
African Journal of Mathematics and Computer Science Research Vol. 2(6), pp. 092-097, July, 2009
Available online at http://www.academicjournals.org/AJMCSR
© 2009 Academic Journals

Full Length Research Paper

Graphics to fuzzy elements in appraisal of an in-house
software based on Inter-failure data analysis

J. O. Omolehin1*, K. Rauf1, R. G. Jimoh2 and O. C. Abikoye2

1Department of Mathematics, University of Ilorin, Ilorin, Nigeria

2Department of Computer Science, University of Ilorin, Ilorin, Nigeria.

Accepted 18 May, 2009

The performance of any software can be measured, approximately, by three parameters; Reliability,
Availability and Maintainability. They provide information about the robustness of the software under
consideration. In this work, a software is developed to computerize University of Ilorin student’s results
and is designated as an IN-HOUSE Software. The formalism of fuzzy logic is used to investigate its
performance. Our results show that the metrics for performance testing by Pfleeger (1997) perform
better when the raw data is refined (fuzzified).

Key words: Software, graphics, fuzzy, decision table, center of area.

INTRODUCTION

Software performance evaluation has been of great con-
cern to software engineers since it takes some degree of
expertise to determine whether a software is of good
performance regardless of whether it is operational or
not, see Leach (2000) and Jawadekar (2004).

There are many ways of testing the system which
include function, performance, acceptance and install-
lation testing, see Land (2003), Rankin (2002) and
Sommerville (1992).

Fuzzy system

Fuzzy sets were proposed to deal with vagueness related
to the way people sense things (e.g. tall versus short, big
versus small). A set is defined by its elements and the
membership of each element in the set, Sugeno (1985).
Fuzzy logic is an area of research, which provides solu-
tions to the problems of vagueness which departs from
the all or nothing logic. It logically redefines yes or no
ideas in proper form by Zadeh (1965).

This logic constitutes the basis for linguistic approach.
Under this approach, variables can assume linguistic
values. Each linguistic value is characterized by a label
and a meaning. This label is a sentence of a language.
The meaning is a fuzzy subset of a universe of discourse.
Models, based on this approach, can be constructed to
stimulate approximate reasoning. The implementation of

*Corresponding author. E-mail: omolehin_joseph@yahoo.com

these present two major problems namely: how to asso-
ciate a label with an unlabelled fuzzy set on the basis of
semantic similarity (linguistic approximation) and how to
perform arithmetic operation with fuzzy numbers.

Zadeh (1965) had distinguished two main directions in
fuzzy logic, one is older, better known, heavily applied but
does not ask deep logical questions and serves mainly as
apparatus for fuzzy control, analysis of vagueness in
natural language, control machine, fuzzy traffic controller,
fuzzy aggregator and so on. It is one of the techniques of
computing. Soft computing is a computational method
that is tolerant to sub-optimality, impreciseness and
vagueness etc giving quick, simple and sufficient good
solutions, Zimmermann et al. (1993).

Fuzzy logic in the narrow sense is symbolic with com-
parative notion of truth developed fully in spirit of classical
logic (syntax, semantics, truth preserving deduction, com-
pleteness, etc.) both prepositional and predicate logic. It
is a branch of many-valued logic based on the paradigm
of inference under vagueness, Zimmermann (1987a).

Fuzzy Transformation

Fuzzy systems input undergo three transformations:

Fuzzification: This is a process that uses predefined
membership functions that maps each system input into
one or more degree of membership(s).

Rulebase: Rule (Predefined) is evaluated by combining
degrees of membership to form output strengths.

Deffuzzification: This is a process that computes system
outputs based on strengths and membership functions.
The two most popular Deffuzzification methods are the
Mean-Of-Maximum (MOM) and the Center of Area (COA)
methods. For MOM, the crisp output �q is the mean
value of all points whose membership values
are maximum. In the case of discrete universal set W,
MOM is defined as:

Where,
{ }jijijcici W ωωωωωµωµω ≠∈≤ ,,),()(¦

and n is the number of such support values. As for COA,
the crisp output �q is the center of gravity of distribution
of membership function . In the case of the discrete
universal set W, COA is also defined as in Zimmermann
(1987b) by:

Where n is the number of elements of the fuzzy set C,
and � � W. In this
model, the COA method is used for Deffuzzification.

The logic is not just restricted to just the two categories
as illustrated above; it can also be applied to any number
of the categories. For example, an element x can belong
to set A with membership function a, to set B with mem-
bership function b, to set C with membership function c
and so on. However, it is important to keep in mind that
the sum a, b, c etc should equal unity.

This work is mainly on fuzzy approach to performance
evaluation (testing) using Reliability, Availability and
Maintainability as the yardsticks for the existing metrics.
The focal point, in this work, is to calculate the center of
area (COA) of the decision table associated with the
inter-failure time recorded in the experiment.

Description of variable

The following are the definitions of the variables used:

Software reliability (Rs): The concept of software relia-
bility can be defined as ability of software system to func-
tion consistently and correctly over a long period of time,
Pfleeger (1997). Software reliability can also be defined
as the probability of a failure-free software operation for a
specified period of time in a specified environment. Soft-
ware Reliability is an important factor affecting system

Omolehin et al. 093

reliability. It is quite different from the hardware reliability
since it reflects the design perfection rather than manu-
facturing production as in the case of hardware reliability.
Software reliability is a function of execution/operational
time and not the clock time. The measure of reliability
reflects the system usage.

Software availability (As): Availability of software can be
guaranteed when the system is operating successfully
according to specification at a given point in time by
Pfleeger (1997). It is a function of clock time and not
operational time.

Software maintainability (Ms): According to IEEE
standard computer dictionary (1990), Maintainability can
be defined as the ease and speed with which any main-
tenance activity can be carried out on an item of equip-
ment. It is also defined as the ease with which a software
system or component can be modified to correct faults,
improve performance or other attributes, or adapt to a
changed environment.

Maintainability which is analogous to cumulative failure
time in reliability is the probability that a specified main-
tenance action on a specified item can be successfully
performed (putting the item into a specified state) within a
specified characteristic using specified tools and proce-
dures by Rosenberg (2000). This shows that for a given
condition of use, a maintenance activity can be carried
out within a stated time interval and using a stated proce-
dures and resources. It is noted that the three measure-
ments of software performance operate on a scale
between 0 and 1. This implies that the closer the values
of the measurements to one, the better the performance
and the poorer they are, as they approach zero.

MAIN RESULTS

In this work, we consider an IN-HOUSE result computa-
tion software used in computing the result of the Post-
graduate Diploma students in the department of
Computer Science, University of Ilorin, Ilorin, Nigeria. The
software has been developed over six years and has
been put into effective usage since then. The most impor-
tant factor in this work is the system failure which might
be catastrophic, critical, marginal or minor. Information
about software failure is taken with the following two
assumptions about the departmental result computation
software which is our case study:

- There is a possibility of causing another problem while
solving a particular one.
- The inability to predict the next failure.

The case of West African Examination Council
(WAEC) and National Examination Council (NECO) in
Nigeria was discussed in Omolehin et al. (2009).

094 Afr. J. Math. Comput. Sci. Res.

Table 1. Inter-failure time Read from Left to Right:

106 133 219 184 218 112 105 194 215 118
240 152 179 126 210 190 772 222 128 216
132 100 102 104 323 161 272 154 553 395
440 170 257 183 437 295 125 1080 715 130
175 580 852 190 115 900 618 925 702 1225
125 238 203 105 1033 712 402 275 292 185
1080 521 442 1315 2212 452 220 185 1020 800

Table 2. The decision table for the fuzzified inter-failure data

0.0479 0.0601 0.9990 0.0831 0.0985 0.0506 0.0474 0.0877 0.0972 0.0533
0.1085 0.0687 0.0809 0.0569 0.0949 0.0859 0.3448 0.1003 0.0578 0.0976
0.0596 0.0452 0.0461 0.0470 0.1460 0.0728 0.1229 0.0696 0.2499 0.01785
0.1988 0.0768 0.1161 0.0827 0.1975 0.1333 0.0569 0.4880 0.3231 0.0587
0.0791 0.2621 0.3580 0.0859 0.0520 0.4067 0.2793 0.4180 0.3172 0.5535
0.0569 0.1075 0.0917 0.0474 0.4668 0.3217 0.1817 0.1243 0.1319 0.0836
0.4880 0.2354 0.1997 0.5942 0.9995 0.2042 0.0994 0.0836 0.4609 0.3615

Interfailure data

Inter-failure data is a data of successive failures of the
departmental result computation of an in-house software
for an operational environment over a particular period of
time.

The inter-failure data of an in-house application, used
in the computation of student’s result are taken in terms
of execution time (seconds) between successive failure
of a command-and-control system during an in-house
testing, using a simulation of the real operational environ-
ment by Musa (1997).

Reliability, Availability and Maintainability are expres-
sed as the attributes of software measured as numbers
between 0 (unreliable, unavailable or unmaintainable)
and 1 (completely reliable, always available and com-
pletely maintainable).

The average of the failure time is the
mean time to failure (MTTF). Tt is a random variable
representing yet-to-be observed time to failure.

The mean time to maintain (MTTM) is the average time
it takes to fix a faulty software component.

The mean time to failure (MTTF) can be combined with
mean time to maintain (MTTM) to determine how long the
system is unavailable. That is, mean time between
failures MTBF = MTTR + MTTM.

As the system becomes more reliable, its MTTF
increases. We can use MTTF as a measure whose value
is near zero when MTTF is small, and nears 1 as MTTF
gets increased. Considering this relationship, a measure
of reliability function can be defined as: Rs = MTTF/ (1 +
MTTF)

Similarly, we can measure availability function as to
maximize the MTBF as:

As = MTBF (1 – MTBF).

Also, maintainability function can be measured to
minimize the MTTM as:

Ms = 1/ (1 + MTTM).

Table 1 above shows the input data collected from our
experiment in its original form.

Decision Table:
Table 1 above is to be fuzzified with the membership
function model presented below:

�
�

�
�

�

>
≤≤+

<
=

22121

2212100)1/()(
1000

)(

xif

xifxx

xif

xf mii

Where is the maximum element in the data is the
element in the data to be fuzzified and ni ,...,0= , n is
the number of elements.

Since the focal point of this work is to use the mean of
the original data and the center of gravity of our fuzzified
data to calculate our test parameters for comparative
purpose, our new decision table is now given above In
Table 2.

The Center of Area approach used for our decision
table is given as:

COA =
�

�
=

∗

)(

)(
0

i

n

i
ii

xf

f xx
 and is calculated to be 767.94.

Omolehin et al. 095

Table 3. Descriptive Statistics.

 N Minimum Maximum Mean Std. Deviation
Mean time to failure
Valid N (listwise)

70
70

100.00 2212.00 403.8000 386.2255

Table 4. T-Test (One-Sample Test)

Test Value = 0

95% Confidence Interval
of the Difference

t Df Sig. (2-tailed) Mean
Difference

Lower Upper
Mean time to maintain .028 69 .978 1.5143 -105.7221 108.7506

Table 5. Descriptive statistics for Table 2 (Descriptive Statistics).

 N Minimum Maximum Mean Std. Deviation
Mean time to failure
Valid N (listwise)

70
70

.0149 .9995 .156647 .1582064

Table 6. T-Test for Table 2(One-Sample Test)

Test Value = 0
95% Confidence Interval of

the Difference

t Df Sig. (2-tailed) Mean

Difference
Lower Upper

Mean time to Failure 8.284 69 .000 .156647 .118924 .194370

The Center of Area approach used for our decision table
is given as:

COA =
�

�
=

∗

)(

)(
0

i

n

i
ii

xf

f xx
 and is calculated to be 767.94.

The descriptive statistics calculated from our original
table, Table 1 are tabulated in Tables 3 and 4:
We have the following values from Tables 3 and 4 above:
Mean time to failure (MTTF) = 403.800
Mean time to maintain (MTTM) = 1.5143
Mean time between failure (MTBF) = MTTF + MTTM =
405.3143
Reliability Rs = MTTF (1 + MTTF) = 0.9975
Availability As = MTBF (1-MTBF)
 = -163874.3675
Maintainability Ms = 1/ (1 + MTTM) = 0.4
The descriptive statistics calculated from our fuzzified
table, Table 2, are tabulated in Tables 5 and 6:
We have the following values from our fuzzified Table 2:
Mean time to failure (MTTF) = 0.156647

Mean time to maintain (MTTM) = 0.156647
Hence,
Mean time between failure (MTBF) = 0.313294
Reliability Rs = 0.1354318
Availability As = 0.2138563
Maintainability Ms = 0.364568.

Analysis and Conclusion

In the original data in Table 1, the reliability value retuned
by our metrics is 0.9975. However, the value of reliability
calculated by our metrics in the fuzzified Table 2 is
0.135431. The result obtained from the fuzzified data in
Table 2 is more reliable than that of the original Table 1,
since our measurement in Table 2 is based on the rela-
tionship (membership function) between the data items.
The implication of this is that the result in Table 1 is not
absolutely reliable.

The statistics generated from the original Table 1 did
not give us information about the availability, since the
calculated value is negative (-591.20946) but the fuzzified
Table 2 gives us the value 0.218563. This means that the

096 Afr. J. Math. Comput. Sci. Res.

Mean time to failure

1315.00

1020.00

800.00

702.00

521.00

437.00

295.00

257.00

220.00

215.00

190.00

179.00

154.00

130.00

118.00

105.00

Missing

C
ou

nt

2.2

2.0

1.8

1.6

1.4

1.2

1.0

.8

Graph 1. Mean Time to failure.

Mean time to maintain

1100.00

559.00

310.00

223.00

158.00

107.00

94.00

75.00

32.00

-17.00

-45.00

-88.00

-122.00

-307.00

-582.00

-895.00

Missing

C
ou

nt

3.5

3.0

2.5

2.0

1.5

1.0

.5

Graph 2. Mean Time to maintain.

Mean time to Maintain

-.0147

-.0448

-.0480

-.0537

-.0565

-.0709

-.0762

-.0833

-.0888

-.0914

-.1078

-.1247

-.1593

-.1874

-.2182

-.2368

-.2485

C
ou

nt

2.2

2.0

1.8

1.6

1.4

1.2

1.0

.8

Graph 5. Mean time to maintain

Case Number

69

65

61

57

53

49

45

41

37

33

29

25

21

17

13

9

5

1

V
al

ue

3000

2000

1000

0

-1000

-2000

Mean time to maintai

n

Mean time to failure

Graph 3. Relationship between MTTF and MTTM.

Mean time to Failure

.5942

.3850

.3217

.2499

.1988

.1460

.1229

.1017

.0985

.0917

.0831

.0768

.0601

.0569

.0506

.0470

.0149

C
ou

nt
2.2

2.0

1.8

1.6

1.4

1.2

1.0

.8

Graph 4. Mean time to failure

software is not well known. On maintainability, the Ori-
ginal Table 1 and fuzzified Table 2 return 0.4 and
0.364568 respectively, this shows that the rate at which it
can be maintained is relatively low.

Graph 1 and Graph 4 are favorably comparable which
shows that the mean time to failure is very high. How-
ever, Graph 4 shows that the mean time to failure can be
minimized or even eliminated over a long period of time.
Graph 2 and Graph 5 show that it might be expensive to
maintain the software.

Graph 3 and Graph 6 show that MTTF and MTTM are
closely related. The implication is that more work should
be carried out on the software to meet up with interna-
tional standard. The computer program written in
FORTRAN 90 is listed in the Appendix.

Case Number

69

65

61

57

53

49

45

41

37

33

29

25

21

17

13

9

5

1

V
al

ue

1.2

1.0

.8

.6

.4

.2

0.0

-.2

-.4

Mean time to Failure

Mean time to Maintai

n

Graph 6. Relationship between MTTF and MTTM

REFERENCES

IEEE Standard Glossary of Software Engineering Terminology (1990).
Jawadekar WS (2004): Software Engineering, Principle and Practice,

Tata McGraw-Hill Publishing Company Limited, New Delhi.
Land R (2003). Measurement of Software Maintainability, Malardalen

University Press.
Leach RJ (2000): Introduction to software engineering, CRC Press,

Boca Raton, London New York Washington D.C.
Musa JD (1997). Introduction to Software engineering and testing 8th

international symposium on software reliability engineering.
Omolehin JO, Enikuomehin AO, Jimoh RG, Rauf K. (2009): Profile of

conjugate gradient method algorithm on the performance appraisal
for a fuzzy system, Afr. J. Maths. Comput. Sci. Res. 2(3): 030-037.

Pfleeger SL (1997). Software Engineering, theory & practice, Pearson
Education, Washington D.C.

Rankin C (2002). The software Testing Automation frame work, IBM
syst. J.

Rosenberg J (2000). Can we measure maintainability, Sun
Microsystem, California.

Sommerville IAN (1992). Software Engineering, Addison-Wesley
Publishing Company, pp. 389 – 396.

Sugeno M (1985). Industrial Applications of Fuzzy Control, North-
Holland, Amsterdam, London, New York 1985.

 Zadeh LA (1965). Fuzzy Sets, Information and Control 8, pp. 338-353.
 Zimmermann HJ (1987a). Fuzzy Sets in Pattern Recognition, Pattern

Recognition Theory and Applications. Springer Verlag, Berlin,
Heidelberg, New York 1987. pp.383-391.

Zimmermann HJ (1987b). Fuzzy Sets, Decision Making, and Expert
Systems, Kluwer Academic Publishers, Boston, Dordrecht, Lan-
caster.

Zimmermann HJ, Becker K, Kamahi H, Juffernbruch K, Rau G, Kalff G
(1993): An Intelligent Alarm System for Decision-Support in
Cardioanaesthesia, Knowledge Base and User Interface. First Euro-
pean Congress on Fuzzy and Intelligent Technologies, Aachen,
September 7-10, 1993, pp. 1023-1026.

Omolehin et al. 097

APPENDIX

C D FOR DATA ELEMENTS
C FD FOR FUZZIFIED DATA
C FX MODEL FOR FUZZIFICATION
C SUMFD SUM OF FUZZIFIED DATA
C DFD FUUZZIFIED MULTIPLIED BY FUZZIFIED DATA
C XMAX IS THE MAXIMUM OF THE DATA ELEMENTS
 DIMENSION D (70), FD (70), DFD (70)
 OPEN (5, FILE='IN.PUT')
 OPEN (6, FILE='OUT1.PUT')
 READ (5, 20, END=70) (D (I), I=1, 10)
 READ (5, 20, END=70) (D (I), I=11, 20)
 READ (5, 20, END=70) (D (I), I=21, 30)
 READ (5, 20, END=70) (D (I), I=31, 40)
 READ (5, 20, END=70) (D (I), I=41, 50)
 READ (5, 20, END=70) (D (I), I=51, 60)
 READ (5, 20, END=70) (D (I), I=61, 70)
 XMAXD=2212.0
 SUMDFD=0.0
 SUMFD=0.0
 DO 21 I=1, 70
 FD (I) =D (I)/ (XMAXD+1)
 DFD (I) =D (I)*FD (I)
 SUMDFD=SUMDFD + DFD (I)
 SUMFD=SUMFD + FD (I)
 21 CONTINUE
 CG=SUMDFD/SUMFD
 WRITE (6, 14)
 14 FORMAT (//)
 DO 24 I =1, 70
 WRITE (6, 33) I, D (I), I, FD (I)
 33 FORMAT (1X,’D (', I2,') =', 2X, F7.2, 3X,’FD (', I2,') =',
F6.4)
 24 CONTINUE
 WRITE (6, 15)
 15 FORMAT (///)
 WRITE (6, 34) CG
 34 FORMAT (20X, 'CENTER OF AREA =', F7.2)
 20 FORMAT (70F6.1)
 70 CONTINUE
 STOP
 END

