academic Journals

Vol. 10(2) pp. 25-32, February 2016 DOI: 10.5897/AJFS2015. 1292 Article Number: DDFD03457284 ISSN 1996-0794 Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/AJFS

Full Length Research Paper

Composition and sensory properties of plantain cake

Ibeanu Vivienne, Onyechi Uchenna, Ani Peace* and Ohia Clinton

Department of Home Science, Nutrition and Dietetics, University of Nigeria, Nsukka, Nigeria.

Received 26 February, 2015; Accepted 12 November, 2015

Nutrient composition, organoleptic attributes and overall acceptability of plantain cake were evaluated. Plantain fingers in stages 2 (URP) and 5 of ripeness (RP) used in this study were washed, peeled, sliced into small pieces, sun-dried for five days and milled separately into flour. Commercial wheat flour (WF₁₀₀) served as the control. Each sample was sieved and analyzed for functional properties and nutrients and combined in different proportions. The wheat flour (WF) was substituted by plantain flour (URP and RP) at 25, 50 and 75% for cake making, respectively. The combinations derived were 25% URP and 75%W (URP₂₅W₇₅), 50%URP and 50%W (URP₅₀W₅₀), 75%URP and 25%W (URP₇₅W₂₅), 25%RP and 75%W (RP₂₅W₇₅), 50%RP and 50%W (RP₅₀W₅₀), 75%RP and 25%W (RP₇₅W₂₅). Each combination was used in baking cake. The proximate composition and sensory evaluation of the cakes were determined. The URP flour had the least protein content (2.73%) while WF₁₀₀ had the highest (3.04%). The RP had the lowest fat (0.30%) and highest ash (2.33%) contents. The URP flour had more foaming stability/capacity and emulsion capacity but less oil absorption capacity and least gelation concentration than RP flour. The W₁₀₀ cake had 26.41% protein followed by the RP₂₅W₇₅ (23.99%) and URP₂₅W₇₅ (23.91%) cakes. The URP₂₅W₇₅ cake had significantly (p<0.05) more fibre and fat contents (9.44 and 12.32%, respectively) than the rest of the samples. Vitamin B₂ (mg/100 g) in URP₅₀W₅₀ (2.29) RP₂₅W₇₅ (2.05) RP₅₀W₅₀ (2.05) and W₁₀₀ (2.09) cakes were comparable. All the cake samples had similar folate and calcium contents. There were differences in iron, potassium, magnesium and zinc contents of the cakes. The URP₅₀W₅₀ was rated best plantain-based cake in terms of texture (7.80) and acceptability (7.82). This study forms a basis for new product development for the biscuit food industry.

Key words: Functional properties, Plantain flour, wheat flour, plantain-cake, proximate composition, sensory evaluation.

INTRODUCTION

There is increased advocacy on the consumption of functional foods by world human nutrition due to different health problems related with food consumption such as diabetes and coronary heart diseases (WHO/FAO, 2003). Food professional/industries might face challenges of producing food products containing functional ingredients in order to meet the nutritional requirements of individuals with health challenges. This is because of the effect of

*Corresponding author. E-mail: peace.ani@unn.edu.ng.

Author(s) agree that this article remain permanently open access under the terms of the <u>Creative Commons Attribution</u> <u>License 4.0 International License</u> added sugar and lipids in the industrial production of foods products. Alternative source of food production was advocated by Oke and Adeyemi (1991) in tackling food crises. The prospect of blending tubers, roots and plantain with cereals and legumes for the production of household food products is receiving considerable attention (Nnam, 2002; Onoja and Obizoba, 2009). This might make the products to be nutritious, relatively cheap and affordable to the rural poor to stem-off hunger and malnutrition.

Baked products provide an excellent opportunity to incorporate food-grade fractions from grains, legumes or other indigenous food sources. High cost of wheat flour in non-wheat producing countries such as Nigeria poses a problem to bakery industries and consumers of baked products (Chinma et al., 2012). Nigeria is currently one of the world's largest importers of United State wheat flour (United States Department of Agriculture, 2014). The present high cost of baked products in Nigeria presents the need to further study on incorporation of indigenous food sources for baking, as this will help reduce total dependence on wheat flour.

Plantain is the common name for herbaceous plants of the genus *Musa*. Plantain (*Musa paradisiaca*) is an important staple food in Central and West Africa. It is a basic food crop and cheap source of energy in Nigeria (Faturoti et al., 2007; Adeniyi et al., 2006). Several food consumption surveys in Nigeria identified plantain among the major starchy staples (Odenigbo, 2012; Okeke et al., 2008; Ogechi et al., 2007). According to FAO (2005), over 2.11 million metric tons of plantains are produced in Nigeria annually. However, about 35-60% post-harvest losses had been reported and attributed to lack of storage facilities and inappropriate technologies for food processing (Olorunda and Adelusola, 1997).

An average plantain has about 220 calories and is a good source of potassium and dietary fiber (Randy et al., 2007). It is rich in carbohydrate, dietary fiber, irons, vitamins, and minerals. This nutritious food is ideal for diabetics, children, and pregnant women. It can also be a good supplement for marasmus patients. Plantain contains small amount of serotonin which has the ability to dilate the arteries and improve blood circulation. Its regular consumption helps to cure anemia (low blood level) and maintain a healthy heart (USDA Nutrient Database, 2010). A diet of unripe plantain is filling and can also be a good inclusion in a weight loss diet plan (Oke et al., 1998).

Plantain is widely grown in the Southern states of Nigeria and it is used both in Nigeria and many African countries as a cheap source of calories, excellent for weight control, slow in the release of energy after consumption with a low glycermic index (Mendosa, 2008), high in potassium and good for diabetic patients (Akubor, 2003?). Plantain is also a good source of Iron, and β – Carotene (Pro-Vitamin A) as reported by Ogazi (1988?). It contains 32% carbohydrate, 1% protein, 0.02

fat, 60% water, some vitamins and mineral elements (Kure et al., 1998). With the progressive increase in the consumption of bread and related baked products in Nigeria, the composite flour program if adopted has the potential to add value to indigenous crops like plantain and at the same time conserve foreign exchange spent on wheat importation. The aim of the study therefore is to evaluate the effect of substitution on the functional properties of the wheat/ plantain composite flour and the proximate/sensory properties of wheat/plantain bread.

Plantain is rich in dietary fibre (8.82%), resistant starch (16.2%), and low in protein and fat (Ayodele and Erema, 2011). Dietary fibre in human diets lowers serum cholesterol, reduces the risk of heart attack, colon cancer, obesity, blood pressure, appendicitis and many other diseases (Rehinan et al., 2004). On the other hand, resistant starch assists in preventing and managing type 2-diabetes (Jideani and Jideani, 2011). Resistant starch has interesting functional properties for use in foods including: formation of products with high fibre content and low volume with improved sensory properties like texture and appearance (Nugent, 2005). Considering the health benefits of plantain, its incorporation as composite blend in the preparation of cake will help in enhancing the nutritional and health status of consumers, reduce total dependence on wheat flour and incidence of certain chronic non communicable disease.

The possibility of producing bakery products from wheat/plantain composite flour has been assessed (Bamidele et al., 1990; Mepba et al., 2007; Idoko and Nwajiaku, 2013). The water absorption capacity and dough development time of the composite flour decreased with increasing levels of supplementation with plantain (Bamidele et al., 1990). The percentage of wheat flour required to achieve a certain effect in composite flours depends heavily on the quality and quantity of wheat gluten and the nature of the product involved. Akubor (1998) has shown that plantain flour has a good potential for use as a functional agent in bakery products on account of its high water absorption capacity.

Aurore et al. (2009) used colour index according to the commercial peel colour to define 8 ripening stages of banana. At stages 1-3, banana is not usually eaten like fruit, because it is green, very hard, astringent, and rich in starch. At stage 8, it is overripe and muddy. Plantain can be utilized at all stages of ripening, and its nutritive value depends on their ripeness, variety, climatic conditions and soil of crop production (Baiyeri et al., 2011; Ogazi, 1986). Baiyeri et al. (2011) reported increased ash and carbohydrate contents with ripeness, whereas at unripe stages, fat, protein and dry matter were relatively higher. With changes observed in composition of plantain due to ripening it becomes imperative to assess the use of wheat and plantain flour at different stages of ripeness in cake production. This study was undertaken to evaluate the composition of cake produced from different ratios of plantain (at stages 2 and 5 of ripeness) and wheat flours.

MATERIALS AND METHODS

Source and preparation of samples

The fresh plantains (*Musa paradisiaca*) used for this study were bought from Ogige market Nsukka in Enugu State, Nigeria. The plantain fingers were at stages 2 (unripe) and 5 (firm ripe) of ripeness using the colour index chart as described by Aurore et al. (2009).

Wheat flour and the cake ingredients (margarine, eggs, granulated sugar, vanilla and baking powder) were also bought from the local market.

The plantain fingers were washed, peeled, sliced, sun-dried for 96 h (during dry season) and milled into flour using Attrition Mill (Globe P 44, China). The flour samples were sieved through a 75 μ m sieve and stored in airtight plastic containers at room temperature (28±2°C).

Formulation of composite flour

The unripe plantain (stage "2" of ripeness) and firm ripe plantain (stage "5" of ripeness) flours were mixed with wheat flour separately at different proportions (25:75; 50:50 and 75:25) while 100% wheat flour was used as control. The flours were mixed using a B8 (Mega Best Industry Ltd, GuangDong, China) universal spiral mixer at 450 rpm for 20 min until uniform blends were obtained.

Cake making

The proportion of ingredients used consists of flour (100g), egg (100g), sugar (60g), vanilla (three drops), baking powder (1.7g), water (80 ml) and margarine (80g). The baking procedure described by Ceserani et al. (1995) was adopted.

Determination of functional properties of the flour samples

Determination of bulk density

The bulk density was determined using Onwuka (2005)'s method with slight modification. Fifty grams of each sample was measured into a clean 100 ml graduated measuring cylinder which was tapped gently several times until there was no further diminution. Its volume was recorded and the bulk density was calculated using the formula:

Bulk density $(g/cm^3) = \frac{Weight of sample (g)}{Volume occupied (cm^3)}$

Determination of foaming capacity and stability

Foaming capacity and stability were studied as described by Narayana and Narasinga (1982). Two grams of each flour sample was blended with 50 ml distilled water at $30\pm2^{\circ}$ C. The whipped mixture was transferred into 100 ml graduated cylinder. The suspension was mixed and properly shaken to foam and the volume of the foam after 30 s was recorded. The foaming capacity was expressed as a percentage increase in volume. The foam stability as a percentage of the initial foam volume.

Determination of water and oil absorption capacity

Water and oil absorption capacities were determined according to

the method described by Okezie and Bello (1988). Briefly, 1.0 gram of each sample was mixed with 20 ml distilled water (for water absorption capacity) and 20 ml of oil (for oil absorption capacity) in a flask shaker and centrifuged at 2,000 rpm for 1h. Water/oil absorbed by samples was calculated as the difference between the initial and final volumes of water/oil. Means of triplicates determination were reported.

Determination of least gelation concentration

The least gelation concentration was determined using the method of Coffmann and Garciaj (1977). Sample suspensions of 2-20% were prepared in distilled water. Ten milliliter of each of the prepared dispersions was transferred into a test tube. It was heated in a boiling water bath for 1 h, followed by rapid cooling in a bath of cold water. The test tubes were further cooled at 4°C for 2 h. The least gelation concentration was determined as that concentration when the sample from the inverted test tube did not slip.

Determination of emulsion capacity

Emulsion capacity was determined using the procedure of Abbey and Ibeh (1988) with slight modification. One gram of each flour sample was dispersed in a beaker containing 5 ml distilled water and 5 ml of vegetable oil (corn oil) was added. The mixture was emulsified by centrifuging at 1,600 for 5 min. Emulsion capacity (%) was calculated as:

(Initial vol. of oil – Final vol. of oil)

(Weight of sample × density of oil) × 100

Determination of emulsion stability

Emulsion stability was studied by the method described by Sathe and Salunkhe (1981) with slight modification. 0.5 g of the sample was blended with 25 ml of distilled water, then 25ml of vegetable oil was added while blended for 30 s at high speed. The emulsion prepared was allowed to stand in a graduated cylinder and volume of water separated at time intervals of 0.5, 1, 2, 3 ... 12h was noted in each case as the emulsion stability. Triplicate measurements were made and average results taken.

-× 100

Emulsion stability (%) was calculated as:

Height of the emulsified layer

Height of total content in the tube

Chemical analysis

Proximate composition

Proximate analysis of the samples was carried out using AOAC methods (AOAC, 1995). Moisture content was determined by air oven method at 105°C. The protein content of the sample was determined using micro-Kjeldahl method. Fat was determined by Soxhlet extraction method using petroleum ether as extracting solvent. The ash content was determined by weighing 5 g of charred sample into a tarred porcelain crucible. It was incinerated at 600°C for 6 hours in ash muffle furnace until ash was obtained. Crude fibre was determined by exhaustive extraction of soluble substances in a sample using H_2SO_4 and NaOH solution, after the residue was ashed and the loss in weight recorded as crude fibre. The carbohydrate content was determined by difference as follows:

Flour	Packed bulk density (g/cm ³)	Foaming capacity (%)	Foaming stability (%)	Water absorption capacity (g/g)	Oil absorption capacity (g/g)	Emulsion capacity (%)	Emulsion stability (%)	Least gelation concentration (%)
Ripe plantain (RP)	0.64±0.09 ^a	11.52 ± 0.30^{a}	54.78±1.64 ^a	2.77±0.45 ^c	2.59 ± 0.41^{b}	2.30±0.33 ^a	3.34 ± 0.44^{a}	35.00±0.51 ^b
Unripe plantain (URP)	0.79 ± 0.06^{b}	17.47±0.23 ^b	58.14±3.50 ^b	2.71 ± 0.04^{b}	2.56±0.42 ^a	4.00±0.48 ^c	2.74 ± 0.30^{a}	30.01±0.06 ^a
Wheat	0.82 ± 0.07^{b}	28.81±0.20 ^c	73.31±0.51 ^c	2.09±0.46 ^a	3.13±0.41 ^c	3.17 ± 0.25^{b}	4.40 ± 0.40^{b}	35.00±0.41 ^b

Table 1. Functional properties of ripe, unripe plantain and wheat flours.

Mean values in the same column with different superscripts are significantly different at p < 0.05.

Table 2. Proximate composition (%) of the ripe, unripe plantain and wheat flours.

Flour	Moisture	Protein	Fibre	Fat	Ash	Carbohydrate
Ripe plantain (RP)	18.48±0.06 ^a	3.02±0.01 ^b	1.31±0.03 ^b	0.30±0.00 ^a	2.33±0.02 ^c	74.56±0.06 ^c
Unripe plantain (URP)	20.43±0.06 ^c	2.73±0.04 ^a	0.49±0.01 ^a	0.63±0.01 ^b	2.11±0.04 ^b	73.61±0.71 ^b
Wheat	20.22±0.72 ^b	3.04±0.01 ^b	1.48±0.04 ^c	1.28±0.01 [°]	1.11±0.07 ^a	72.87±0.77 ^a

Mean values in the same column with different superscripts are significantly different at p < 0.05.

% Carbohydrate = 100 - (% Moisture + % Ash + % Protein + % Fat + % Crude fibre).

Vitamins and mineral analyses

Provitamin A was determined using the method adopted from IVACG (1992) and vitamin B_1 , B_2 , vitamin C and folate were determined using the method of AOAC (1995).

Mineral compositions were determined using AOAC method (1995). The ash was digested with 3 cm³ of 3M HCl and made up to the mark in a 100cm³ standard flask with 0.36 M HCl before the mineral elements (calcium, zinc, magnesium, iron and potassium) were determined by atomic absorption spectrophotometer (PYE Unicam SP 2900, UK)

Determination of sensory properties

Thirty panelists consisting of staff and students of the Department of Home Science, Nutrition and Dietetics University of Nigeria Nsukka, Nigeria were selected for the sensory evaluation based on their familiarity with the quality of cake. Cakes prepared from the flour blends were coded and presented in white plastic plates. Water was provided to rinse mouth between evaluations. The samples were evaluated for texture, colour, taste, flavor and general acceptability. Panelists evaluated cake samples on a 9point hedonic scale quality analysis (Ihekoronye and Ngoddy, 1985) with 9 = liked extremely, 8 = liked very much, 7 = liked, 6 = liked mildly, 5 = neither liked nor disliked, 4 = disliked mildly, 3 = disliked, 2 = disliked very much and 1 = disliked extremely.

Statistical Analysis

The data obtained were analyzed statistically by Statistical Package for Social Science (SPSS), version 18, using one way analysis of variance (ANOVA). Means were separated by calculating the least significant difference (LSD) at ($P \le 0.05$). Data reported on the tables are average values of triplicate determinations.

RESULTS

Table 1 shows the functional properties of ripe plantain, unripe plantain and wheat flours. The bulk density of the flour samples ranged from 0.64 to 0.82 gm³ for ripe plantain and wheat flour, respectively. However, there was no significant difference between the bulk density of wheat and unripe plantain flours. The foaming capacity, foaming stability and emulsion capacity of unripe plantain flour was found to be significantly higher than that of ripe flour (p<0.05). The ripe plantain and wheat flours had the highest least gelation concentration (35%) as compared to the unripe plantain flour (30.01%). The water absorption capacity of the ripe plantain (2.77g/g) and unripe plantain (2.71g/g) flours was significantly higher (p<0.05) than wheat (2.09g/g) flour.

Table 2 shows the proximate composition of the ripe, unripe plantain and wheat flours. The moisture content ranged from 18.48% for ripe to 20.43% for unripe plantain flours. Protein content ranged from 2.73 to 3.04% for unripe plantain and wheat flours, respectively. There was no significant difference in the protein content of wheat and ripe plantain flours. Wheat flour had the highest fibre (1.48%) and fat (1.28%) contents. Carbohydrate content ranged from 72.87 to 74.56% for wheat and ripe plantain flours, respectively. Ripe (2.33%) and unripe plantain (2.11%) flours had significantly higher (p<0.05) ash content when compared to the wheat flour (1.11%).

Table 3 shows the proximate composition of cakes prepared from the wheat-plantain composite flour and wheat flour (control). Table 3 shows that the carbohydrate content of the cakes prepared from plantain and wheat flour blends were significantly higher than that

Cake samples	Moisture	Protein	Fibre	Fat	Ash	Carbohydrate
URP ₂₅ W ₇₅	12.15±0.27 ^a	23.91±0.42 ^d	9.44±0.03 ⁹	12.32±0.03 ^g	3.18±0.06 ^b	39.00±0.23 ^b
$URP_{50}W_{50}$	16.00±0.04 [°]	21.41±0.01 [°]	4.98±0.04 ^f	4.23±0.28 ^a	2.81±0.03 ^a	50.57±2.86 ⁹
URP ₇₅ W ₂₅	19.03±0.05 [°]	18.91±0.35 ^ª	0.44 ± 0.03^{b}	7.53±0.05 ^b	6.51±0.45 ^d	47.58±3.47 ^e
RP ₂₅ W ₇₅	16.00±0.04 ^c	23.00±0.01 ^d	0.36±0.04 ^a	8.70±0.04 ^d	2.70±0.05 ^a	49.24±0.03 ^f
$RP_{50}W_{50}$	18.45±0.04 ^d	21.56±0.04 ^c	0.95±0.03 ^d	8.53±0.02 ^c	3.60±0.30 ^c	46.91±0.33 ^d
RP ₇₅ W ₂₅	19.33±0.02 ^f	19.14±0.04 ^b	1.55±0.05 ^e	11.34±0.28 ^f	9.06±0.04 ^e	42.58±0.64 ^c
W ₁₀₀	14.00±0.04 ^b	26.41±0.04 ^e	0.57±0.04 ^c	10.69±0.02 ^e	9.56±0.05 ^f	38.77±0.08 ^a

Table 3. Proximate composition (%) of the cake samples.

Mean values in the same column with different superscripts are significantly different at p < 0.05. Key: URP₂₅W₇₅₌ (25% unripe plantain flour, 75% wheat flour), URP₅₀W₅₀₌ (50% unripe plantain flour, 50% wheat flour), URP₇₅W₂₅₌ (75% unripe plantain flour, 25% wheat flour), RP₂₅W₇₅₌ (25% ripe plantain flour, 75% wheat flour), RP₅₀W₅₀₌ (50% ripe plantain flour, 50% wheat flour), RP₇₅W₂₅₌ (75% ripe plantain flour, 25% wheat flour), W₁₀₀=(100% wheat flour).

Table 4. Vitamin composition of the cake samples (per 100 g).

Cake samples	Pro-vit. A (µg)	Vit. B₁ (mg)	Vit. B ₂ (mg)	Folate (µg)	Vit. C (mg)
URP ₂₅ W ₇₅	928±0.01 ^d	0.84±0.01 ^f	2.29±0.01 ^c	237±0.01 ^b	15.60±0.01 [°]
$URP_{50}W_{50}$	973±0.01 ⁹	0.67±0.01 ^d	2.05±0.01 ^b	235±0.01 ^a	30.60±0.01 ^e
URP ₇₅ W ₂₅	950±0.01 ^f	0.49±0.01 ^c	1.98±0.01 ^ª	235±0.01 ^a	45.60±0.01 ^g
RP ₂₅ W ₇₅	915±0.01 ^b	0.22±0.01 ^b	2.05±0.01 ^b	238 ± 0.01 ^b	14.40±0.01 ^b
$RP_{50}W_{50}$	934±0.01 ^e	0.69±0.01 ^e	2.02±0.01 ^b	237±0.01 ^b	28.20±0.01 ^d
RP ₇₅ W ₂₅	924±0.01 ^c	0.96 ±0.01 ^g	1.98±0.01 ^ª	235±0.01 ^a	42.00±0.01 ^f
W ₁₀₀	905±0.01 ^a	1.01±0.01 ^a	2.09±0.01 ^b	235±0.01 ^a	0.60±0.01 ^a

Mean values in the same column with different superscripts are significantly different at p < 0.05. Key:URP₂₅W₇₅₌ (25% unripe plantain flour, 75% wheat flour), URP₅₀W₅₀₌ (50% unripe plantain flour, 50% wheat flour), URP₇₅W₂₅₌ (75% unripe plantain flour, 25% wheat flour), RP₂₅W₇₅₌ (25% ripe plantain flour, 75% wheat flour), RP₅₀W₅₀₌ (50% ripe plantain flour, 50% wheat flour), RP₇₅W₂₅₌ (75% unripe plantain flour, 50% wheat flour), W₁₀₀=(100% wheat flour).

prepared from 100% wheat flour. However, 100% wheat flour cake had the highest protein (26.41%) and ash (9.56%) content when compared to other cakes.

Table 4 shows the vitamin composition of the cake samples. The URP₅₀W₅₀, RP₅₀W₅₀, RP₇₅W₂₅ and URP₇₅W₂₅ cakes had significantly more pro-vitamin A, vitamin B₁ and vitamin C values. Cake prepared from 100% wheat flour was significantly low in pro-vitamin A (905 μ g/100 g) and vitamin C (0.60 mg); high in vitamin B₁ (1.01 mg) and folate (235 μ g/100 g).

The mineral composition of the cakes is presented in Table 5. The URP₇₅ W_{25} cake had significantly more potassium content (2310 mg/100 g) but less calcium (449 mg/100 g), iron (9.84 mg/100 g), magnesium (262 mg/100 g) and zinc (6.02 mg/100 g).

The sensory attributes of cakes prepared from the flours are presented in Table 6. The URP₅₀W₅₀ was rated best plantain-base cake in terms of texture (7.80) and acceptability (7.82). The URP₇₅W₂₅ cake was rated lowest in texture (6.76), appearance (6.24), taste (6.44), flavor (6.67) and overall acceptability (6.42). However, the plantain-base cakes compared favourably with the 100% wheat cake in most the sensory attributes.

DISCUSSION

The foaming capacity of the flours ranged from 11.52 -28.81%. Wheat flour had the highest foaming capacity and stability. Foaming capacity is assumed to be dependent on the configuration and nature of protein molecules, as flexible proteins have good foaming capacity (Graham and Philips, 1976) (). Unripe plantain flour had higher foam stability (58.14%) and capacity (17.47 %) when compared to ripe plantain flour (54.78 and 11.52%, respectively). This may suggest the usefulness of the flour in improving textural and leavening characteristics. Akubor et al. (2000) reported that food ingredients with good foaming capacity and stability can be used in bakery products. The water absorption capacity of the flours ranged from 2.09 - 2.77 g/g with wheat flour having the lowest value (2.09 g/g). The major chemical composition that enhances the water absorption capacity of flours are carbohydrates and proteins, since they contain hydrophilic parts such as polar or charged chains (Lawal and Adebowale, 2004). The result of carbohydrate content of the plantain flours (Table 2) may have contributed to their water absorption capacity. The

Cake samples	Calcium	Iron	Potassium	Magnesium	Zinc
URP ₂₅ W ₇₅	$452 \pm 0.01^{\circ}$	12.09 ± 0.01 ^e	1764 ± 0.01 ^d	296 ± 0.01 ^e	8.65 ± 0.01 ^e
$URP_{50}W_{50}$	451 ± 0.01 ^b	10.96 ± 0.01 [°]	2037 ± 0.01^{f}	279 ± 0.01 [°]	7.47 ± 0.01^{d}
URP ₇₅ W ₂₅	449 ± 0.01^{a}	9.84 ± 0.01^{a}	2310 ± 0.01 ^g	262 ± 0.01^{a}	6.02 ± 0.01^{a}
RP ₂₅ W ₇₅	$452 \pm 0.01^{\circ}$	12.39 ± 0.01^{f}	I286 ± 0.01 ^b	298 ± 0.01 ^e	8.70 ± 0.01^{f}
RP ₅₀ W ₅₀	451 ± 0.01 ^b	11.54 ± 0.01 ^d	1559 ± 0.01 ^c	282 ± 0.01 ^d	$7.44 \pm 0.01^{\circ}$
RP ₇₅ W ₂₅	449 ± 0.01^{a}	10.44 ± 0.01^{b}	1834 ± 0.01 ^e	266 ± 0.01^{b}	6.18 ± 0.01^{b}
W ₁₀₀	454 ± 0.01^{d}	13.21 ± 0.01^{g}	1012 ± 0.01^{a}	314 ± 0.01^{f}	9.97 ± 0.01^{g}

Table 5. Mineral composition (mg/100 g) of the cakes.

Mean values in the same column with different superscripts are significantly different at p < 0.05. Key: URP₂₅W₇₅₌ (25% unripe plantain flour, 75% wheat flour), URP₅₀W₅₀₌ (50% unripe plantain flour, 50% wheat flour), URP₅₅W₂₅₌ (75% unripe plantain flour, 25% wheat flour), RP₂₅W₇₅₌ (25% ripe plantain flour, 75% wheat flour), RP₅₀W₅₀₌ (50% ripe plantain flour, 50% wheat flour), RP₇₅W₂₅₌ (75% ripe plantain flour), W₁₀₀ = (100% wheat flour).

Table 6. Sensory attributes of the cake samples.

Cake samples	Texture	Appearance	Taste	Flavour	Overall acceptability
URP ₂₅ W ₇₅	7.71±1.10 ^b	7.67±1.07 ^d	7.82±1.01 ^b	7.98±1.01 ^a	7.82±1.01 ^{abc}
$URP_{50}W_{50}$	7.80±1.22 ^c	7.56±1.18 [°]	7.73±1.30 ^b	7.76±1.17 ^b	7.82±1.39 ^{bcd}
URP ₇₅ W ₂₅	6.76±1.71 ^a	6.24±1.77 ^a	6.44±1.96 ^a	6.67±1.89 ^a	6.42±2.15 ^{ab}
RP ₂₅ W ₇₅	7.67±1.33 ^b	7.62±1.23 ^d	7.78±1.29 ^b	7.87±1.10 ^b	7.67±1.26 ^{abc}
$RP_{50}W_{50}$	8.04±0.98 ^c	6.98±1.74 ^b	7.69±1.04 ^b	7.71±1.06 ^b	7.56±1.01 ^{cd}
RP ₇₅ W ₂₅	7.07±2.05 ^a	6.89±1.85 ^d	6.40±2.15 ^a	6.78±1.93 ^a	6.76±1.85 ^a
W ₁₀₀	7.47±1.75 ^b	8.38±103 ^e	8.07±1.25 ^b	8.20±1.29 ^c	8.02±1.12 ^d

Mean values in the same column with different superscripts are significantly different at p < 0.05. Key: URP₂₅W₇₅₌ (25% unripe plantain flour, 75% wheat flour), URP₅₀W₅₀₌ (50% unripe plantain flour, 50% wheat flour), URP₇₅W₂₅₌ (75% unripe plantain flour, 25% wheat flour), RP₂₅W₇₅₌ (25% ripe plantain flour, 75% wheat flour), RP₅₀W₅₀₌ (50% ripe plantain flour, 50% wheat flour), RP₇₅W₂₅₌ (75% ripe plantain flour, 25% wheat flour), W₁₀₀=(100% wheat flour).

emulsion capacity ranged from 2.30 to 4.00% with unripe plantain having the highest value. Emulsion capacity plays a significant role in many food systems where protein has the ability to bind to fat such as in batter and dough (Sathe, 2001). There was significant difference in the least gelation concentration of unripe plantain flour and wheat flour. According to Sathe et al. (1982) the variation in the gelling properties of flours is attributed to the relative ratio of protein, carbohydrates and lipids that made up the flours and interaction between such components.

The moisture content of the flours ranged from 18.48 to 20.43%. Unripe plantain flour had the highest moisture value (20.43%) which is still low when compared to other studies (Idoko and Nwajiaku, 2013; Ketiku, 1973; Asiedu, 1987) that reported a range of 49.40 to 62.0%. Low moisture content enhances keeping quality/shelf-life. The fat content of wheat flour (1.28%) was higher than the plantain flours (0.30% and 0.63%). The fat content of the plantain flour in this study is similar to those reported in other studies (Odenigbo et al. 2013; Egbebi and Bademosi, 2011). However, Idoko and Nwajiaku (2013) reported higher values of fat for firm ripe (2.10%) and

unripe plantain (2.30%) flour. This difference could be attributed to stage of ripeness, soil and climate condition under which the fruits were planted (Chandler, 1995; Baiyeri and Unadike, 2001).

This study showed that the protein contents of ripe and unripe plantain flours were 3.03 and 2.73%, respectively. This is in agreement with Egbebi and Bademosi (2011) who reported that protein content of ripe and unripe plantain flour varied from 2.18 - 3.15%. Avodele and Erema (2011) also reported that plantain has low protein and fat contents. The increase in protein content of the plantain flour from unripe (2.73%) to ripe (3.03%) stage could be associated with amino acid uptake and incorporation into protein during fruit ripening (Brady et al., 1970). The crude fibre content of the plantain flours (1.31 and 0.49% for ripe and unripe plantain, respectively) is an indication that when incorporated in human diet would help in lowering serum cholesterol. reduction of risk of heart attack, colon cancer, obesity, blood pressure, appendicitis and many other diseases as reported by Rehinan et al. (2004). The ash contents of both ripe (2.33%) and unripe plantain (2.11%) flours reported in this study are comparable with the work of

Odenigbo et al. (2013). Ash contents are indication of minerals that are contained in the flours. The carbohydrate content of the flours ranges from 72.87 - 74.56%, with ripe plantain having the highest value (74.56%). Carbohydrate is a source of energy for human daily activities.

The moisture content of the 100% wheat cakes was significantly lower than the composite cakes except URP₂₅W₇₅ cake. This could be due to the ability of the plantain flours to absorb more water than the wheat flour as shown in Table 1. Protein content of the cakes ranged from 18.91 - 26.41%. This shows that 100 g of the cake can provide more than one-third of recommended daily protein intake (IOM, 2005) of a healthy adult when consumed The protein content of the plantain base cakes increased with addition of wheat flour. This could be due to additive effect of wheat flour as it contains more protein than the plantain flour (Table 2). The fibre and fat content of the cakes varied between 0.36 - 9.44% and 4.23 – 12.32%, respectively with URP₂₅W₇₅ cake having the highest fibre and ash contents. The health benefits of fibre are enormous (Rehinan et al., 2004). The cakes had appreciable ash content which ranged from 2.81 -9.56%. The plantain base cakes had more carbohydrate content than the 100% wheat cake. This is guite understandable as plantain flour had higher carbohydrate content than the wheat flour (Table 2).

The composite cakes contain significantly higher vitamins (pro-vitamin A, vitamin C, B₁, B₂ and folate) than 100% wheat cake. This demonstrates the beneficial effect of blending food in food product development. The result agrees with Akubor (2005) that nutritional enhancement is the advantage in the use of composite food products. The calcium and iron contents of cakes made from the composite flour varied from 449 - 454 mg and 9.84 - 12.39 mg, respectively. Calcium is essential for proper bone and teeth formation (Wardlaw and Kessel, 2002). The potassium, magnesium and zinc composition (mg/100g) of the composite cakes ranged from 1012 - 2310, 262 - 314 and 6.02 - 9.97, respectively. These minerals are quite beneficial to human health; potassium is crucial to heart function and plays a key role in skeletal and smooth muscle contraction, making it important for normal digestive and muscular function (Wardlaw and Kessel, 2002). Magnesium is an essential constituent of all cells and is necessary for the functioning of enzymes involved in energy utilization and it is present in the bone (ADA, 2002). Zinc is needed for the body's defensive (immune) system to properly work (Wardlaw and Kessel, 2002). It plays a role in cell division, cell growth, wound healing, and the breakdown of carbohydrates. The high mineral composition of the cakes shows that it might help to mitigate some mineral deficiencies.

The evaluated sensory attributes of 100% wheat cake are similar to the plantain base cakes up to 50:50 flour substitution levels. Cakes prepared from 25:75 and 50:50 plantain: wheat flour ratios were rated higher in appearance and overall acceptability than the 75:25 plantain: wheat flour cakes. This is because cakes made from 75% plantain and 25% wheat flour had dull colour, as a result of the activity of phenolase on the plantain during processing (Perez-Sira, 1997). However, colour and oxidative stability of plantain flour could be enhanced by blanching slices in 1.25% NaHSO₃ solution (Mepba et al., 2007).

Conclusion

Ripening affects the functional and nutritional properties of plantain flour as well as its products. Acceptable cakes can be produced using plantain: wheat composite flours up to 50:50 substitutions without adversely affecting the sensory quality. Cakes produced from these flour blends can serve as functional foods especially for hypertensive, diabetic and obese patients considering their high protein, magnesium, potassium, and relative high fibre content.

Conflict of Interests

The authors have not declared any conflict of interests.

REFERENCES

- Abbey BW, Ibeh GO (1988). Functional properties of raw and heat processed cowpea (*Vigna unguiculata*, Walp) flour. J. Food Sci. 53: 1775-1777.
- ADA (American Diabetes Association) (2002). Evidence based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care 25(1):550-560.
- Adeniyi TA, Sanni LO, Barimalaa LS, Hart AD (2006). Determination of micronutrients and color variability among new plantain and banana hybrid flour. World J. Chem. 1(1):23-27.
- Akubor PI (1998). Functional properties of cowpea-plantain flour blends. Proceedings: 22nd Ann NIFST Conference, University of Agriculture, Abeokuta, Nigeria.
- Akubor PI (2003). Functional properties and performance of cowpea/plantain/wheat flour blends in Biscuits. Plant Food Human Nutr. 58:1-8.
- Akubor PI (2005). Functional properties of soybean- corn-carrot flour blends for cookie production. J. Food Sci. Technol. 42(4):303-307.
- Akubor PI, Isolokwu PC, Ugbane O, Onimawo IA (2000). Proximate composition and functional properties of African breadfruit kernel and wheat flour blends. Food Res. Int. 33:707-712.
- AOAC (Association of Official Analytical Chemists) (1995). Official methods of Analysis, 15th edition. Washington DC.
- Asiedu JJ (1987). Some physio-chemical changes during ripening and storage of plantain. Trop. Sci. 27(4):249-260.
- Aurore G, Berthe P, Louis F (2009). Bananas, raw materials for making processed food products: A review. Trends in Food Sci. Technol. 20:78-91.
- Ayodele OH, Erema VG (2011). Glycemic index of processed unripe plantain meals. Afr. J. Food Sci. 4:514-521.
- Baiyeri K, Aba S, Otitoju G, Mbah O (2011). The effects of ripening and cooking method on mineral and proximate composition of plantain (*Musa* sp. AAB cv.'Agbagba') fruit pulp. Afr. J. Biotechnol. 10(36):6979-6984.
- Baiyeri, KP, Unadike GO (2001). Ripening stages and days after harvest influenced some biochemical properties of two Nigerian

plantains (Musa species AAB) cultivars. Plant Prod. Res J. 6:11-19.

- Bamidele EA, Cardoso AO, Olaofe O (1990). Rheology and baking potential of wheat/plantain composite flour. J. Sci. Food. Agric. 51(3):421-424.
- Brady J, Palmer JKO, Connel PBH, Smile RM (1970). An increase in protein synthesis during ripening of banana fruit. Phytochemistry 9(5):1037-1047.
- Ceserani V, Kinkton R, Foskett D (1995). Practical cooking .8th edn. Holder and Stronghton, London.
- Chandler S (1995). The nutritional value of bananas. In: Gowen S (Ed.). Bananas and Plantains. Chapman and Hall, 2-6 Boundary Row, London SEI 8HN, UK, P 597.
- Chinma CE, Abu JO, Adani OP (2012). Proximate composition, physical and sensory properties of non-wheat cakes from Acha and Bambara nut flour blends. Nig. J. Nutr. Sci. 33(1):7-11.
- Coffmann CW, Garciaj VV (1977). Functional properties and amino acid content of a protein isolate from mung bean flour. J. Food Sci. 12:473-480.
- Egbebi O, Bademosi TA (2011). Chemical composition of unripe and ripe plantain. Int. J. Trop. Med. Public Health 1:1-4.
- FAO (2005). Production Yearbook for 2005. FAOSTAT Data. Food and Agriculture Organisation of the United Nations, Rome.
- Faturoti B, Madukwe M, Tenkouano A, Agwu A (2007). A review of policy acts and initiatives in plantain and banana innovation system in Nigeria. Afr. J. Biotechnol. 6(20):2297-2302.
- Graham DE, Philips MC (1976). The conformation of proteins at the airwater interface and their role in stabilizing foam. In: Akers RJ (Ed.) New York: Academic Press. Foams, pp. 237-255.
- Idoko JO, Nwajiaku I (2013). Performance of ripped and unripe plantainwheat flour blend in biscuit production. Int. J. Biol. Food Vet. Agric. Eng. 7(12):848-851.
- Ihekoronye RI, Ngoddy PO (1985). Integrated food science and technology for the tropics. Macmillan Publishers, London, pp. 259-262.
- IOM (Institute of Medicine) (2005). Dietary reference intake for energy, carbohydrate, fiber, fat fatty acids, cholesterol, protein and amino acids (macronutrients).
- IVACG (International Vitamin A Consultative Group) (1992). Reprint of selected methods for the analysis of Vitamin A and carotenoids in nutrition surveys. Washington D. C. The Nutrition Foundation, pp.16-18.
- Jideani IA, Jideani VA (2011). Development of the cereal grains *Digitaria exilis* (Acha) and *Digitariaiburua* (Iburu). J. Food Sci. Technol. 48:251-259.
- Ketiku AO (1973). Chemical composition of unripe (green) and ripe plantain (*Musa parasidica*). J. Sci. Food. Agric. 24:703-709.
- Kure OA, Bahago EJ, Daniel EA (1998). Studies on the proximate composition and effect of flour particle size of acceptability of biscuits produced from blends of soyabeans and plantain flours. Namoda Tech. Scope J. 3(2):17-22.
- Lawal OS, Adebowale KO (2004). Effect of acetylation and succinylation on solubility protein, water absorption capacity, oil absorption capacity and emulsifying properties of muncuna bean (*Mucuna pruiens*) protein concentrate. Nahrung/Food 48(2):129-136.
- Mepba HD, Eboh L, Nwajigwa SU (2007). Chemical composition, functional and baking properties of wheat-plantain composite flours. Afr. J. Food. Agric. Nutr. Dev. 7(1):1-22.
- Narayana K, Narasinga RMS (1982). Functional properties of raw and heat processed winged bean flour. J. Food Sci. Technol. 42:1534-1538.
- Nnam NM (2002). Evaluation of complementary foods based on maize, groundnut, pawpaw and mango flour blends. Nig. J. Nutr. Sci. 23:1-4.
- Nugent AP (2005). Health properties of resistant starch. Nutr. Bull. 30:27-54.
- Odenigbo MA (2012). Knowledge, Attitudes and Practices of People with Type 2 Diabetes Mellitus in a Tertiary Health Care Centre, Umuahia, Nig. J. Diabetes Metab. 3:187-191.
- Odenigbo MA, Asumugha VU, Ubbor S, Nwauzor C, Otuonye AC, Offia-Olua BI, Princewill-Ogbonna IL, Nzeagwu OC, Henry-Uneze HN, Anyika JU, Ukaegbu P, Umeh AS, Anozie GO (2013). Proximate composition and consumption pattern of plantain and cookingbanana. Br. J. Appl. Sci. Technol. 3(4):1035-1043.

- Ogazi PO (1986). Plantain as a raw material for Baking Industry. Horticultural Society of Nigeria 8th Annual Conference/ 10th Anniversary of National Horticultural Research Institute (NIHORT) Ibadan, Nigeria. pp. 1–26.
- Ogazi PO (1988). Plantain utilization and nutrition. In: Food crops productions, Utilization and Nutrition Proc. Of course at University of Nigeria Nsukka. 10 – 23 April 1988. Dotman Pub, Ltd.
- Ogechi UP, Akhakhia OI, Ugwunna UA (2007). Nutritional status and energy intake of adolescents in Umuahia urban, Nigeria. Pak. J. Nutr. 6(6):641-646.
- Oke OL, Adeyemi IA (1991). Consumption of alternative flour in West Africa. Eight World Congress of Food Science and Technol. Sept 29-Oct. 4. Toronto, Canada.
- Oke OL, Redhead J, Hussain MA (1998). Roots, tubers, plantains bananas in human nutrition. Food and Agriculture Organisation of the United Nations (FAO) and the Information Network on post – Harvest Operations (INOPH), Rome, Italy. P 198.
- Okeke E, Ene-obong H, Uzuegbunam A, Ozioko A, Kuhnlein H (2008). Igbo traditional food system: Documentation, uses and research needs. Pak. J. Nutr. 7(2):365-376.
- Okezie BO, Bello AB (1988). Physicochemical and functional properties of winged bean flour and isolate compared with soy isolate. J. Food Sci. 53:450-454.
- Olorunda AO, Adelusola MA (1997). Screening of plantain/banana cultivars for import, storage and processing characteristics. International Symposium on Genetic Improvement of bananas for resistance to disease and pests. 7– 9th Sept., CIRAD, Montpellier, France.
- Onoja US, Obizoba IC (2009). Nutrient composition and organoleptic attributes of gruel based on fermented cereal, legume, tuber and root flour. Agro-sci. J. Trop. Agric. Food Environ. Ext. 8(3):162-168.
- Onwuka GI (2005). Food Analysis and Instrumentation: Theory and Practice. Naphthali Prints, Lagos, Nigeria. pp. 133-137.
- Perez-Sira E (1997). Characterization of starch isolated from plantain (*Musa paradisiaca*), Starch-starke 49(2):45-49.
- Rehinan Z, Rashid M, Shah WH (2004). Insoluble dietary fibre components of legumes as affected by soaking and cooking processes. Food Chem. 85:245-249.
- Sathe SK (2001). Nutritional value of protein from different food sources. J. Agric. Food Chem. 44:6-29.
- Sathe SK, Deshpande SS, Salunkhe DK (1982).Functional properties of winged bean proteins. J. Food Sci. 47:503-508.
- Sathe SK, Salunkhe DK (1981). Functional properties of Great Northern bean (*Phaseolus vulgaris*), proteins, emulsion, foaming, viscosity and gelation properties. J. Food Sci. 46:71-76.
- United States Department of Agriculture (2014). Wheat imports by country in 1000MT.
- USDA Nutrient Database (2010). Available at http://en.wikipedia.org/wiki/Cooking_plantain. Retrieved 10 November 2010. (accessed 25 May 2014).
- Wardlaw GM, Kessel M (2002). Perspective in Nutrition 5th ed. McGraw-Hill New York.
- WHO/FAO (2003). Diet, nutrition and the prevention of chronic diseases. Report of a WHO/FAO Expert Consultation. World health Organization Technical Report, Series 916. WHO Geneva.