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In this paper the performance of continuous host-parasitoid models were investigated. The parameter 
values for several well-known models: Lotka-volterra, Holling Tanner Type 2, Holling Tanner Type 3, 
Leslie, Bazykin, Beddington-DeAngelis, Yodzis and Rosenzwing-Macarthur models were estimated. The 
models were tested on 40 consecutive sets of time series data collected at 14 days interval for pest and 
parasitoid population obtained from a highland cabbage growing area in Eastern Kenya. Model 
parameters were estimated from the minimization of the loss functions between the theoretical and 
experimental time series datasets following the Nelder-Mead multidimensional method. Initial values of 
population size and parameters were randomly chosen. Durbin-Watson statistic was applied for 
comparison of model outputs and experimental population trajectories. Among the eight different host-
parasitoid models, Holling Tanner model Type 3 presented relatively better approximations compared 
to the other models. 
 
Key words: Diamondback moth, population dynamics, model parameters estimation, biological control, 
parasitoid impact. 

 
 
INTRODUCTION 
 
Model utilities in ecology 
 
Mathematical models play a central role in elucidating 
host-parasitoid system interactions. They help to shed 
some light on mechanisms that underlie these 
interactions, which may not be directly observable in the 
field (Gertsev and Gertseva, 2004). In theoretical 
ecology, models are used for several purposes. Models 
help in exploring possibilities by enabling biologists to 
become fully aware of potential relations between natural 
phenomena during variables and parameters tracking 
exercises (Cooper, 1990). They also  offer  scientists  the  
 
 
 
*Corresponding author. E-mail:� emassawe@uccmail.co.tz. Tel: 
255-022-2410388.  Fax: 255-022-2410388. 

means through which they can investigate complex 
systems. Models provide researchers with conceptual 
framework, which help ecologists carrying out 
experimental investigations and pose questions which 
can lead to the construction of concepts corresponding to 
various natural properties that were not striking. 

From system management aspect, there are two 
groups of models, namely: 
 
(i) Strategic models, 
(ii) Tactical models. 
 
Strategic models are designed to explore the ramification 
of general questions in ecology. For example, we may 
want to know if an interaction between prey-predator 
species with discrete generations and random search by  
predator give rise to persistent population cycle or not. 
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Tactical models are specifically made for particular 
system and designed for forecasting reasons. This 
second group of models is intensively applied in 
integrated pest management programs to predict the 
likelihood success of its implementation, the number and 
appropriate time for parasitoid release (Godfray and 
Rees, 2002). 
 
 
Host-parasitoid systems 
 
Host-parasitoid system is an ecological interaction 
between victim (host) and exploiter (parasitoid) where the 
second species consume biomass from the first species 
(McCallum, 2000). Adult female parasitoids forage 
actively for hosts and oviposit in or near host individuals. 
After hatching, the larvae begin feeding on host tissues 
and complete their development either within or on host. 
Parasitoids are abundant in almost all terrestrial 
ecosystems and have been identified as one of the main 
causes of mortality of their hosts (Godfray, 1994). 

A number of mathematical model equations will be 
evaluated in a view of describing the population dynamics 
of Diamondback Moth (DBM) and its parasitoid. The main 
focus of population dynamics studies has traditionally 
been on local stability analysis, searching studies for the 
equilibrium points, determining the nature of their stability 
and spatial synchrony in which model parameters are 
obtained through trial and error (Hassel and May, 1974; 
Hassell et al., 1976; May et al., 1981; Meng et al., 2007). 
In this paper, it is intended to evaluate a good number of 
host-parasitoid models by comparing their predictive 
parameters with empirical time series datasets collected 
from the field. Eight well-known continuous mathematical 
models of predator-prey or host-parasitoid will be 
considered. These include: 
 
(i) Lotka-Volterra (1926), (ii) Holling Tanner Type 2 and 
Type 3 (1959), (iii) Leslie (1945), (iv) Rosenzweig-
MacArthur (1963), (v) Yodzis (1989), (vi) DeAngelis 
(1975), and (vii) Bazykin (1985). 
 
 
DATA DESCRIPTION AND DATA COLLECTION 
 
The data used were obtained from the pilot release areas in 
Werugha Location; 03° 26´16"S; 38° 20´ 24"E of Wundanyi Division 
in Taita Taveta District, coast Province of Kenya. This region was 
selected because of its isolated location. Werugha is located on an 
island mountain, Taita hills, rising from an area of about 700 m 
elevation to 2200 m. The height of the mountain is about 10 km ×25 
km high and stretches roughly in a north/south direction. Crucifer 
production is concentrated between 1600 m to 1800 m elevations. 
Additional irrigation during the dry seasons is common using bucket 
to draw water from shallow wells. Much of the land is terraced and 
crucifer production moves up on the terraces during the rainy 
seasons down to the valley bottom in dry seasons, ensuring year -
round production. The major staple crop is maize and several 
species   of   crucifers   are   grown  with  head  cabbage  (Brassica  

 
 
 
 
oleracea var. capitata) as the main cash crop. Soils are mostly 
degraded, low in organic matter and sandy (Momanyi et al., 2006). 

Data were collected by the International Centre of Insect 
Physiology and Ecology (ICIPE) (DBM) biological control team in 
Kenya. Fifteen farmer- managed cabbage farms were sampled at 
two-week intervals starting from two weeks after transplanting until 
harvest. When one field is harvested, a recently transplanted field in 
the immediate vicinity was chosen as its replacement. In each field, 
10 plants were selected at random and a population census for 
larvae (1st, 2nd, 3rd, and 4th instars), pupae and adults were 
collected. Third and 4th instars larvae and pupae were transferred to 
the laboratory and observed for adult moth and parasitoid 
emergence. The percentage parasitism was estimated for collection 
and then multiplied by the total DBM population from by number of 
each field. This was divided by sampled plants to estimate the 
number of parasitoid per plant. The total number of DBM adults was 
also divided by number of plants to establish its population density 
per plant. Likewise, the total number of DBM was divided by 
number of plants to establish its population density per plant. 
 
 
MODELS EVALUATED 
 
Table 1 summarizes the models that were evaluated. Each model 
under consideration has its own set of dynamic regimes for 
population fluctuations, with a specific set of parameters, and also 
specific functions that describe the processes of self-regulation and 
interactions between populations. 

A recent publication of Deng (2008) has shown that most discrete 
equations used to model population dynamics in ecology are 
inherently pathological. For this reason, their predictions cannot be 
independently verified by experiments because they violet a 
fundamental principal of physics, which stipulates that a physical 
law should be the same anywhere and any time in the universe. 
Biological process is seen as time-invariant, which conform and 
allow time-independent observations that can be verified at any 
given state. Thus, a law must take the same mathematical form 
derivable from experiments carried out at independently chosen 
times and spaces. As a result, any mathematical formulation of a 
law must be endowed with such time-invariant characteristic. 
Accordingly, Deng suggested that continuous dynamical systems 
must be modelled by differential equations. In that regard, our study 
is in support of such an approach to make ecological modelling. 

Eight well-known continuous mathematical models of predator-
prey or host-parasitoid will be considered. In each case, appropriate 
statistical analysis is employed for the purpose of assessing 
model’s efficiency. The models which are considered are 
summarised in Table 1. 
 
 
Assumptions 
 
The following assumptions were made: 
 
(a) The two species have overlapping generations, which normally 
allows the use of continuous rather than discrete time differential 
equations. 
(b) The prey or host grows unboundedly in a Malthusian way in the 
absence of predation and self-regulation. 
(c) The effect of the predation is to reduce the prey’s per capita 
growth rate by the term proportional to the prey and predator 
populations. 
(d) In the absence of any prey for sustenance, the predator’s death 
rate results in exponential asymptotical decay. 
(d) The prey’s contribution to predator growth rate is proportional to 
the prey population. 
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Table 1. Mathematical expressions of different models under consideration. 
 
Author Model Notations and parameters 

Lotka-Volterra (1926) 

NPPP
dt
dP

NPNN
dt
dN
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2
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)(tN  is the diamondback moth ( DBM) population size at time t  

)(tP  is the parasitoid population size at time t  

1α is the growth rate or Malthusian parameter for the DBM 
populations 

2α is the intensity of natural death of individuals in the parasitoid 
populations 

1β  and 2β  are the coefficients of self-regulation in the respective 
populations,  

1γ  and 2γ  are the coefficients of interaction between the 
populations 

   

Holling Tanner Type 2 
(1959) 
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Holling Tanner Type 3 
(1959) 
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Leslie (1945) 
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Rosenzweig-MacArthur 
(1963) 
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r  is the per capital growth rate of DBM, 
c  is the maximum killing rate, 

d  is the half-saturation constant (prey density at which the killing 
rate is half of the maximum), 
µ  is the conversion rate of consumed prey, 

0δ  is the per capital rate of consumption 

   

Yodzis (1989) 
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 h  is the handling time 
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Table 1. Contd. 
 

Beddington-DeAngelis (1975) 
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 b  is the parasitoid or predator searching rate 

   

Bazykin (1985) 
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(e) Other potential sources of mortality like fungi which could have 
made some contribution to host population trajectory were not 
included. 
 
 
Statistical criteria for parameters estimation 
 
Model-based parameters can be derived either on the basis of 
laboratory data on fecundity, survivorship, etc., in which case the 
parameters have concrete numerical values, or by numerical 
calculation through minimization of the following Loss functions 
made   of   the   squared   difference   between  the  theoretical  and 
empirical values of dataset: 
 
Loss function 1: 
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Loss function 2: 
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Loss function 3: 
 

 ( )[ ] ( )[ ]2

exp

2

1
exp theoiip

n

i
theoiih PPwHHwF −+−=�

=  
 
where, 
 

=n the sample size, 

=iH exp the experimental density of host,  

=theoiH the theoretical density of host, 

=iPexp the experimental density of parasitoid, 

=theoiP the theoretical density of parasitoid, 

=pW the ratios of standard deviations of parasitoid, 

=hW the ratios of standard deviations of host group. 

 
The calculations are carried out with a computer program written in 
C/C++ programming language. In this program, model equations 
were solved in a routine using the Runge-Kutta 4th order algorithm 
with step size of 0.01. This routine was combined as a unique 
function and embedded in a Nelder-Mead algorithm for 
minimization with randomly chosen initial values of parameters 
(Press, 1992; Gurson, 1999). 
 
 
Durbin-Watson statistic 
 
The Durbin-Watson statistic is given by  
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Where 
 

=n  the sample size and 

=ie the residual value at point i . 

 
The Durbin-Watson statistic, which is used as sensitivity analysis of 
the serial correlation, was applied on the discrepancy between 
theoretical data and experimental data. The Durbin -Watson 
statistics d  usually range from 0 to 4. A value near 2 indicates no-
autocorrelation whereby a value toward 0 indicates positive 
autocorrelation, and that towards 4 indicates negative 
autocorrelation between residuals. The existence of positive or 
negative correlations of residuals indicates dependence between 
empirical and model trajectories, which lead to the rejection of the 
null hypothesis and the model’s validity. The case of 
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Table 2. Estimate of model parameters by Nelder-Mead method with Loss function 1. 
 

Parameter Lotka HollTy2 HollTy3 Leslie Rose Yodzis DeA Bazykin 
N 2.71 7.090 2.973 3.479 10.119 2.028 8.271 7.248 
P 0.0 0.023 0.145 0.021 1.386 3.657 1.133 0.163 

1α  0.036 0.006 0.476 0.020 - - - - 

2α  0.028 0.555 0.061 - - - - - 

1β  0.08 0.066 0.029 0.013 - - - - 

2β  0.04 0.076 0.042 - - - - - 

1γ  0.320 0.005 0.032 0.009 - - - - 

2γ  0.014 0.016 0.013 - - - - - 

κ  - - - 0.310 0.408 0.503 0.333 0.592 
r  - - - - 0.057 0.161 0.047 0.237 
µ - - - - 0.016 0.224 0.013 0.054 
c  - - - - 0.008 0.371 0.007 0.029 

d  - - - - 0.024 0.037 0.020 0.067 

0δ  - - - - 0.008 0.037 0.007 - 

1δ  - - - - - - - 0.039 

b  - - - - - - 0.013 - 

h  - - - - - 0.017 - - 

δ  - 0.066 0.055 - - - - - 

FLI  155.598 167.090 146.234 450.596 2485.34
6 1173.989 4543.766 632.195 

dD  0.292 0.256 0.463 0.354 0.293 0.185 0.255 0.235 

dP  0.515 0.115 0.457 0.545 0.021 0.001 0.009 0.041 
 

Where: HollTy2 = The Holling Tanner Model Type 2, HollTy3 = the Holling Tanner Model Type 3, Rose = the Rosenzweig Mac-Arthur 
Model, DeA = the DeAngelis Model, dD = DBM Durbin-Watson criterion value, dP = Parasitoid Durbin-Watson criterion value, FL1 = 
loss function one values, FL2 = Loss function two values, FL3 = Loss function three values. 

 
 
 
no-autocorrelation indicates independence among residuals, and 
assertion can then be made that a close fit between a model output 
and empirical data exists. The computed d  statistic is then 
compared to a critical value from the Durbin-Watson significance 
table (Savin and White, 1978). The Durbin -Watson d  is 
conducted at 5% level of significance. 
 
 
RESULTS 
 
The results obtained using Durbin-Watson statistics are 
as summarized in Tables 2 to 4 depending on the model. 
 
Model population size predictions at different initial 
DBM population sizes 
 
The model functional responses in Tables 1 to 4 were 
used to develop graphs which allow predictions  of  future 

DBM population sizes as a function of a constant number 
of parasitoids. The DBM data in Tables 1 to 4 were 
plotted on the plane at fixed values of parasitoid/plant. 
 
 
DISCUSSION  
 
Among the eight different host-parasitoid models, Holling 
Tanner model Type 3 presented relatively better 
approximations compared to other models. The model 
with Holling Tanner model Type 3 functional responses is 
used to develop a graph that allows predictions of future 
DBM population size as a function of constant number of 
parasitoids. The choice for this model was made because 
it has shown better approximation of the empirical data 
for DBM and parasitoid than others. The trajectories 
show that the DBM population size at 2weeks intervals
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Table 3. Estimate of model parameters by Nelder-Mead method with loss function 2. 
 
Parameter Lotka HollTy2 HollTy3 Leslie Rose Yodzis DeA Bazykin 

N  1.81 7.215 3.552 4.367 10.255 2.094 8.162 3.210 

P  0.07 0.024 0.174 0.081 1.405 3.777 1.119 0.072 

1α  0.023 0.006 0.569 0.694 - - - - 

2α  0.648 0.565 0.073 - - - - - 

1β  0.08 0.067 0.035 0.043 - - - - 

2β  0.034 0.078 0.049 - - - - - 

1γ  1.40 0.005 0.038 0.047 - - - - 

2γ  0.015 0.057 0.016 - - - -  

k  - - - 0.019 0.413 0.520 0.328 0.262 

r  - - - - 0.058 0.166 0.046 0.105 
µ  - - - - 0.017 0.231 0.013 0.024 
c  - - - - 0.008 0.383 0.007 0.013 

d  - - - - 0.025 0.033 0.020 0029 

0δ  - - - - 0.008 0.038 0.007 0.029 

1δ  - - - - - - - 0.017 

b  - - - - - - 0.013 - 

h  - - - - - 0.018 - - 

�  0.024 0.066  - - - - 
FL2 78.41 53.108 1199.578 18581.787 35168.520 13676.174 61342.60 4888.981 
dD 0.521 0.263 0.417 0.064 0.297 0.174 0.253 0.199 
dP 0.469 0.386 0.631 0.736 0.020 0.019 0.009 0.045 

 
 
 
kept increasing, but the rate of increase declined with an 
increase in parasitoid number. This demonstrates the 
efficiency of parasitoid in reducing the DBM population 
size. The models which were considered could not all 
offer perfect prediction for the trajectories of the collected 
data. This just demonstrates the reality that exists in 
choosing a mathematical model to describe a particular 
population dynamics. Isaev et al. (2001) stated clearly 
that there is no standard criterion for a mathematical 
model selection. Often we can only proceed on a 
sequential check-up of the existing models starting from 
the simplest or create a new model to describe the 
population. 

The Durbin-Watson criteria applied to the deviation 
between theoretical and empirical data yielded results for 
each model as shown in Tables 2 to 4 in both models. 
The gap between the calculated Durbin-Watson value 
( dD ) and ( dP ) (Tables 2 to 4) shows that there is an 
existence of positive or negative correlations of residuals 

between empirical and theoretical datasets. Several 
reasons may account for the existence of positive or 
negative correlations (inadequacy) of the models. For 
example, the fitting procedure typically tries to maximize 
fits at a very short or very long time scales. 

 However, intermediate scales that may better reflect 
parameter predictions are not selected during the 
process. Also, the algorithm for the set of parameters that 
fit the model well may introduce some noise to the model 
time series. 

Moreover, these models were evaluated with time 
series obtained from highly unstable situation after the 
introduction of parasitoid. In such a condition, the 
introduced species may have not begun to play a major 
role on the pest population regulations. In this 
perspective more complex models, which will take into 
account time lag reaction of DBM intra self-regulation 
disease, should be investigated as they may offer better 
results.
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Table 4. Estimate of model parameters by Nelder-Mead method with Loss function 3. 
 
Parameter Lotka HollTy2 HollTy3 Leslie Rose Yodzis DeA Bazykin 

N  3.813 3.176 2.184 1.914 10.504 2.532 0.829 5.034 

P  1.754 0.011 0.107 0.012 1.439 1.165 0.381 0.113 

1α  0.023 0.003 0.349 0.011 - - - - 

2α  0.648 0.249 0.045 - - - - - 

1β  0.034 0.030 0.021 0.008 - - - - 

2β  0.023 0.034 0.031 - - - - - 

1γ  0.015 0.002 0.023 0.005 - - - - 

2γ  0.010 0.025 0.009 - - - - - 

K  - -  0.017 0.423 0.010 0.003 0.411 

r  - - - - 0.059 0.015 0.005 0.164 
µ - - - - 0.017 0.039 0.013 0.038 
c  - - - - 0.008 0.007 0.002 0.021 

d  - - - - 0.025 0.023 0.141 0.046 

0δ  - - - - 0.008 0.015 0.005 0.046 

1δ  - - - - - - - 0.027 

b  - - - - - - 0.007 - 

h  - - - - - 0.430 - - 

� - 0.066 0.040 - - - - - 
FL3 1.813 4.699 4.662 8.265 2116.489 733.866 88.055 268.632 
dD 0.443 0.288 0.415 0.315 0.305 0.189 0.221 0.205 
dP 0.369 0.869 0.285 0.500 0.021 0.017 0.002 0.057 

 
 
 
Fitting the host parasitoid models with the field data 
 
The data in Tables 1 to 5 were used to draw the graphs 
as shown in Figures 1 to 16 for the purpose of showing 
the relationship between the experimental and 
theoretical. 
 
 
Conclusions 
 
In this study eight continuous mathematical models were 
considered for the evaluation of the population dynamics 
of diamondback moth (DBM) and its parasitoid. The 
models considered were those authored by; Lotka-
Volterra, Holling Tanner Type 2, Holling Tanner Type 3, 
Leslie, Bazykin, DeAngelis, Yodzis and Rosenzweig-
Macarthur models. The results were obtained from a 
computer program written in C/C++ programming 

language using the Runge-Kutta 4th algorithm with 0.01 
step size. A Loss function was developed, made of the 
squared difference between the theoretical and empirical 
values of dataset. This routine was combined as a unique 
function and embedded in a Nelder-Mead algorithm for 
minimization with randomly chosen initial values of 
parameters. The Durbin-Watson statistics was used to 
determine the correlation between the theoretical and 
experimental data.  

Applying the Durbin-Watson statistics, it was found that, 
among the eight models, Holling Tanner Type 3 functional 
response presented better approximations compared to 
the others. 

All in all it would be unrealistic to expect any model to 
perfectly fit census field data because of the irregularities 
in nature, since parameter values are expected to vary. It 
is also generally accepted that field collected time series 
data are never 100% accurate and may show a deviation 
of up to 20.  



�

46          Afr. J. Math. Comput. Sci. Res. 
 
 
 

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Time (weeks)

D
ia

m
on

db
ac

k 
m

ot
h 

po
pu

la
tio

n 
pe

r 
pl

an
t

Hexp Htheof1 Htheof2 Htheof3
 

 
Figure 1. Trajectories of the diamondback moth population for empirical datasets and those predicted by Lotka -Volterra Model using Loss 
functions 1, 2 and 3.where, Hexp is the Diamondback moth empirical datasets, Htheof1 is the diamondback moth theoretical datasets from 
models for Loss function 1, Htheof 2 is the Diamondback moth theoretical datasets from models for Loss function 2, Htheof 3 is the 
Diamondback moth theoretical datasets from models for Loss function 3. 
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Figure 2. Trajectories of the parasitoid population for empirical datasets and those predicted by 
Lotka-Volterra Model using Loss functions 1, 2 and 3. where, Pexp is the Parasitoid empirical 
datasets,Ptheof1 is the Parasitoid theoretical datasets from models for Loss function 1, Ptheof2 
is the Parasitoid theoretical datasets from models for Loss function 2, Ptheof3 is the Parasitoid 
theoretical datasets from models for Loss function 3. 
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Figure 3. Trajectories of the Diamondback moth population for empirical datasets and those 
predicted by Holling Tanner Model Type 2 using Loss functions 1, 2 and 3. 
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Figure 4.Trajectories of the parasitoid population for empirical datasets and those predicted 
by Holling Tanner Model Type 2 using Loss functions 1, 2 and 3. 
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Figure 5. Trajectories of the Diamondback moth population for empirical datasets and 
those predicted by Holling Tanner Model Type 3 using loss functions 1, 2 and 3. 
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Figure 6. Trajectories of the Parasitoid population for empirical datasets and those predicted by 
Holling Tanner Model Type 3 using Loss functions 1, 2 and 3. 
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Figure 7. Trajectories of the Diamondback moth population for empirical datasets and those predicted by Leslie 
Model using Loss functions 1, 2 and 3. 
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Figure 8. Trajectories of the Parasitoid population for empirical datasets and those 
predicted by Leslie Model using Loss functions 1, 2 and 3. 
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Figure 9. Trajectories of the Diamondback moth population for empirical datasets and those 
predicted by Rosenzweing Model using Loss functions 1, 2 and 3. 
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Figure 10. Trajectories of the parasitoid population for empirical datasets and those 
predicted by Rosenzweig Model using Loss functions 1, 2 and 3. 
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Figure 11. Trajectories of the Diamondback moth Population for empirical datasets 
and those predicted by Yodzis Model using Loss functions 1, 2 and 3. 
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Figure 12. Trajectories of the Parasitoid population for empirical datasets and those                
predicted by Yodzis Model using Loss functions 1,2 and 3. 
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Figure 13. Trajectories of the parasitoid population for empirical datasets and those predicted by 
Beddington-DeAngelis Model using Loss functions 1, 2 and 3. 
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Figure 14. Trajectories of the parasitoid population for empirical datasets and those predicted by 
Beddington-DeAngelis Model using Loss functions 1, 2 and 3. 
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Figure 15. Trajectories of the Diamondback moth population for empirical datasets and those predicted by 
Bazykin Model using loss functions 1, 2 and 3. 
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Figure 16. Trajectories of the parasitoid population for empirical datasets and those predicted by 
Bazykin Model using Loss functions 1, 2 and 3.�
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