.00 3.05 -0.28 0.45 
LS < -0.01 2.44 0.21 0.57 -0.14 2.41 0.13 0.46 
VS -0.30 2.53 0.16 0.53 -0.06 2.43 0.13 0.47 
DM < -0.01 2.46 0.20 0.52 -0.10 2.44 0.11 0.46 

                   

Tmin 

RAW -0.66 1.89 0.61 0.80 -0.73 1.85 0.62 0.81 
LS < -0.01 1.69 0.67 0.82 -0.06 1.63 0.68 0.83 
VS < -0.01 1.71 0.66 0.82 -0.10 1.69 0.66 0.82 
DM < -0.01 1.68 0.67 0.82 -0.06 1.64 0.68 0.83 

 
 
 
ensemble. Moreover, slight differences are noted when 
the performance of both methods was considered. That is 
to say, both bias correction methods show similar 
performances. The results obtained in Table 4 confirm 
the good performances of bias correction methods. In 
fact, low mean bias are recorded (MB < 0.01°C) for the 
daily temperature values except the VS method for daily 
maximum temperature as in monthly scale during the 
calibration period. However, when we compare the 
statistical parameters, results show that bias correction 
methods perform better  on  the  monthly  scale  over  the 

daily. The results obtained during the validation period 
show that VS method is more suitable for daily and 
monthly maximum temperature. Moreover, the DM 
method is better suitable to bias correct the daily 
minimum temperature. For monthly minimum temperature, 
DM and LS method seem to give the best bias-correction. 
Globally, the three temperature bias correction methods 
improve the performance of the ensemble mean of the 
models. The ability of bias correction methods to improve 
the performance of the ensemble mean of the models 
strengthens  our  confidence  in   the   future  temperature  
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Figure 5. Impact of the LS bias correction method on projected yearly minimum and maximum temperature (left panel and right 
panel respectively). Temp_obs represents the observed minimum or maximum temperature, Temp_RAW_his is the raw minimum or 
maximum temperature during the historical period, Temp_RAW_RCP45 and Temp_RAW_RCP85 represent respectively the raw 
minimum or maximum temperature during the future under the scenarios RCP4.5 and RCP8.5, Temp_LS_his represents the 
historical minimum or maximum temperature corrected by LS method and Temp_LS_RCP4.5 and Temp_LS_RCP8.5 are 
respectively the future minimum or maximum temperature corrected by LS method. 

 
 
 
projections in the Lake of Guiers. 
 
 
Projection of future temperature 
 
After evaluating the bias correction methods, the 
temporal evolution of annual maximum and minimum 
temperature from 1979 to 2100 was studied. Figures 6, 7, 
and 8 illustrate the impact of the LS, VS, and DM bias 
correction methods on the projected annual minimum and 
maximum temperatures, respectively. The results show 
that the correted data reproduce well the WFDEI data 
during the reference period (1979-2005) compared to raw 
data. However, it was found out that the corrected data 
by DM method (Figure 8) shows the highest performance 
in simulated annual temperature (MB=0.04°C/ <0.01°C, 
NSE=0.39/0.36 for yearly maximum/minimum 
temperature, respectively) compared to VS method 
(Figure 8) (MB=-0.04°C/-0.01°C, NSE=0.34/0.30 for 
yearly maximum/minimum temperature) and LS method 
(Figure 7) (MB=-0.05°C/ <-0.01°C, NSE=0.39/0.30 for 
maximum/minimum temperature). It was  also  noted  that 

the multi-model mean corrected by the three methods 
considered shows an upward trend in temperatures 
compared to that uncorrected almost over the entire 
period in both scenarios (RCP4.5 and RCP8.5). This 
overall increase is greater in the pessimistic scenario 
(RCP8.5) than in the medium scenario (RCP4.5). The 
magnitude of the difference between the corrected and 
uncorrected multi-model mean is much greater when 
considering the maximum temperature. But the sign of 
the change signal in raw data is not modified in those 
bias-corrected. Globally, important increases are 
observed in future maximum and minimum temperature 
when the raw ensemble of the models and bias-corrected 
under both scenarios were considered. This is in 
agreement with several results obtained on the Sahel 
(IPCC, 2013; Ly et al., 2013; Sylla et al., 2016). This 
increase is greater from 2060 especially under the 
RCP8.5 scenario. In fact, an increase of 0.8 to 0.15°C per 
decade and of 0.5 to 0.53°C per decade is predicted, 
respectively under the RCP4.5 and RCP8.5 scenarios for 
the mean annual minimum temperature. For the mean 
annual   maximum   temperature,   the    increase    range 
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Figure 6. Impact of the VS bias correction method on projected yearly minimum and maximum temperature (left panel and right panel 
respectively). Temp_obs represents the observed minimum or maximum temperature, Temp_RAW_his is the raw minimum or 
maximum temperature during the historical period, Temp_RAW_RCP45 and Temp_RAW_RCP85 represent respectively the raw 
minimum or maximum temperature during the future under the scenarios RCP4.5 and RCP8.5, Temp_VS_his represents the 
historical minimum or maximum temperature corrected by VS method and Temp_VS_RCP4.5 and Temp_VS_RCP8.5 are 
respectively the future minimum or maximum temperature corrected by VS method. 

 
 
 
between 0.08 and 0.22°C per decade and 0.55 to 0.66°C 
per decade, respectively under RCP4.5 and RCP8.5 
scenarios. The lowest increases in minimum and 
maximum temperature were obtained with raw multi- 
model mean and the highest increases in minimum and 
maximum temperature were obtained with multi-model 
mean bias-corrected by DM (Figure 8) and VS methods 
(Figure 7), respectively.  
 
 
DISCUSSION 
 
This study evaluates the performance of the ensemble-
mean of five (5) CORDEX regional climate models 
(RCMs) models and the three (3) bias correction methods 
commonly used (Linear Scaling, Variance Scaling and 
Distribuiton Mapping) to better simulate present and 
future temperature in the Lake of Guiers which plays an 
important role in the socio-economic development of 
Senegal (Sambou et al., 2019; Diedhiou et al., 2019). 
The  results   show   that   the  ensemble-mean  of  model 

simulates well the observed minimum and maximum 
temperature. However, it still contains some bias. 
According to Luo et al. (2018), these biases come from to 
the forcing of Global Climate models (GCMs) or produced 
by a systematic error of the model. Therefore, it is very 
important to bias-correct the RCMs data before studying 
the climate change (Chen et al., 2013; Ajaaj et al., 2015). 
The results show that all methods used can improve the 
original RCMs outputs with few differences. The simplest 
bias correction method is the Linear Scaling (LS) which 
corrects the outputs of the climate model by using the 
difference in the mean variability between the 
observations and climate model. Thus, the biases in 
variance are not corrected. However, it was found that for 
the daily and monthly minimum temperature during the 
validation period LS method gives the best results. Thus, 
the uncorrected minimum temperature might not be 
biased in variance. Of the three bias correction methods 
used, the DM method is the most advanced. It is used to 
adjust the mean, the standard deviation and the quantile. 
This method better corrects the minimum  temperature  at  
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Figure 7. Impact of the DM bias correction method on projected yearly minimum and maximum temperature (left panel and right 
panel, respectively). Temp_obs represents the observed minimum or maximum temperature, Temp_RAW_his is the raw minimum or 
maximum temperature during the historical period, Temp_RAW_RCP45 and Temp_RAW_RCP85 represent respectively the raw 
minimum or maximum temperature during the future under the scenarios RCP4.5 and RCP8.5, Temp_DM_his represents the 
historical minimum or maximum temperature corrected by DM method and Temp_DM_RCP4.5 and Temp_DM_RCP8.5 are 
respectively the future minimum or maximum temperature corrected by DM method. 

 
 
 
daily and monthly scale compared to others methods 
during the validation period. However, it seems be more 
suitable when we want to bias correct the extreme events 
(McGinnis et al., 2015; Luo et al., 2018). 

After evaluation, the evolution of the future minimum 
and maximum temperature corrected and uncorrected 
under scenarios RCP4.5 and RCP8.5 from 1979-2100 
was diagnosed. The multi-model mean simulated a 
strong rise in minimum and maximum temperature which 
is more important under the RCP8.5 scenario. These 
results are in agreement with those obtained by Giorgi et 
al. (2014) and Sylla et al. (2016) in Western Sahel. After 
correction, the trends are not so modified but the 
magnitude of climate change signal is amplified in the 
multi-model mean bias-corrected. This is in agreement 
with Mbaye et al. (2015) results over Senegal river basin.  

The large increase of both temperature and minimum 
temperature could lead to an increase in 
evapotranspiration phenomena in Lake of Guiers (Tall et 
al., 2016) and a decrease in the water content of the soil 
located at the edge of the lake. This could lead to 
problems of availability of resources because this  lake  is 

the largest reservoir of freshwater in Senegal (Sambou et 
al., 2018). This situation could also be detrimental for 
agricultural yields. In fact, strong temperature increase 
can affect the grain weight and the duration of grain 
growth (Sarr and Camara, 2018). 
 
 
Conclusion 
 
In this work, the ensemble mean of 5 CORDEX RCMs 
was considered to analyze the evolution of future 
temperature in the Lake of Guiers. The performances of 
the ensemble mean of the models to reproduce the 
minimum and maximum temperature are first assessed. 
Results show that the multi-model ensemble mean 
reproduces globally well the observed data. However, it 
presents some biases which can be reduced by bias 
correction methods. After bias correction, the agreement 
between the multi-model ensemble mean and the WFDEI 
data has considerably increased.  

Results show an increase of annual minimum and 
maximum   temperature   in   the    lake.    Moreover,   the  



 

 

 
 
 
 
magnitude of this increase is more important in the multi-
model ensemble mean bias-corrected compared to that 
raw, but the degree of frequency in raw data is not 
affected. 

This future increase in temperature predicted by the 
uncorrected and corrected ensemble mean of the models 
can have harmful consequences for the local populations 
due to the increase of evapotranspiration and water 
demand. Therefore, it would be important to better 
quantify the future climate change impact on the 
hydrological cycle in the Lake of Guiers. 
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