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In this paper, we have investigated a tilted Bianchi Type I cosmological model filled with dust of perfect 
fluid in general relativity because tilted dust models are quite homogeneous and expanding. To get a 

determinate solution, we have assumed a linear relation between shear and expansion, that is, 


= 

constant (  is shear tensor and  is expansion of the model), which leads to A = (BC)
n
, where A and B 

are metric potentials and n is constant. Also, we have assumed that fluid is pressure less, that is, p=0. 
The physical and geometrical aspects of the model together with singularities in the model are also 
discussed. 
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INTRODUCTION 
 
In recent years, there has been a considerable interest in 
investigating spatially homogeneous and anisotropic 
universe in which the matter does not move orthogonally 
to the hypersurface of homogeneity. These are called 
tilted universe. The general dynamics of tilted universe 
have been studied in detail by King and Ellis (1973), Ellis 
and King (1974), and Collins and Ellis (1979). Tilted 
Bianchi Type I models have been obtained by Dunn and 
Tupper (1978) and Lorenz (1981). Mukherjee (1983) has 
investigated tilted Bianchi Type I universe with heat flux 
in general relativity. He has shown that the universe 
assumes a pancake shape. Bradley (1988) obtained all 
tilted spherically symmetric self similar dust models. The 
equations for tilted cosmological models are more 
complicated than those of non-tilted ones. Ellis and 
Baldwin (1984) have shown that we are likely to be living 
in a tilted universe and they have indicated how we may 
detect it. A tilted cold dark matter cosmological scenario 
has been discussed by Cen et al. (1992). Bali and 
Sharma (2002) investigated tilted Bianchi Type I dust 
fluid and shown that model has cigar type singularity 
when T = 0.  

In this paper, we have investigated tilted Bianchi Type I 
dust  fluid  of  perfect  fluid  in  general  relativity. To get a  
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determinate solution, a supplementary condition P = 0, A 
= (BC)

n
 between metric potential is used. The behavior of 

the singularity in the model with other physical and 
geometrical aspects of the models is also discussed. 

 
 
THE METRIC AND FIELD EQUATIONS 

 
We consider metric in the form: 
 

22222222 dz dydx dtds C+B+A+= ,          (1) 

 
Where A, B and C are functions of ‘t’ alone.  

The energy-momentum tensor for perfect fluid 
distribution with heat conduction given by Ellis (1971) is 
taken into the form: 
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Together with 
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j = -1 ,                                      (3) 
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qiv
i = 0 ,                                                  (5) 

 

Where p is the pressure,  the density and qi the heat 
conduction vector orthogonal to v

i
. The fluid flow vector 

has the components 

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cosh 0, 0, ,

A

sinh satisfying Equation 

3 and  is the tilt angle. 
The Einstein field equation 
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For the line, element of Equation 1 are 
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Where the suffix ‘4’ stands for ordinary differentiation with 
respect to cosmic time ‘t’ alone.    

 
 
SOLUTION OF FIELD EQUATIONS 
 
Equations 7 to 11 are five equations in seven unknown A, 

B, C, , p,  and q1; therefore to determine the complete 
solution we require two more conditions: 

 
1) We assume that the model is filled with dust of perfect 
fluid which leads to 

 
p = 0              (12) 
 
2) Relation between metric potential as: 

 
A = (BC)

n 
              (13) 

 
Where n is constant. 

Equations 7 and 10 lead to 
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From Equations 12 and 14, we have 
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Equations 8 and 9 lead to 
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This leads to 
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Where BC = ,  
C

B
  and ‘a’ is constant of integration.  

Again from Equations 8 and 9, we have 
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From Equations 12 and 18, we have 
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Equation 19 gives 
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Where A = 
n 
. 

 
From Equations 17 and 20, we have 
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Where 4 = f(). 
 
Equation 21 leads to 
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Where ‘b’ is a constant of integration. 
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Hence, the metric of Equation 1 reduces to the form 
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Where  is determined by Equation 23. 
By introducing the following transformations 
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The metric of Equation 24 reduces to the form 
 

222n22

1n2/1n42

n2
2 dZ

T
dYTdXT dT 

T)1n4(ba

T)1n4(
  ds



















           (25) 

 
Where 
  

 


1n2/1n42 T)1n4(baT

dT
14na    log                       (26) 

 
 
SOME PHYSICAL AND GEOMETRICAL FEATURES 
 
The density for the model of Equation 25 is given by: 
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The tilt angle  is given by: 
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The reality conditions 
  

(i)  + p > 0,   

(ii)  + 3p > 0, lead to  
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The scalar of expansion  calculated for the flow vector 
i
  

is given by: 
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The   components   of   fluid   flow   vector   v

i
   and    heat  
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conduction vector q

i
 for the model of Equation 25 are 

given by: 
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The non-vanishing components of shear tensor (ij) and 

rotation tensor (ij) are given by 
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The rates of expansion Hi in the direction of x, y and z 
axes are given by 
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DISCUSSION 
 
The model started with a big-bang at T = 0 and the 
expansion in the model decrease as time T increases 

and it stopped at T = . The model has point type 
singularity at T = 0 (MacCallum, 1971). The model 
represents shearing and rotating universe in general and 
rotation goes on decrease as time increases. Since 

T

Lim
0



 , then the model does not approach isotropy 

for large value of T. 

Density   0 as T   and    as T  0. When T 

 0. q
1 
  and q

4 
 . Also, q

1
 and q

4
 tend to zero as 

T  0. At T = 0, the Hubble parameters tend to infinite at 

the time of initial singularity of vanish as T  . 
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