
African Journal of Mathematics and Computer Science Research Vol. 6(1), pp. 5-15, January 2013     
Available online at http://www.academicjournals.org/AJMCSR  
DOI:10.5897/AJMCSR11.136 
ISSN 2006-9731 ©2013 Academic Journals 

 
 
 

Full Length Research Paper 

 

Some new aspects on imputation in sampling 
 

Diwakar Shukla1, Narendra Singh Thakur2 and Sharad Pathak1 
 

1
Department of Mathematics and Statistics, Dr. H.S. Gour University of Sagar, Sagar (M. P.), 470003, India. 

2
Centre for Mathematical Sciences (CMS), Banasthali University, Rajasthan, 304022, India. 

 
Accepted 15 January, 2013 

 

The number of causes that affect the quality of survey and missing data is one of such that keeps 
sample incomplete. Many imputation methods are available in literature, and are used to replace 
missing observations like Mean method, Ratio method, Compromised method, Ahmed’s method, 
Factor-type (F-T) method etc. This paper suggests some new estimation aspects in imputation theory 
using both, F-T estimator and Compromised estimator. All these are derived from existing procedure of 
usual Compromised method and found efficient, bias controlled, having many properties. In support of 
derived results, an empirical study is incorporated over artificial data set showing the efficiency in 
favour of the suggested methods. 
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factor-type (F-T) estimator, factor-type compromised imputation (FTCI). 

 
 
INTRODUCTION 
 
Missing data is one of the most common problems in 
sample surveys and various imputation methodologies 
are frequently used to substitute these values. 
Statisticians have recognized that failure to account for 
the stochastic nature of incompleteness in the form of 
absence of data can spoil inference. There are three 
major incompleteness concepts: Missing at random 
(MAR), observed at random (OAR), and parametric 
distribution (PD). In what follows in this paper, missing 
completely at random (MCAR) is used. Some well known 
imputation methods in literature are: deductive 
imputation, mean imputation overall (MO), random 
imputation overall (RO), mean imputation within classes 
(MC), random imputation within classes (RC), hot-deck 
imputation, flexible matching imputation, predicted 
regression imputation (PR), random regression 
imputation (RR), distance function matching etc. 

In a contribution, Shukla (2002) suggested Factor-type 
(F-T) estimator in two-phase sampling which incorporates 
a parameter k combining known auxiliary information 
survey components. But k used therein is in the form of 
factors (k –1)(k –2); (k –1)(k –4); (k –2)(k –3)(k –4) which 
ultimately produces a noble property of getting multiple 
choices of k-values maintaining  certain  standard level of 
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mean squared error (m.s.e). As suggested, best k among 
all is that also optimizing other characteristic of estimator. 
Singh and Horn (2000) proposed a compromised 
imputation procedure having a constant α in linear 
combination of “available main information” and “imputed 
auxiliary information”. The α bears an optimum selection 
at the minimum level of m.s.e. but this choice does not 
have a control over bias factor. This paper derives 
motivation from this source and, using properties of F-T 
estimator, presents a new F-T compromised imputation 
procedure for survey sampling. Special feature of the 
suggested is the same parameter k used twice, in the 
imputation part for missing observations as well as in the 
linear combination with the known auxiliary part. Some 
other useful contributions are due to Rueda and 
Gonzalez (2008), Singh et al. (2009) etc. over imputation 
techniques. 

Let Y  be mean of a finite population for desired 

estimation 







 




N

i

iYNY
1

1
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drawn without replacement (SRSWOR) from population 

 N,......,3,2,1  to estimateY . Sample S of n units 

contains r responding units nr   forming a set R and 

 rn   non-responding units with the sub-space  rn   

having symbol CR . The  variable Y is of main interest and  



6         Afr. J. Math. Comput. Sci. Res. 
 
 
 
X an auxiliary variable correlated with Y. For every unit 

Ri , the value iy  observed is available. For 
CRi , 

iy  values are missing and imputed values need to be 

derived. The 
thi  value ix  of auxiliary variate X is used as 

a source of imputation for missing data when 
CRi . 

Assume for sample S, the data  Sixx is  :  are 

known and
CRRS  . Under this setup, some well-

known imputation methods in survey sampling literature 
are: 

 
 
Mean method of imputation 

 

For iy  define iy  as 
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The imputation-based estimator of population mean Y  is: 
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Ratio method of imputation 

 

For iy  and ix , define iy  as 
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The imputation-based estimator of Y  is: 
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Compromised method 
 
Singh and Horn (2000) proposed compromised 
imputation procedure 
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The imputation-based estimator, in this case, is 
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Where  is a suitable constant value such that the 
resultant variance is minimum. 
 
 
Lemma 1  
 

The bias, m.s.e. and minimum m.s.e. of 
COMP

y  is (Singh 

and Horn, 2000): 
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Ahmed methods 
 

For case where jiy  denotes i
th 

available observation for 

the j
th
 imputation method, Ahmed et al. (2006) suggested: 
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Under this, the point estimator of Y  is 
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Under this, the point estimator of Y  is 
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(C)
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Under this, the point estimator of Y  is 
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Terms 1, 2 and 3 are suitably chosen constants, so as 
to keep the variance minimum. 
As special cases:   
 

When 3 = 1, then  
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and when  3 = -1, then  
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This is natural analogue of ratio estimator called the 
product estimator used when an auxiliary variate x has 
negative correlation with y. 
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Factor-type methods of imputation 
 
Shukla and Thakur (2008) have suggested F-T 
imputation procedure. For this case: 
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Under Equations 15, 16 and 17, point estimators of Y  is 
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As  special  cases,   when   lFTll tTk    then   1,1
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When lFTll tTk    then   1,2
 

 
When  

 3,2,1         ;  then   0,4  lytTk
rlFTll  

 
 
PROPOSED ESTIMATOR 
 
Using Singh and Horn (2000), F-T compromised 

imputation (FTCI) estimator is  3,2,1j : 
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Remark 1 
 

Singh et al. (2001) have suggested a hybrid of calibration 
and imputation method in the presence of random non-
response in survey sampling. Estimation of the 
population mean associated with the proposed hybrid 
method remains unbiased under a design based 
approach. Liu et al. (2005, 2006) have presented new 
imputation methods developed for the treatment of 
missing data, which remove the bias of usual ratio 
imputation. Singh (2009) has a useful contribution in the 
area of imputation techniques for missing data by 
proposing a new method of imputation in survey 
sampling. 
 
 
Remark 2 
 
In the contribution of Singh and Horn (2000), a point is 
raised by Singh and Deo (2003) that the adjustment in 

responding units iy is not allowed. The present paper also 

bears this point. Some arguments in  favour  of  proposed  

 
 
 
 
techniques are in Remark 3. 
 
 

Remark 3 
 

The available information iy  in sample of size n may be 

affected by some serious non-sampling errors like: 
 

(i) Biasness in recording by investigator, 
(ii) Under estimation or over estimation in reporting facts 
by respondents, 
(iii) Partial unwillingness or lack of interest in answering 
question by respondent, 
(iv) Deliberate miss reporting by respondents, 
(v) False response/answer recording etc. 
 

If available data is affected by these non-sampling errors, 
then there in need to also adjust available iy  values. 

Sometimes, auxiliary information correlated to main 
variable Y is almost error free, for example, in an 
economic survey of expenditure (Y) of military soldiers, 
the income (X) record is correctly available through salary 
pay roll but expenditure in houses may be affected by 
serious non-sampling errors even if response is made. 
So, one can adjust partially the available expenditure 
data by the auxiliary income data to get better picture of 
available sample. There are many smoothing statistical 
techniques available in the literature useful over available 
sample data. Moreover, it is a well proved fact that 
sample mean of available data is also highly affected by 
extreme observations, outliers which need to be tackled 
by correlated information. In light of these, one can also 
think of adjusting the responding units. The estimator of 
Singh and Horn (2000) has dual property that it 
smoothens the outliers in available data as well as 
imputes the missing observations. 
 
 

Remark 4   
 

The proposed estimator is in the setup of SRSWOR. One 
can think of extending the same in the general setup of 
sampling design with multivariate structure. 
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(iii) At        k     =  3;      A  =  2;      B   =   - 2;      C   =     0
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Table 1. Some special cases of FTCI. 
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Theorem 1  

 

The point estimator of Y  under FTCI is: 
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BIAS AND MEAN SQUARED ERROR 
 
Let B(.) and M(.) denote, respectively the bias and m.s.e. 
of an estimator under a given sampling design. Under the 
large sample approximations, let 
 

      1  ,1 ,1 XxXxYy nrr
 

 

Using the concept of two-phase sampling following, 
Cochran (2005), Heitjan and Basu (1996), and Rao and 
Sitter (1995), and with the mechanism of MCAR, for 
given r and n, we have  

 

      0 EEE , 

      ;   ,   , 2

2

22

1

22

1

2

XXY CMECMECME 
 

 

      XYXXY CCMECMECCME  2

2

21    ,   ,
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Where  

 2121    ,
11

    ,
11

MMM
Nn

M
Nr

M 


















 
 
 

Remark 5 
 
Some specific symbols 
 

CfBA

fB


1 ,

CfBA

C


2 ,

CfBA

CA




3 ,

CfBA

fBA




4 ,  

 

  31 P ,   42 Q , 

    14231   , 

 

   4321  ,   k 1 ,  

X

Y

C

C
V  . 

 
 
Theorem 2 
 

 
1a : The estimator  

1FTCI
y  in terms of   and ,  upto 

first order of approximation is: 
 

 
1FTCIy =   2

21 Y          (21) 

 
 

Proof  
1FTCIy =    kkyk

r 11 
 

 

=  
 
 















n

n

rr
xCXfBA

xfBXCA
ykyk 1

 
 

=    
   
   

















1

1
11

XCXfBA

XfBXCA
kkY

 
 

=     













2

1

1

1
11 kkY

 
 

=       1

21 1111


 kkY
 

 

=       ...1111 33

2

22

221   kkY
 

 
 
 
 

=      2

211

22

22111  kkY
 

 
(by first order only) 
 

=          2

22121111  kkY
 

 

=          2

22121111  kkkY
 

 

=       2

221111  kY
 

 

=       111 2

221kY
 

 

 
1FTCIy =   2

21  Y
 

 

 
2a : Bias of  

1FTCIy  is up to first order approximation is: 

 

  
1FTCIyB =  XYX CCCMY  2

22        (22) 

 
 

Proof   
1FTCIyB =   YyE FTCI 

1
 

 
Using Equation 21 and taking expectations 

 

  
1FTCIyB =    YY  2

21
 

 

=  XYX CCCMY  2

22  
 

 
3a : The m.s.e of  

1FTCIy  up to some level of 

approximations: 
 

  
1FTCIyM =   XYXY CCCMCMY  222

2

2

1

2

 (23) 

 
 

Proof   
1FTCIyM =   2

1
YyE FTCI 

 
 

=    22

21 YYE  
 

 

=   22

2

2

EY
 

 

=  2
2

EY
 



 
 
 
 

=   XYXY CCCMCMY  222

2

2

1

2

 
 

 
4a : Minimum m.s.e. of the estimator  

1FTCIy holds at 

V
C

C

X

Y   with expression:   
min1FTCIyM  

 

=   22

21 YSMM                   (24) 

 

Proof     0
1


FTCI

yM
d

d

  
 



X

Y

C

C
  

 

Substituting  

X

Y

C

C
  in Equation 23, we get 

 

  
min1FTCIyM  =    22

21 YSMM 
 

 
 
Theorem 3 
 

 
5a : The estimator  

2FTCIy  in terms of   and , up to 

first order of approximation is: 
 

 
2FTCI

y = 

   2

4

2

2421 Y  (25) 

 

 
6a :  Bias of  

2FTCI
y  is 

 

  
2FTCIyB =  XYX CCCMY  2

2                      (26) 

 

 
7a : The m.s.e of   

2FTCIy  is 

  

  
2FTCIyM =   XYXY CCCMCMY  2222

1

2
        (27) 

 

 
8a : Minimum m.s.e. of the estimator   

2FTCIy  is on 

V
C

C

X

Y 







   and expression is 

 

  
min2FTCIyM  =   22

1 YSMM           (28) 
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Theorem 4 
 

 
9a : The estimator  

3FTCI
y  in terms of   and ,  upto 

first order of approximation is: 
 

 
3FTCI

y =   2

21 Y          (29) 

 

 
10a :  Bias of  

3FTCI
y  is 

  

  
3FTCIyB =  XYX CCCMY  2

21         (30) 

 

 
11a : The m.s.e of  

3FTCI
y  is 

  

  
3FTCIyM =  XYXY CCCCMY  2222

1

2

      (31) 

 

 
12a : Minimum m.s.e. of the estimator  

3FTCI
y  while 

V
C

C

X

Y 







  holds and expression is given by 

 

  
min3FTCIyM  =  22

1 1 YSM           (32) 

 

 
Remark 6 
 
For minimum m.s.e., we have 

 

X

Y

C

C
V     Vk  211 

 
 

 
V

CfBA

CfB
k 




 1

 
 
On simplification, we get polynomial of degree four: 
 

           kVffkVffkVfk 235108154 234   
 

     0224244   Vff                       (33) 

 
 
Remark 7  
 

Reddy (1978) has shown that quantity 

X

Y

C

C
V   is 

stable over moderate length time period and could be 
initially known or guessed by past data. Therefore, pair (f, 
V) be treated as known and Equation 33 generates  
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maximum of four roots (some may imaginary) on which 
optimum level of m.s.e. will be attained. 
 
 
Remark 8    
 
The Equation 33 has only unknown k in the power of 
order four, other V and f by Reddy (1978) are known in 
advance. We can solve Equation 33 for obtaining optimal 
estimator in the suggested class. 
 
 

COMPARISON OF THE ESTIMATORS 
 

(1)      
min2min11 Let        FTCIFTCI yMyMD 

 
 

    22

1

22

21 YY SMMSMM   

 

  22

2 YSMM             (34) 

 

 
2FTCIy  is better than  

1FTCIy  if  

 

01 D     
 f

n
r




2
 

 

If population N is large, f is small then working rule is; 

01 D  if  









2

n
r  which usually happens and high 

chance for 01 D . 

 

(2)      
min3min12Let       FTCIFTCI yMyMD 

 

 

02 D 022  YSM                (35)  

Which is always positive. So,  
3FTCIy  is always better 

than  
1FTCIy  until n = r 

 

(3) Let      
min3min23 FTCIFTCI yMyMD 

  

03 D         nN                         (36) 

 

Which is always true. So,   
3FTCIy  is always better than 

 
2FTCIy  until n = N. But  

2FTCI
y  is better than  

 
1FTCIy  therefore, estimation strategy  

3FTCIy  is most 

preferable over other two. 
 

(4)     
min1min4 FTCICOMP yMyMD   

 
 
 
 

04 D    
f

n
r




2
 

2

n
r   for  10  f  (37) 

 
This generally does not happen until huge non-response 
occurs. 
 

(5)     
min2min5 FTCICOMP yMyMD 

 
 

    22

1

22

1 YY SMMSMM      0         (38) 

 
Therefore, both are equally efficient. 
 

(6)     
min3min6 FTCICOMP yMyMD   

 

06 D    022
2  YSM              (39) 

 
which is always true. 

It seems  
1FTCIy and  

3FTCIy  are better offer over 

compromised imputation procedure and  
3FTCIy  is best. 

 
 
Remark 9 
 
One can think of comparing the proposed with other 
existing like Hot-deck, Cold-deck, Nearest neighbour, and 
Regression imputation methods. But all these are based 
on replacing by single unit   to single missing unit of 
sample. The proposed is on replacing single unit by an 
average of random sub-group units of auxiliary variate. 
The comparison environment in proposed case is 
different. 
 
 

Remark 10 
 

It may be interesting to derive the Horvitz-Thompson 
estimator based on imputation data and compare with the 
proposed. It is an open problem to extend the content 
further. 

 
 

EMPIRICAL STUDY 
 

The attached Appendix A has generated artificial 
population of size N = 200 containing values of main 
variable Y and auxiliary variable X. Parameter of these 
are given as follows: 
 

Y = 42.485; X = 18.515; 
2

YS = 199.0598; 
2

XS = 48.5375; 

 = 0.8652; XC = 0.3763; YC = 0.3321.  

 
Using random sample SRSWOR of size, n = 30; r = 22;  
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Table 2. Bias and optimum m.s.e. at k = ki (i =1,2). 
 

Estimator Bias (.) M(.) 

COMP
y

 

0.0150  

(at αopt = 0.2365) 

6.2504  

(at αopt = 0.2365) 

  
1

1 kFTCIy
 

0.0079 3.8254 

  
2

1 kFTCIy
 

0.0109 3.8254 

  
1

2 kFTCIy
 

0.0034 6.2504 

  
2

2 kFTCIy
 

0.0046 6.2504 

  
1

3 kFTCIy
 

0.0113 2.0225 

  
2

3 kFTCIy
 

0.0156 2.0225 

 
 
 
f = 0.15,  = 0.2365. Solving optimum condition 

V  (Equation 33), the equation of power four in k 

provides only two real values 1k = 0.8350; 2k =4.1043. 

Rest other two roots appear imaginary (Table 2). 

 
 
ALMOST UNBIASED FTCI ESTIMATOR: 

 

If    0
1

FTCIyB  

  XYX CCCMY  2

22 = 0  Using Equation 

22 

 

When 0     01  k           (40) 

 
Case (i)   

 

  01  k   
'

11 kk   

 
Case (ii)     

 

0     021 
 

  

 0



 CfBA

C

CfBA

fB

 
 

 4'
2  kk     [since (k - 4) = 0] 

 

  165
2

1 2'
3  fffkk

 

and    165
2

1 2'
4  fffkk

 
 

 
Case (iii) 
 

When   XYX CCC  2

2  = 0   V
C

C

X

Y   2

 
 

  [ AV + fBV + (V – 1)C ]= 0         (41) 

 
Equation 41 is a cubic equation in k, solvable for fix f and 

guess value V, and one can obtain three values
''

1kk  ; 

''

2kk   and 
''

3kk   to make the proposed estimator 

imputed unbiased to the first order of approximation. 

At seven values 
"

3

"

2

"

1

'

4

'

3

'

2

'

1  and   ,  , ,,, kkkkkkk , bias is 

almost zero or completely zero. Using data set in 
Appendix A, the k-values are compared in Table 3. The 
best choice is that having the lowest m.s.e. 
 
 
DISCUSSION 
 

The estimator 
COMP

y  of Singh and Horn (2000) bears 

bias 0.0150, m.s.e. 6.2504 at 2365.0opt . But, bias is 

not at minimal level. Proposed estimators have shown 
two choices k1, k2 on a data set for known (f, V) at which 
m.s.e. is minimum and there are open options to choose 
that optimum k-value having the lowest bias. These two 
choices may extend to the maximum four on some data 
sets. So, FTCI estimators have an upper hand over 
Compromised  estimator  of  Singh  and  Horn  (2000)   in 
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Table 3. Almost unbiased FTCI. 
 

k-Values   
1FTCIy  

   
2FTCIy  

   
3FTCIy  

Bias (.) M (.)  Bias (.) M (.)  Bias (.) M (.) 

'

1k
 = 1.0000 

0 8.0424 
 

0 8.0424 
 

0 8.0424 

'

2k
 = 4.0000 

0 8.0424 
 

0 8.0424 
 

0 8.0424 

'

3k
 = 3.2682 

0 8.0424 
 

0 8.0424 
 

0 8.0424 

'

4k
 = 1.8819 

0 8.0424 
 

0 8.0424 
 

0 8.0424 

"

1k
 = 1.5743 

-0.00004 13.1265 
 

-0.00004 10.1586 
 

-0.00006 15.4300 

"

2k
 = 2.3355 

-0.0004 56.7904 
 

-0.0001 28.8276 
 

-0.0006 77.7691 

"

3k
 = 8.8231 

-0.0005 315.6901 
 

-0.0002 139.5245 
 

-0.0009 447.2762 

 
 
 

terms of efficiency comparison. The  
2FTCI

y  is equally 

efficient to 
COMP

y  in terms of m.s.e. but has unique 

option of lower bias. Moreover, estimator  
3FTCIy  is 

more efficient than all others used herein. Another 
observation is that, FTCI could be made almost unbiased 
also over seven different choices of k-values, the best is 
that having lowest m.s.e. Thus, FTCI has wider prospects 
of   superiority over Singh and Horn (2000). One more 
interesting feature is that FTCI contains only one 
parameter k, same as used by Singh and Horn (2000), 
but mixed up in mathematical structure in such a way so 
as to generate more efficient properties. 
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Appendix A. Artificial population (N = 200).  
 

Yi 45 50 39 60 42 38 28 42 38 35 

Xi 15 20 23 35 18 12 8 15 17 13 

Yi 40 55 45 36 40 58 56 62 58 46 

Xi 29 35 20 14 18 25 28 21 19 18 

Yi 36 43 68 70 50 56 45 32 30 38 

Xi 15 20 38 42 23 25 18 11 09 17 

Yi 35 41 45 65 30 28 32 38 61 58 

Xi 13 15 18 25 09 08 11 13 23 21 

Yi 65 62 68 85 40 32 60 57 47 55 

Xi 27 25 30 45 15 12 22 19 17 21 

Yi 67 70 60 40 35 30 25 38 23 55 

Xi 25 30 27 21 15 17 09 15 11 21 

Yi 50 69 53 55 71 74 55 39 43 45 

Xi 15 23 29 30 33 31 17 14 17 19 

Yi 61 72 65 39 43 57 37 71 71 70 

Xi 25 31 30 19 21 23 15 30 32 29 

Yi 73 63 67 47 53 51 54 57 59 39 

Xi 28 23 23 17 19 17 18 21 23 20 

Yi 23 25 35 30 38 60 60 40 47 30 

Xi 07 09 15 11 13 25 27 15 17 11 

Yi 57 54 60 51 26 32 30 45 55 54 

Xi 31 23 25 17 09 11 13 19 25 27 

Yi 33 33 20 25 28 40 33 38 41 33 

Xi 13 11 07 09 13 15 13 17 15 13 

Yi 30 35 20 18 20 27 23 42 37 45 

Xi 11 15 08 07 09 13 12 25 21 22 

Yi 37 37 37 34 41 35 39 45 24 27 

Xi 15 16 17 13 20 15 21 25 11 13 

Yi 23 20 26 26 40 56 41 47 43 33 

Xi 09 08 11 12 15 25 15 25 21 15 

Yi 37 27 21 23 24 21 39 33 25 35 

Xi 17 13 11 11 09 08 15 17 11 19 

Yi 45 40 31 20 40 50 45 35 30 35 

Xi 21 23 15 11 20 25 23 17 16 18 

Yi 32 27 30 33 31 47 43 35 30 40 

Xi 15 13 14 17 15 25 23 17 16 19 

Yi 35 35 46 39 35 30 31 53 63 41 

Xi 19 19 23 15 17 13 19 25 35 21 

Yi 52 43 39 37 20 23 35 39 45 37 

Xi 25 19 18 17 11 09 15 17 19 19 
 
 


