African Journal of
Environmental Science and Technology

  • Abbreviation: Afr. J. Environ. Sci. Technol.
  • Language: English
  • ISSN: 1996-0786
  • DOI: 10.5897/AJEST
  • Start Year: 2007
  • Published Articles: 1083

Full Length Research Paper

Evaluating SWAT model for streamflow estimation in the semi-arid Okavango-Omatako catchment, Namibia

Negussie Kaleb Gizaw
  • Negussie Kaleb Gizaw
  • Department of Land and Spatial Sciences, Namibia University of Science and Technology, 13388 Windhoek, Namibia.
  • Google Scholar
Wyss Daniel
  • Wyss Daniel
  • Department of Cartography, GIS and Remote Sensing, Georg-August University Goettingen, 37077 Goettingen, Germany.
  • Google Scholar
Knox Nichola
  • Knox Nichola
  • Department of Land and Spatial Sciences, Namibia University of Science and Technology, 13388 Windhoek, Namibia.
  • Google Scholar
Vallejo Orti Miguel
  • Vallejo Orti Miguel
  • Department of Land and Spatial Sciences, Namibia University of Science and Technology, 13388 Windhoek, Namibia.
  • Google Scholar
Corral-Pazos-de-Provens Eva3
  • Corral-Pazos-de-Provens Eva3
  • Departamento de Ciencias Agroforestales, Universidad de Huelva, 21819 Huelva, Spain.
  • Google Scholar
Kappas Martin
  • Kappas Martin
  • Department of Cartography, GIS and Remote Sensing, Georg-August University Goettingen, 37077 Goettingen, Germany.
  • Google Scholar


  •  Received: 02 September 2022
  •  Accepted: 18 October 2022
  •  Published: 30 November 2022

References

Abbaspour KC (2015). SWAT-CUP: SWAT Calibration and Uncertainty Programs-A User Manual. In Eawag: Swiss Federal Institute of Aquatic Science and Technology.

View

 

Abbaspour KC, Johnson CA, Van Genuchten MT (2004). Estimating Uncertain Flow and Transport Parameters Usinga Sequential Uncertainty Fitting Procedure. Vadose Zone Journal 3(4):340-1352.
Crossref

 

Abbaspour KC, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, Kløve B (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology 524:733-752.
Crossref

 

Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology 333(2-4):413-430.
Crossref

 

Al-Sabhan W, Mulligan M, Blackburn GA (2003). A real-time hydrological model for flood prediction using GIS and the WWW. Computers, Environment and Urban Systems 27(1):9-32.
Crossref

 

Allen RG, Jensen ME, Wright JL, Burman RD (1989). Operational Estimates of Reference Evapotranspiration. Agronomy Journal 81(4):650-662.
Crossref

 

Aqnouy M, El Messari JES, Ismail H, Bouadila A, Navarro JGM, Loubna B, Mansour MRA (2019). Assessment of the SWAT model and the parameters affecting the flow simulation in the watershed of Oued Laou (Northern Morocco). Journal of Ecological Engineering 20(4):104-113.
Crossref

 

Archer L, Neal JC, Bates PD, House JI (2018). Comparing TanDEM-X Data with Frequently Used DEMs for Flood Inundation Modeling. Water Resources Research 54(12):10-205.
Crossref

 

Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, Van Griensven A, Van Liew MW, Kannan N, Jha MK (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE 55(4):1491-1508.
Crossref

 

Batjes NH (2004). SOTER-based soil parameter estimates for Central Africa (Issue October).

View

 

Beharry SL, Gabriels D, Lobo D, Ramsewak D, Clarke RM (2021). Use of the SWAT model for estimating reservoir volume in the Upper Navet watershed in Trinidad. SN Applied Sciences 3(2):1-13.
Crossref

 

Buakhao W, Kangrang A (2016). DEM Resolution Impact on the Estimation of the Physical Characteristics of Watersheds by Using SWAT. Advances in Civil Engineering 2016.
Crossref

 

Coetzee ME (2001). NAMSOTER, a SOTER database for Namibia. Agroecological Zoning 458 p.

 

Cohen J (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement 20(1):37-46.
Crossref

 

Congalton RG (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 37(1):35-46.
Crossref

 

Desai S, Singh DK, Islam A, Sarangi A (2021). Multi-site calibration of hydrological model and assessment of water balance in a semi-arid river basin of India. Quaternary International 571:136-149.
Crossref

 

Devi GK, Ganasri BP, Dwarakish, GS (2015). A Review on Hydrological Models. Aquatic Procedia 4:1001-1007.
Crossref

 

Emam AR, Kappas M, Fassnacht S, Hoang N, Linh K (2018). Uncertainty analysis of hydrological modeling in a tropical area using different algorithms. Frontiers in Earth Science 12(4):661-671.
Crossref

 

Emam AR, Kappas M, Linh NHK, Renchin T (2017). Hydrological Modeling and Runoff Mitigation in an Ungauged Basin of Central Vietnam Using.
Crossref

 

Essou GRC, Brissette F, Lucas-Picher P (2017). The use of reanalyses and gridded observations as weather input data for a hydrological model: Comparison of performances of simulated river flows based on the density of weather stations. Journal of Hydrometeorology 18(2):497-513.
Crossref

 

European Space Agency (2020). Copernicus Sentinel-2. Copernicus.

View

 

Fernandez GP, Chescheir GM, Skaggs RW, Amatya DM (2005). Development and Testing of Watershed-Scale Models for Poorly Drained Soils. Transactions of the ASAE 48(2):639-652.
Crossref

 

Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology 377(1-2):80-91.
Crossref

 

Hajati MC, White S, Moosdorf N, Santos IR (2020). Modeling Catchment-Scale Nitrogen Losses Across a Land-Use Gradient in the Subtropics. Frontiers in Earth Science 8:1-19.
Crossref

 

Harris Geospatial Solutions Inc. (2020). ENVI image analysis software (5.5.1). Harris Geospatial Solutions.

View

 

Hashim M, Reba NM, Nadzri MI, Pour AB, Mahmud MR, Yusoff ARM, Ali MI, Jaw SW, Hossain MS (2016). Satellite-Based Run-Off Model for Monitoring Drought in Peninsular Malaysia. MDPI: Remote Sensing 8(633):1-25.
Crossref

 

Howell TA, Evett S (2004). The Penman-Monteith Method (Issue January).

View

 

IWRM (2010). Integrated Water Resources Management: Okavango-Omatako River Basin.

View

 

Jacobson PJ, Jacobson KM, Seely MK (1995). Ephemeral Rivers and their Catchments. Desert Research Foundation of Namibia.

 

Kim KB, Kwon HH, Han D (2018). Exploration of warm-up period in conceptual hydrological modelling. Journal of Hydrology 556:194-210.
Crossref

 

Koycegiz C, Buyukyildiz M (2019). Calibration of SWAT and two data-driven models for a data-scarce mountainous headwater in Semi-Arid Konya Closed Basin. Water (Switzerland) 11(147):1-17.
Crossref

 

Krysanova V, White M (2015). Aperçu des progrès de l'évaluation des ressources en eau avec SWAT. Hydrological Sciences Journal 60(5):771-783.

 

Lai C, Zhong R, Wang Z, Wu X, Chen X, Wang P, Lian Y (2019). Monitoring hydrological drought using long-term satellite-based precipitation data. Science of the Total Environment 649:1198-1208.
Crossref

 

Landman WA, Mason SJ (1999). Sea-Surface Temperatures and Summer Rainfall Over South Africa And Namibia. International Journal of Climatology 19(13):1477-1492.
Crossref

 

Maharjan GR, Park YS, Kim NW, Shin DS, Choi JW, Hyun GW, Jeon JH, Ok YS, Lim KJ (2013). Evaluation of SWAT sub-daily runoff estimation at small agricultural watershed in Korea. Frontiers of Environmental Science and Engineering in China 7(1):109-119.
Crossref

 

Manning N, Seely M (2005). Forum for Integrated Resource Management (FIRM) in Ephemeral Basins: Putting communities at the centre of the basin management process. Physics and Chemistry of the Earth, Parts A/B/C 30(11):886-893.
Crossref

 

Marsh A, Seely MK (1992). Oshanas, sustaining people, environment and development in central Owambo.

 

Meaurio M, Zabaleta A, Uriarte JA, Srinivasan R, Antigüedad I (2015). Evaluation of SWAT models performance to simulate streamflow spatial origin. The case of a small forested watershed. Journal of Hydrology 525:326-334.
Crossref

 

Mendelsohn J, Jarvis A, Roberts C, Robertson T (2002). Atlas of Namibia: A Portrait of the Land and its People (1st Editio). David Philip.

 

Mendelsohn J, Obeid S, de Klerk N, Vigne P (2006). Farming Systems in Namibia. RAISON (Research and Information Services of Namibia). ABC Press.

 

Mendelsohn J, Obeid S, Roberts C (2000). A profile of north-central Namibia. Gamsberg Macmillan Publishers.

 

Mengistu AG, van Rensburg LD, Woyessa YE (2019). Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. Journal of Hydrology: Regional Studies 25:100621.
Crossref

 

Miskewitz R (2007). Soil Water Assessment Tool (SWAT). pp. 1-21.

 

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE 50(3):885-900.
Crossref

 

Moriasi DN, Gitau MW, Pai N, Daggupati P (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE 58(6):1763-1785.
Crossref

 

Musyoka FK, Strauss P, Zhao G, Srinivasan R, Klik A (2021). Multi-step calibration approach for SWAT model using soil moisture and crop yields in a small agricultural catchment. Water (Switzerland) 13(16).
Crossref

 

Namibia Resource Consultants (1999). Rainfall Distribution in Namibia: Data Analysis and Mapping Spatial, Temporal, and Southern Oscilliation Index Aspects.

 

National Centers for Environmental Prediction (NCEP) (2020). Global Weather Data for SWAT. Climate Forecast System Reanalysis (CFSR).

View

 

Neitsch S, Arnold J, Kiniry J, Williams J (2011). Soil & Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resources Institute pp. 1-647.

 

Nyeko M, D'Urso G, Immerzeel W, Cioffi A (2010). Land Use Changes in Aswa Basin-Northern Uganda: Opportunities and Constrains to Water Resources Management [University of Naples Federico II].

View

 

O'Connor TG (2001). Effect of small catchment dams on downstream vegetation of a seasonal river in semi-arid African savanna. Journal of Applied Ecology 38(6):1314-1325.
Crossref

 

Orti MV, Negussie KG (2019). Temporal statistical analysis and predictive modelling of drought and flood in Rundu-Namibia. Climate Dynamics 53(3):1247-1260.
Crossref

 

Palmer MA, Reidy Liermann CA, Nilsson C, Flörke M, Alcamo J, Lake PS, Bond N (2008). Climate change and the world's river basins: anticipating management options. Frontiers in Ecology and the Environment 6(2):81-89.
Crossref

 

Pontes LM, Batista PVG, Silva BPC, Viola MR, Rocha HR, Silva MLN (2021). Assessing sediment yield and streamflow with SWAT model in a small sub-basin of the Cantareira System. Revista Brasileira de Ciência Do Solo 45:1-15.
Crossref

 

Rafiei EA, Kappas M, Akhavan S, Hosseini SZ, Abbaspour KC (2015). Estimation of groundwater recharge and its relation to land degradation: case study of a semi-arid river basin in Iran. Environmental Earth Sciences 74(9):6791-6803.
Crossref

 

Rajib MA, Merwade V, Yu Z (2016). Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture. Journal of Hydrology 536:192-207.
Crossref

 

Rani S, Sreekesh S (2019). Evaluating the Responses of Streamflow under Future Climate Change Scenarios in a Western Indian Himalaya Watershed. Environmental Processes 6(1):155-174.
Crossref

 

Rizzoli P, Martone M, Gonzalez C, Wecklich C, Borla Tridon D, Bräutigam B, Bachmann M, Schulze D, Fritz T, Huber M, Wessel B, Krieger G, Zink M, Moreira A (2017). Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS Journal of Photogrammetry and Remote Sensing 132:119-139.
Crossref

 

Rostamian R, Jaleh A, Afyuni M, Mousavi SF, Heidarpour M, Jalalian A, Abbaspour KC (2008). Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrological Sciences Journal 53(5):977-988.
Crossref

 

Sood A, Smakhtin V (2015). Global hydrological models: a review. Hydrological Sciences Journal 60(4):549-565.
Crossref

 

Stehr A, Debels P, Romero F, Alcayaga H (2008). Hydrological modelling with SWAT under conditions of limited data availability: Evaluation of results from a Chilean case study. Hydrological Sciences Journal 53(3):588-601.
Crossref

 

Strohbach B (2008). Mapping the major catchments of Namibia. Agricola pp. 63-73.

View

 

Tan ML, Ficklin DL, Dixon B, Ibrahim AL, Yusop Z, Chaplot V (2015). Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow. Applied Geography 63:357-368.
Crossref

 

Tegegne G, Park DK, Kim YO (2017). Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. Journal of Hydrology: Regional Studies 14:49-66.
Crossref

 

Terskii P, Kuleshov A, Chalov S, Terskaia A, Belyakova P, Karthe D, Pluntke T (2019). Assessment of Water Balance for Russian Subcatchment of Western Dvina River Using SWAT Model. Frontiers in Earth Science 7:241.
Crossref

 

Thanh Noi P, Kappas M (2017). Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors (Basel, Switzerland) 18(1).
Crossref

 

Thavhana MP, Savage MJ, Moeletsi ME (2018). SWAT model uncertainty analysis, calibration and validation for runoff simulation in the Luvuvhu River catchment, South Africa. Physics and Chemistry of the Earth 105:115-124.
Crossref

 

Turkmen M, Andrew KF, N'Dri WKC, Pistre S, Jourda JP, Kouamé KJ (2021). Application of a Deterministic Distributed Hydrological Model for Estimating Impact of Climate Change on Water Resources in Côte d'Ivoire Using RCP 4.5 and RCP 8.5 Scenarios: Case of the Aghien Lagoon. In: M. Turkmen & K. F. Andrew (Eds.), Book Publisher International. International Research in Environment, Geography and Earth Science 9:129-153.
Crossref

 

United States Department of Agriculture (USDA) (1986). Urban Hydrology for Small Watersheds. In Natural Resources Conservation Service, Conservation Engineering Division (Issue Technical Release 55 (TR-55)).

View

 

Vilaysane B, Takara K, Luo P, Akkharath I, Duan W (2015). Hydrological Stream Flow Modelling for Calibration and Uncertainty Analysis Using SWAT Model in the Xedone River Basin, Lao PDR. Procedia Environmental Sciences 28:380-390.
Crossref

 

Wessel B, Wendleder A, Marschalk U, Huber M, Hoffmann J, Rizzoli P, Krieger G, Hueso González J, Busche T, Bräutigam B, Bachmann M, Eineder M, Fritz T (2018). TanDEM-X Ground Segment - DEM Products Specification Document. In Public Document TD-GS-PS-0021: Vol. TD-GS-PS-0 (Issue 3.2).

View

 

Williams JR (1969). Flood Routing with Variable Travel Time or Variable Storage Coefficients. Transactions of the ASAE 12(1):100-103.
Crossref

 

Yang J, Reichert P, Abbaspour KC, Xia J, Yang H (2008). Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology 358(1-2):1-23.
Crossref