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In this paper, our concern is on modelling a stochastic knapsack problem with the mixture of two 
known distributions (Gamma and Exponential) using additive form. The behavioural pattern of this 
mixed distribution is presented graphically and properly examined with different values of the 
parameters. It was shown that the new distribution is a proper probability density function (PDF) and its 
mean and variance were obtained, respectively. Also, an algebraic model was proposed for a stochastic 
knapsack problem with mixed (additive form) distributional weight. 
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INTRODUCTION 
 
Literature has shown that more work has been done in 
the static aspect of the knapsack problem than the 
dynamic. Different authors have come up with different 
illustrations as a way of defining the knapsack problem; 
Martello and Toth (1990) illustrated that “the knapsack 
problem” can be likened to a hitch-hiker who intends to fill 
his knapsack by selecting from among various possible 
objects which will give him a maximum comfort. They 
formulated the problem mathematically by numbering the 
objects from 1 to n and introducing a vector of binary 

variable jx ),...,2,1( nj . Where  
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Whereas,  Kosuch  and  Lisser (2008) in  their  own   way 
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defined knapsack problem as a combinatorial problem: 
each item is modelled by a binary decision variable 

1,0x  
with x = 1 if the item is chosen and 0 otherwise; 

He added that the knapsack problem is generally linear, 
that is both the objective function and the constraints are 
linear. 

However, in this work, we are interested in a situation 
where the items we are selecting in order to maximized 
the profit of a firm comes from two distinct population, 
and we employ additive model of contagious distribution 
to address the problem. Our reason for the contagious 
distribution is that, we assume the random variable x  

takes up distinct values, nxxx ,...,, 21  with positive 

probabilities and also take up (assume) all values in an 
interval; say bxa . The probability distribution that will 

be obtained here will be as the result of combination of 
both discrete and continuous distribution (Meyer, 1965). 
 
 

LITERATURE REVIEW 
 

Kosuch and Lisser (2009) worked on a two-stage 
stochastic knapsack problem with probabilistic constraint. 
They assumed the item weight to be independently 
distributed following normal distribution. They showed 
how to obtain upper bounds on the overall problem or on 
sub problems and also computed high probable lower 
bounds     on     the    overall     problem    given    a    first 
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stage decision. 

Claro and Sousa (2010) in their paper `A multiobjective  
for a mean-risk static stochastic knapsack problems` 
addressed two major challenges presented by stochastic 
discrete optimization problems: the multiobjective nature 
of the problems, once risk aversion is incorporated, and 
the frequent difficulties in computing exactly, or even 
approximately the objective function. They also proposed 
the use of multiobjective metaheuristics to deal with these 
difficulties, and apply multiobjective meta-heuristic to both 
exact and sample approximation versions of a mean-risk 
static stochastic knapsack problem. 

Other researchers have provided alternative versions of 
the static stochastic knapsack problem. For instance, 
when considering problems with independent normally 
distributed rewards, Steinberg and Parks (1979) 
proposed a preference order dynamic programming 
algorithm, an approach further elaborated by Sniedovich 
(1980, 1981). Henig (1990) proposed a hybridization of 
dynamic programming with a search procedure, while 
Morton and Wood (1998) developed a Monte Carlo 
approximation for problem with general distributions on 
the random rewards. Kleywegt et al. (2002) studied a 
Monte Carlo simulation based approach that repeatedly 
solves sample average optimization problems, in which 
the expected value function was approximated by a 
sample average function, obtained by generation of a 
random sample.   

Dizdar et al. (2011) worked on revenue maximization in 
the dynamic and stochastic knapsack problem where a 
given capacity needs to be allocated by a given deadline 
to sequentially arriving agents. They also derived two 
sets of additional conditions on the joint distribution of 
values and weights under which the revenues 
maximization policy for the case with observable weights 
is implementable, and thus optimal for the case with two-
dimensional private information. Fujimoto and Yamada 
(2006) in their work on exact algorithm for the knapsack-
sharing problem items developed an algorithm to solve 
this problem to optimality, and through a series of 
computational experiments, they evaluate the 
performance of the developed algorithm.  

Cohn and Barnhart (1998) contributed to the building of 
a toolkit for tackling complex planning problems in a 
robust manner, by focusing on solving the stochastic 
knapsack problem with random weights (SKPRW). They 
also established several properties useful in solving it 
with a number of examples. 

Han and Makino (2009) addressed the online minimi-
zation knapsack problem. They studied the removable 
model, where it was allowed to remove old items from the 
knapsack in order to accept a new item. In the course of 
their work, they were able to obtain the following results: 
 

1) Derivation of a lower bound 2 for deterministic 
algorithms for the problem, 
2) Proposition of a 2e - competitive randomized algorithm 
for the problem, 

 
 
 
 
3) Proposed an 8 - completive deterministic algorithm for 
the problem, which contrasts to the result for the online 
maximization knapsack problem that no online algorithm 
has a bounded competitive ratio. 
 

Grosan et al. (2003) developed a new evolutionary 
algorithm for the multiobjective 0/1 knapsack problem. 
Their algorithm used an E-dominance relation for direct 
comparison of two solutions and their experimental 
results show that the new proposed algorithm out 
performs the existing evolutionary approaches to this 
problem. Fidanova (2005) in his work on heuristics for 
multiple knapsack problems compared four types of 
heuristics, statics and dynamic for A C O algorithms to 
solve multiple knapsack problems. He observed using 
static heuristics result in improved performance. Fricke 
(2006) worked on example of new facets for the 
precedence constrained knapsack problem where he 
considered the polyhedral structure of the problem 
equally known as the partially ordered knapsack problem.  

His concept was, given a set of items N  along with a 

partial order, or set of precedence relationships, on the 

items, denoted by NXNS . A precedence 

relationship Sji,  exists if item i  can be placed in the 

knapsack only if item j  is in the knapsack. He derived a 

new approach for determining facets of the precedence 
constraint knapsack PCK  polyhedron based on clique 

inequalities.  
Djamnaty and Doostdar (2008) in their paper ’’A hybrid 

genetic algorithm for the multidimensional knapsack 
problem’’ observed that genetic algorithm is hybridized 
with a good initial population generated by Danzig 
algorithm solution of single knapsack problem. They also 
developed a number of novel penalty functions that can 
drive infeasible solutions towards feasibility with an 
incredible speed. They proposed that these penalty 
functions can be applied to any optimization problem 
having linear constraints and nonlinear objective 
functions, such as quadratic assignment problem. 
Bazgan et al. (2009) worked on implementing an efficient 
fully polynomial time approximation scheme (FPTAS) for 
the 0 to 1 multiobjective knapsack problem and proposed 
a methodology that makes use of very general 
techniques (such as dominance relations in dynamic 
programming) and thus may be applicable in the 
implementation of FPTAS for other problems as well. 
They showed that by using several complementary 
dominance relations, and sharing the error appropriately 
among the phases; they obtain an FPTAS, which is 
experimentally extremely efficient. 
 
 

CONTAGIOUS DISTRIBUTION 
 

From the brief overview of the mixed distribution earlier 
mentioned, it is worth noting that this mixture of 
distribution  can  take  any  form;  mixture  of  two or more  



 
 
 
 
continuous distribution or discrete distribution or even 
both through either multiplicative or additive model. From 
Equation 3 
 

xFPxPFxFxX 21 1Pr                    (3) 

 
Where P is a factor used to weigh the relative 

contribution of each population 10 P , and )(xF is 

the composite exceedance probability. )(1 xF and 

)(2 xF are the component. Escalante-Sandoval (2007) 

adopted the model and used it in his work on a mixed 
distribution with Extreme value distribution (EV1) and 
General extreme value component (GEV) component for 
analyzing heterogeneous samples as: 
 

 

)(xF = 

1

exp 1exp1exp
wx

PP

vx

        

               (4)     
                                                                       
The assumption was that the first and second populations 
behave as Gumbel distribution (EV1) and (GEV) 
distributions, respectively. 
 
 
THE CONTAGIOUS DISTRIBUTION MODEL 
 
Literature has shown that most studies on the static 
stochastic knapsack problem concentrates on normally 
distributed rewards (Morton and Wood, 1998; Goel and 
Indyk, 1999; Sniedovich, 1980; Carraway et al., 1993) 
because the normality assumption covers a wide range of 
practical applications and at the same time, makes the 
static problem more tractable. In this work, we are 
deviated completely from the use of normal distribution to 
a mixture of a standard Gamma and Exponential 
distribution.  

We employ the additive model of the contagious 
distribution as shown in Equation 3. 

 
xFPxPFxFxX 21 1Pr  

 

Let )(1 xF  be a standard Gamma distribution and 

)(2 xF be an Exponential distribution. Therefore 

 

)(xF = x

n

x
n

eP
n

eX
P 1

1

 

               (5) 
 

The graphical presentations of our new distribution with 

different values of xofrangesandnP ,,,  are shown 

in the work. 
From the graphs shown (a mixture of Gamma and 

Exponential  distribution), the parameter was chosen to  
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be as small as 1, 2, and 3 for Figures 1 to 3 with the 

weighing factor P being kept as constant (0.2) and the 

second parameter  was varied as 0.2, 0.5 and 0.8, 

respectively. It was observed that, although they were all 
decreasing function graphs, the one with the least value 

of  (that is, 0.2) with being (1 and 2) began as an 

increasing function graph at 3.00 x  before it began 

to decay as x  increases. 

In Figures 4 to 6, the parameter  was still kept at 1, 2 

and 3, while the weighing factor P was made constant 

(0.5) but the parameter  was varied as 0.2, 0.5 and 

0.8, respectively. It was observed that when  was 0.2, 

the graph started as an increasing function to the point 

where  4.0x  and then began to decrease (almost the 

form of a normal distribution but skewed to the right), 

whereas in Figures 5 and 6, the graph with 1and 

5.0 was almost platykurtic in shape while the rest 

decayed as x  increases. 

In Figures 7 to 9, the weighing factor P  was increased 

to 0.8 and was kept as constant, while the parameter  

was varied at 0.2, 0.5 and 0.8, respectively. The 

parameter was still 1, 2 and 3. It was observed that 

with high value of P , the graphs were almost of a normal 
distribution but positively skewed except Figure 8 with 

5.0  which decays below zero at 7.1x  and 1.8, 

thus the graph tends to negative as 7.1x . Figures 10 

to 12 were graph with a little increment in the parameter 

 (2, 4 and 6) with P being kept as constant (0.2) and 

the parameter  was varied at 0.2, 0.5 and 0.8. It was 

observed that the graph were all decreasing function up 

to the point where 7.05.0 x and then decayed 

simultaneously as x  increases. In Figures 13 to 15,  

was still kept at 2, 4 and 6 and the weighing factor P  was 

made constant at 0.5, whereas  was varied at 0.2, 0.5 

and 0.8. We observed that in Figure 13 with 2.0P , 

graphs began as an  increasing function for the smaller 

values of and later at 4.0x  it begins to decay as 

x increases; but as  increases, the graph tends to a 

complete decreasing function without any increase at the 
beginning. However, Figures 14 and 15 exhibited a decay 

property as  x  increases.  But in Figure15 with = 0.8, 

the graph tends to be negative at 6.13.1 x . Figures 

16 to 18 had  still being kept as 2, 4 and 6, but  was 

varied at 0.2, 0.5 and 0.8 whereas the weighing factor 

P was constant (0.8). We observed that Figure 16 with 

= 0.2 produces a graph which appears almost as a 

normal distribution graph but skewed to the right. In 

Figure 17,  the  graph  with  = 2  and 4  were platykurtic  
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Figure 1. p  = 0.2; β = 0.2; (* = 0.1;*) n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 2. p = 0.2;β = 0.5; (* = 0.1;*) n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 
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Figure 3.    p = 0.2;, β = 0.8; (* = 0.1;*)   n = 2;  [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure  4. p = 0.5;  β = 0.2;  (* = 0.1;*)   n = 2;  [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 
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Figure 5. p = 0.5; β = 0.5; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 6. p = 0.5; β = 0.8; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 



258          Afr. J. Math. Comput. Sci. Res 
 
 
 

g3
g2

g1

Key

g1:  = 1,  = 0.2, p = 0.8

g2:  = 2

g3:  = 3

0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

f X 

 
 

Figure 7. p = 0.8; β = 0.2; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); . 
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Figure 8.   p = 0.8;  β = 0.5;  (* = 0.1;*)   n = 2;  [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 
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Figure 9. p = 0.8; β = 0.8; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 10. p = 0.2; β = 0.2; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 
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Figure 11. p = 0.2; β = 0.5; (* = 0.1;*)  n = 2; [n]=(n-1)!; . 

f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 
. 
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Figure 12.  p = 0.2; β = 0.8;  (* = 0.1;*)   n = 2;  [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 13. p = 0.5; β = 0.2; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 14. p = 0.5; β = 0.5; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
 

 
 

and positively skewed, whereas with = 6 it was nearly 

a decreasing function graph. Figure 18 was a decreasing 

function graph except the graph with =2 was platykurtic 

but rightly skewed. 

In Figures 19 to 21, the parameter  was made as 

large as 5, 10 and 15, while P  was made constant 

( 2.0P ) and  was varied as 0.2, 0.5 and 0.8. Figure 

19 with = 0.2  exhibited  a  sharp  decrease to the point 

5.0x  and decayed to the point 0.1x  and continued 

at zero then got terminated at 8.1x ; whereas Figure 20 

with = 0.5 exhibited a rapid decrease between, 

0.62.0 x  but at f( x ) = 0.2 and x  = 0.5 the graph 

began to decay slowly as x  increases. Figure 21 

exhibited the same characteristics with that of Figure 20 
except that at x = 0.5 and f( x ) = 0.2, the graphs were 

constant as x  increases. 
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Figure 15. p = 0.5;  β = 0.8; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 

 
 
 

g3

g1

g2 Key

g1:  = 2,  = 0.2, p = 0.8

g2:  = 4

g3:  = 6

0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

f X 

 
 

Figure 16. p = 0.8; β = 0.2; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 
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Figure 17. p = 0.8; β = 0.5; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 18.  p = 0.8; β = 0.8; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
 

 

 

Key

g1:  = 5,  = 0.2, p = 0.2

g2:  = 10

g3:  = 15

g1

g2

g3

0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

f X 

 
 

Figure 19. p = 0.2; β = 0.2; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
 

 
 

From Figures 22 to 24,  was still 5, 10 and 15 and 

5.0P  , whereas  was varied as 0.2, 0.5 and 0.8. 

We observed that in Figure 22 with = 0.2, the graph 

was a decreasing function graph which decays gradually 
as x  increases. Figure 23 decreases sharply between 

5.02.0 x  and the one with  = 10 and 15 

converges as one graph at x= 0.6 and began to decay 

gradually as x  increases. At x  = 1.0, the graph with  

= 5 then  converge  with  the previous two  as  one  graph 

and continued decreasing, whereas, Figure 24 exhibited 
the same characteristics with that of Figure 23 except 

that they converge at different point; the first one ( =10 

and 15) converge at x  = 0.7, while = 5 converge with 

them at x = 1.2 but they decayed to negative at x = 1.4 

and continued as x  increases. 

From Figures 25 to 27, = (5, 10 and 15), respectively 

and 8.0P  all through, while  was varied as 0.2, 0.5 

and   0.8,  respectively.  We  observed that the graph with  
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Figure 20. p = 0.2; β = 0.5; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 
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Figure 21. p = 0.2; β = 0.8; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 
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Figure 22. p = 0.5; β = 0.2; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 



264          Afr. J. Math. Comput. Sci. Res 
 
 
 

g1

g2

g3

Key

g1:  = 5,  = 0.5, p = 0.5

g2:  = 10

g3:  = 15

0.5 1.0 1.5 2.0
x

0.2

0.4

0.6

0.8

1.0

1.2

f X 

 
  

Figure 23. p = 0.5; β = 0.5; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 24. p = 0.5; β = 0.8; (* = 0.1;*)  n = 2;  [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 

 
 
 

= 5 began as an increasing function to the point x  = 

0.3 and started to decay with the other two. Figures 26 
and 27 exhibited the same characteristics by decreasing 
sharply and converging together as one at x = 0.6 and 

0.9 and the later at 0.6 and 1.1. Then, continued as a 
decreasing function. 

In Figure 28 to 30, = (2, 4 and 6) and the weighing 

parameter 2.0P  , while  was made an integer and 

was varied as 2, 3 and 4. It was observed that they were 
all decreasing function graph that decays gradually as x  

increases. Also, in Figures 31 to 33,  = (2, 4 and 6) and 

the weighing parameter P was made constant as 0.5, 

while  was varied as 2, 3 and 4. It was observed that 

they were all decreasing function graphs that decay as x  

increases, except the one with the least value of  

(Figure 31) which tends to negative at 0.15.0 x  and 

continued to decay as x  increases. 

In Figure 34 to 36,  was still 2, 4 and 6 and the 

weighing parameter P was increased to 0.8, while  was 

varied as 2, 3 and 4, respectively. It was observed that 
they were all decreasing function graphs. But in Figure 34  
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Figure 25. p = 0.8; β = 0.2; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 26. P = 0.8;β = 0.5; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
 
 

 

g1

g2

g3

Key

g1:  = 5,  = 0.8, p = 0.8

g2:  = 10

g3:  = 15

0.5 1.0 1.5 2.0
x

0.3

0.4

0.5

0.6

f X 

 
 

Figure 27. p = 0.8; β = 0.8; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 28. p = 0.2; β = 2; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 
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Figure 29. p = 0.2; β = 3; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 30. p = 0.2; β = 4; (* = 0.1;*)   n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 31.  p = 0.5; β = 2; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 32. p = 0.5; β =3; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 33. p = 0.5; β = 4; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 34. p = 0.8; β = 2; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 35. p = 0.8; β = 3; (* = 0.1;*)  n = 2; [n]=(n-1)!;  
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 

. 
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Figure 36. p = 0.8; β= 4; (* = 0.1;*)  n = 2; [n]=(n-1)!;   
f[ _, _,x]=(p*x^(n-1)*Exp[-x/ ])/ ^n* [n]+((1-p)* *Exp[- *x]); 
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and 35, the graphs with = 4 and 6 decreased to 

negative at x  = 0.45 and 0.7, respectively and later 

increased gradually towards f( x ) = 0 as x  increases.   
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PARAMETER ESTIMATION FOR THE MIXED 
DISTRIBUTION 
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From Equation 6 we obtain the partial derivative with respect to 
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Again, from Equation 6, we obtain the partial derivative 
with respect to n . But we first of all have to factorize the 

function with respect to n . 
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At this point, we observe that differentiating with respect 
to n is very difficult if at all possible. 

Proof of the mixture of gamma and exponential 
distribution as a proper probability density function (PDF) 
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To obtain the variance 
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THE MODEL 
 

To formalize our model, let ix equal to 1 if item i  is 

selected and zero otherwise. Also, for convenience, let 

)(xR denote our contagious distribution; that is, 

 

)(xR  = x
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We are interested in maximizing the value of the 

accepted (selected) items given that they do not exceed 

the capacity of the firm. In an effort to maximize this 

value, we are at the same time considering the lost of 

goodwill by those costumers whose items constitute an 

overflow (exceeded capacity). If k is the penalty cost per 

unit of the overflow item, then we have 
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This can as well be written as: 

 

)()(
11

xRCikxVMaximize
n

ci

n

i
ii

 

 

CeP
n

eX
PtoSubject x

xn

)1(
)(

1

 
 

Where iV  is the profit for the ith selected item. C  is the 

capacity of the mill (firm). 
 
 
Conclusion 
 
An algebraic stochastic knapsack model was proposed 
for the item weight following a contagious distribution of a 
standard Gamma and Exponential distribution using an 
additive model. 
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