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A measure known as leaf rectangularity index (LRI) is estimated by means of bootstrap regression. The 
index, it is envisaged, will assist in discussing the geometry of leaf surfaces, if possible among different 
plants and across species. The study shows that one cannot obtain the point estimate of LRI before its 
interval estimate; rather, the interval estimate comes first before the point estimate. This paper gives 
the formal steps of obtaining both the point and interval estimate when the parameter is a norm of a 
vector. 
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INTRODUCTION 
 
The index and its relevance 
 
Leaf area index (LAI), defined as leaf area per unit 
ground area, is an important canopy parameter that has 
attracted the attention of scientists for several decades 
now. Another parameter, leaf rectangularity index (LRI), 
is also useful in the study of plant and their species. The 
invention and eventual construction was first mentioned 
by Essi (2005). In Essi (2009), more work was done on 
the index including estimation under alternative error 
specifications by using multiplicative error model (MEM) 
and the additive error model (AEM). LRI is a measurable 
criterion for determining the extent to which a leaf surface 
departs from being a perfect rectangle. This study 
focuses on a formal step-by-step procedure for 
estimating LRI. There are a lot of problems and expec-
tations arising from possible variation of the index over 
time and space. Can this index be affected by time? Can 
the same plant in different regions and climatic zones 
produce different indices? Finally can environmental 
degradation as we have in the Niger Delta of Nigeria 
affect the value of this index for a plant of interest? 
Finally, what is the most probable range within which  LRI 
 
 
 
Abbreviations: LRI, Leaf rectangularity index; LAI, leaf area 
index; AEM, additive error model; MEM, multiplicative error 
model.  

is expected to lie? Attempts for these questions are 
themselves foci for research and their answers may then 
constitute the importance of LRI. 
 
 
THEORETICAL FRAMEWORK 
 
The area A, of leaf surface with length L, and breadth B 
(omitting the error term) is given by 
 
 A = θ0L 1θ B 2θ                                                       (1) 
 
Where 10 ,θθ  and 2θ  are parameters to be determined. 
These parameters are the ones that will dominate the 
discussion for the rest of this paper. For a perfect 
rectangular surface with sides L and B, its area is  
 
A* = LB                                                                                          (2) 
 
On comparing Equations (1) and (2) and using 
dimensional analysis of elementary physics, a leaf 
surface reduces to a perfect rectangle surface if 
simultaneously we have 
 

=0θ   1,    1θ   + 2θ  = 2                                                                           
 (3) 

 
The  set  of  conditions  in Equation (3) may be referred to as 
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necessary conditions of rectangularity for an arbitrary 
surface A. We will keep this notion until a much better de-
finition for leaf surface rectangularity is stated. Since any 
two numbers 1θ  and 2θ  can add to 2, we insist that the 

numbers must be such that 1θ / 2θ  = 1. Hence, we have a 
modified set of conditions as follows: 
 

=0θ  1,  1θ   + 2θ  = 2, 1θ / 2θ  =    1                                             (4)  
  
Consider the vector parameter η  defined as 
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The quantities α , λ and γ  are all dimensionless 

since 0θ , 1θ and 2θ  are dimensionless. Now the 

condition η  = 0 is equivalent to the Euclidean norm η  

= 0. Using Equation (5) it is easy to see that for a perfect 
rectangle, η  = 0. This implies that, a surface A tends to 

a rectangular surface A ∗  as η  0→  . η  can now be 

used to define a criterion for rectangularity which we 
choose to call leaf rectangularity index (LRI). LRI is 
defined as: 
  
LRI = η                                                                 

 (6) 
 
The problem is to find an estimate for η  . Regression 

analysis can furnish estimates for 0θ , 1θ  and 2θ  and 
their corresponding standard errors. However, the 
estimates of η  and its associated confidence interval 

are not possible by direct regression. One way to 
estimate it is by bootstrap resampling. Bootstrap involves 
resampling from a sample of size n with replacement and 
computing the estimate of parameter θ  of interest using 
the replicated samples. The series of bootstrap estimate 
ofθ , mθθθ ...,,, 21  can be used in estimating θ  and 
finding its confidence interval, bias and variance or cali-
brating hypothesis tests involvingθ . Since its invention 
by Efron (1979) and subsequent development by Efron 
(1982), Efron and Tibshirani (1986, 1993) bootstrap has 
witnessed great expansion in theory and application over 
the years. Some applications of the bootstrap include 
toxicology (Bailer and Oris, 1994), fisheries survey 
(Schmoyer  et  al.,  1996); groundwater  and  air  pollution 

 
 
 
 
modeling (Archer and Giovannoni, 1998; Cooley, 1997), 
chemometrics (Wehrens and Van der Linden, 1997), 
hydrology (Fortin et al., 1997), phylogenetics Newton 
(1996), spatial point patterns Solow (1989), ecological 
indices Dixon (2001), and multivariate summarizations 
(Pillar, 1999; Yu et al., 1998). Literature on the bootstrap 
is very wide, covering concepts, applications and theory. 
While Manly (1997) emphasizes applications, Chernick 
(1999), Davison and Hinkley (1997) and Efron and 
Tibshirani (1993) contain comprehensive coverage. The 
theory is well treated in Efron (1982), Hall (1992), LePage 
and Billard (1992) and Shao and Tu (1995). A wide range 
of papers stating applications are cited in Manly (1997) 
and Chernick (1999). The particular bootstrap method 
used in this work is bootstrap regression. There are 
generally two approaches of data for this type of 
regression. They are: (1) bootstrapping the observations, 
also called paired resampling and; (2) bootstrapping the 
residuals, also called residual resampling (Efron and 
Tibshirani, 1993; Chernick, 1999; Davison and Hinkley, 
1997; Mittelhammer et al., 2000). 
 
Consider a linear regression model 
  
   Y = XB +  ε       (7) 
 
Bootstrapping observations means drawing n rows from 
the rows of (Y, X) with replacement. Residual bootstrap-
ping essentially involves four steps and is the one used in 
this study. Details are furnished in the methodology of 
this paper. Bootstrapping the residuals and the 
observations are not equivalent in small samples but are 
asymptotic (Efron and Tibshirani, 1986). The choice of 
bootstrap depends on both the goal and the type of 
regressor set x. If x is fixed, we use residual resampling 
and if it is stochastic we apply observation resampling. 
 
 
METHODOLOGY AND DATA 
 
The data on area A, length L and breadth B used in the study are 
that of sycamore leaves and they are found in Please (1987). We 
assume first, a multiplicative error model (MEM) of the form; 
 

A    =   21
0

θθθ BL e u
 (8) 

 
By setting lnA = Y, lnL = X1 and lnB = X2 we have 
 
Y = XB    +   u  (10) 
 
While Please (1987) used a sample of size 12, the simulated 
sample in the work is of size n = 30. The steps for the residual 
bootstrap regression are as follows: 
 

1. The least squares (LS) estimate of ΒΒ
�

, , and estimate of 

,u û are computed. 

2. n errors from û  with replacement was  drawn  and  called  
(1)u   it 
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Table 1. Bootstrap estimates of parameters γλα ,, . 
  
Parameter Model Pre-resampling estimate Post-resampling estimate Bias 

�0 
AEM 1.2842 1.0241 (0.1297)* -0.2601 
MEM 1.0204 1.0331 (0.1344) 0.0127 

 
�1 

 
AEM 

 
1.0805 

 
1.0191 (0.0717) 

 
-0.0614 

MEM 1.0438 1.0242 (0.0663) -0.0196 

 
�2 

 
AEM 

 
0.7318 

 
0.8851 (0.1079) 

 
0.1533 

MEM 0.8609 0.8770 (0.1053) 0.0161 

 
� 

 
AEM 

 
0.2842 

 
0.0241 (0.1297) 

 
-0.2601 

MEM 0.0204 0.0331 (0.1344) 0.0127 

 
� 

 
AEM 

 
0.1877 

 
0.0958 (0.0500) 

 
-0.0919 

MEM 0.0953 0.0988 (0.0512) 0.0005 

 
� 

 
AEM 

 
0.4765 

 
0.1766 (0.2231) 

 
-0.2999 

MEM 0.2125 0.1924 (0.2207) -0.0201 
  

 *Every number in brackets is a standard deviation for estimate before it. 
 
 
 
was used to form a vector Y )1(  of first n bootstrap observations 

using the equation; 
 
Y )1(  = X Β

�
 + 

(1)u   

 
3. Using the replicated sample (Y )1( , X) the LS estimate 

)1(Β
�

 was 

computed. 
4. Steps 2 and 3 was repeated for m times to yield a set of m 
bootstrap estimates 
 

)1(Β
�

, 
)2(Β

� , . . . , 
)(mΒ

� . What follows is the use of the set of LS 

estimates from the m replicated samples to approximate the 
sampling distribution of Β

�
 and hence that of

210 , θθθ
���

and . Finally, 

estimate for η  was obtained as defined in Equation (5) and a value 
for η  was also obtained. Following similar steps outlined above, 

consideration was given next to bootstrap regression with an 
additive error model in the form. 
 

A    =   21
0

θθθ BL  +    u                              
 (10)  

 
Estimation of η  

 
1. We first of all estimateα , λ  and γ  and confidence intervals 

 α̂ ± a, λ̂  ± b and γ̂ ± c 

  
Where each of a, b and c is a constant derivable from the level of 
significance and of the experiment and standard deviation of the 
associated estimate. 

2. Define vectors of lower and upper limits in the form 

VL = ˆˆ ˆ, ,a b cα λ γ� �− − −� �  

VU = ˆˆ ˆ, ,a b cα λ γ� �+ + −� �
  

 
3. If the length of the vectors VU and VL are respectively l1, l2, then 
η  lies in the interval 

1 2,l l� �� �
 with probability, 1 - α , where α  is 

the level of significance of the computation.  
 
4. The next problem is, ‘‘How do we get a point estimate for η  

and its standard deviation’’? 
 
5. The interval 

1 2,l l� �� �
 is equivalent to η̂ ε± where 

1 2ˆ ( ) / 2l lη = +  and  

  
 1 2 1 2

1 2 2 1

( ) ( ) 1
0

2 2 2

l l l l
l l l lε

+ +
= − = − = − >

 

 

6. If /2zα  is the standard normal variate corresponding to the 

significance level α  then  
 

/2szαε =   

 
Where s is the standard deviation of η̂  

 
  
EMPIRICAL RESULTS 
 
The results of bootstrap estimation are reported in Tables 
1 and 2. From Table 1, a 95% confidence interval  for  the  
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Table 2. Estimates of leaf rectangularity for AEM and MEM.  
  
Model Estimated LRI 95% confidence interval for LRI Standard deviation for estimated LRI 

AEM 0.5602 
0.5602 ± 0.2894 

( 0.2708 , 0.8495) 
0.1447 

 
MEM 

 
0.5380 

 
0.5342 ± 0.1962 
(0.3380, 0.7303) 

 
0.0981 

 
 
 
set ( ),, γλα  for AEM is (0.2842 ± 0.2594, 0.0958 ± 0.1000, 
0.1766 ± 0.4462) which gives the vectors of lower and 
upper bounds of VL = (0.0248, -0.0042, -0.2696) and VU = 
(0.5436, 0.1958, 0.6228). The length of the vectors are 
respectively l1 = 0.2708 and l2 =0.8495. Therefore  η  

lies in the interval 
1 2,l l� �� �

 = (0.2708, 0.8495) with 

probability of 0.95. Similarly, a 95% confidence interval 
for the set ( ),, γλα  for MEM is (0.0331 ± 0.2688, 0.0988 
± 0.1024, 0.1924 ± 0.4414) which gives the vectors of 
lower and upper bounds of VL = (-0.2357, -0.0036, -
0.2422) and VU = (0.3019, 0.2012, 0.6338). The length of 
the vectors are respectively l1 = 0.3380 and l2 = 0.7303. 
Therefore η  lies in the interval 

1 2,l l� �� �
 = (0.3380, 

0.7303) with probability of 0.95. LRI estimates with a 95% 
confidence interval are shown in Table 2. 
 
 
Conclusion 
 
Leaf rectangularity index (LRI) is defined as a norm of a 
vector. The confidence interval for LRI is calculated first 
before its point estimate and standard deviation. This is 
by backward computation. The common experience is 
having point estimate and standard deviation before 
confidence interval. This paper submits that the normal 
order of procedure breaks down when the parameter 
estimated is a norm.  
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