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The purpose of the study was to investigate how effectively the penalty function methods are able to 
solve constrained optimization problems. The approach in these methods is to transform the 
constrained optimization problem into an equivalent unconstrained problem and solved using one of 
the algorithms for unconstrained optimization problems. Algorithms and matrix laboratory (MATLAB) 
codes are developed using Powell’s method for unconstrained optimization problems and then 
problems that have appeared frequently in the optimization literature, which have been solved using 
different techniques compared with other algorithms. It is found out in the research that the sequential 
transformation methods converge to at least to a local minimum in most cases without the need for the 
convexity assumptions and with no requirement for differentiability of the objective and constraint 
functions. For problems of non-convex functions it is recommended to solve the problem with different 
starting points, penalty parameters and penalty multipliers and take the best solution. But on the other 
hand for the exact penalty methods convexity assumptions and second-order sufficiency conditions for 
a local minimum is needed for the solution of unconstrained optimization problem to converge to the 
solution of the original problem with a finite penalty parameter. In these methods a single application of 
an unconstrained minimization technique as against the sequential methods is used to solve the 
constrained optimization problem.  
 
Key words: Penalty function, penalty parameter, augmented lagrangian penalty function, exact penalty 
function, unconstrained representation of the primal problem. 

 
 
INTRODUCTION 
 
Optimization is the act of obtaining the best result under 
given circumstances. In design, construction and 
maintenance of any engineering system, engineers have 
to take many technological and managerial decisions at 
several stages. The ultimate goal of all such decisions is 
either to minimize the effort required or to maximize the 
desired benefit. Since the effort required or the benefit 
desired in any practical situation can be expressed as a 
function of certain decision variables, optimization can be 
defined as the process of finding the conditions that give 
the maximum or minimum value of a function. It can be 
taken to mean minimization since the maximum of a 
function can be found by seeking the minimum of the 
negative of the same function. 

Optimization can be of constrained or unconstrained 
problems. The presence of constraints in a nonlinear 
programming  creates   more  problems while  finding  the 

minimum as compared to unconstrained ones. Several 
situations can be identified depending on the effect of 
constraints on the objective function. The simplest 
situation is when the constraints do not have any 
influence on the minimum point. Here the constrained 
minimum of the problem is the same as the 
unconstrained minimum, that is, the constraints do not 
have any influence on the objective function. For simple 
optimization problems it may be possible to determine 
before hand, whether or not the constraints have any 
influence on the minimum point. However, in most of the 
practical problems, it will be extremely difficult to identify 
it. Thus, one has to proceed with general assumption that 
the constraints will have some influence on the optimum 
point. The minimum of a nonlinear programming problem 
will not be, in general, an extreme point of the feasible 
region  and  may  not  even be on the boundary. Also, the  

http://en.wikipedia.org/wiki/Ethiopia


210         Afr. J. Math. Comput. Sci. Res. 
 
 
 
problem may have local minima even if the 
corresponding unconstrained problem is not having local 
minima. Furthermore, none of the local minima may 
correspond to the global minimum of the unconstrained 
problem. All these characteristics are direct 
consequences of the introduction of constraints and 
hence, we should have general algorithms to overcome 
these kinds of minimization problems. 

The algorithms for minimization are iterative 
procedures that require starting values of the design 
variable x. If the objective function has several local 
minima, the initial choice of x determines which of these 
will be computed. There is no guaranteed way of finding 
the global optimal point. One suggested procedure is to 
make several computers run using different starting 
points and pick the best. Majority of available methods 
are designed for unconstrained optimization where no 
restrictions are placed on the design variables. In these 
problems, the minima exist if they are stationary points 
(points where gradient vector of the objective function 
vanishes). There are also special algorithms for 
constrained optimization problems, but they are not easily 
accessible due to their complexity and specialization.  

All of the many methods available for the solution of a 
constrained nonlinear programming problem can be 
classified into two broad categories, namely, the direct 
methods and the indirect methods approach. In the direct 
methods the constraints are handled in an explicit 
manner whereas in the most of the indirect methods, the 
constrained problem is solved as a sequence of 
unconstrained minimization problems or as a single 
unconstrained minimization problem. Here we are 
concerned on the indirect methods of solving constrained 
optimization problems. A large number of methods and 
their variations are available in the literature for solving 
constrained optimization problems using indirect 
methods. As is frequently the case with nonlinear 
problems, there is no single method that is clearly better 
than the others. Each method has its own strengths and 
weaknesses. The quest for a general method that works 
effectively for all types of problems continues. The main 
purpose of this research is to present the development of 
two methods that are generally considered for solving 
constrained optimization problems, the sequential 
transformation methods and the exact transformation 
methods.  

Sequential transformation methods are the oldest 
methods also known as sequential unconstrained 
minimization techniques (SUMT) based upon the work of 
Fiacco and McCormick (1968). They are still among the 
most popular ones for some cases of problems, although 
there are some modifications that are more often used.  

These methods help us to remove a set of complicating 
constraints of an optimization problem and give us a 
frame work to exploit any available methods for 
unconstrained optimization problems to be solved, perhaps, 
approximately. However, this is not without a cost. In fact, 
this transforms the problem into a problem of non smooth (in  

 
 
 
 
most cases) optimization, which has to be solved 
iteratively. The sequential transformation method is also 
called the classical approach and is perhaps the simplest 
to implement. Basically, there are two alternative 
approaches. The first is called the exterior penalty 
function method (commonly called penalty function 
method), in which a penalty term is added to the objective 
function for any violation of constraints. This method 
generates a sequence of infeasible points, hence its 
name, whose limit is an optimal solution to the original 
problem. The second method is called interior penalty 
function method (commonly called barrier function 
method), in which a barrier term that prevents the points 
generated from leaving the feasible region is added to the 
objective function. The method generates a sequence of 
feasible points whose limit is an optimal solution to the 
original problem.  

Penalty function methods are procedures for approxi-
mating constrained optimization problems by uncon-
strained problems. The approximation is accomplished by 
adding to the objective function a term that prescribes a 
high cost for the violation of the constraints. Associated 
with this method is a parameter µ that determines the 
severity of the penalty and consequently the degree to 
which the unconstrained problem approximates the 
original problem. As µ →∞ the approximation becomes 
increasingly accurate. 

Thus, there are two fundamental issues associated with 
this method. The first has to do how well the uncon-
strained problem approximates the constrained one. This 
is essential in examining whether, as the parameter µ is 
increased towards infinity, the solution of the uncon-
strained problem converges to a solution of the 
constrained problem. The other issue, most important 
from a practical view point, is the question of how to solve 
a given unconstrained problem when its objective 
function contains a penalty term. It turns out that as µ is 
increased yields a good approximating problem; the 
corresponding structure of the resulting unconstrained 
problem becomes increasingly unfavorable thereby 
slowing the convergence rate of many algorithms that 
may be applied. Therefore it is necessary to device 
acceleration procedures that circumvent this slow 
convergence phenomenon. To motivate the idea of 
penalty function methods consider the following nonlinear 
programming problem with only inequality constraints: 
 

Minimize f(x), subject to g(x)  0 (P) x X; 
 

Whose feasible region we denote by S = 

. Functions f: R
n
 → R and g: R

n 
→ R

m
 

are assumed to be continuously differentiable and X is a 
nonempty set in R

n
. Let the set of minimum points of 

problem (P) be denoted by M (f, S), where M (f, S) ≠ . 
And we consider a real sequence {µk} such that  ≥ 0. 

The number  is called penalty parameter, which controls 

the degree of penalty for violating the constraints. Now we 

consider    functions   θ: X (R+  {0}) → R,   as   defined   by 



 
 
 
 

θ(x, µ):= f(x) + µp(x), (x, µ) {(X) (R+ {0})},            (1.1)  
 

where X R
n
 and p(x) is called penalty function, to be 

used throughout this paper, and µp(x) is called penalty 
term. µ is a strictly increasing function. Throughout this 
paper we use penalty function methods for exterior 
penalty function methods  

Another apparently attractive idea is to define an exact 
penalty function in which the minimizer of the penalty 
function and the solution of the constrained primal 
problem coincide. The idea in these methods is to choose 
a penalty function and a constant penalty parameter so 
that the optimal solution of the unconstrained problem is 
also a solution of the original problem. This avoids the 
inefficiency inherent in sequential techniques. The two 
popular exact penalty functions are l1 exact penalty 
function and augmented Lagrangian penalty function.  

More emphasis is given here for sequential 
transformation methods and practical examples, which 
appeared frequently in the optimization literature (which 
have been solved using different methods.) and facility 
locations are solved using the MATLAB code given in the 
appendix with special emphasis given to facility location 
problems. 

Some important techniques in the approach of the 
primal problem and the corresponding unconstrained 
penalty problems will be discussed later. We also discuss 
properties of the penalty problem, convergence 
conditions and the structure of the Hessian objective 
function of the penalty problem and the methods for 
solving unconstrained problems; the general description 
of the algorithm for the penalty function problems in 
addition to the considerations for the implementation of 
the method. A major challenge in the penalty function 
methods is the ill-conditioning of the Hessian matrix of 
objective function as the penalty parameter approaches 
to infinity, the choice of the initial starting points, penalty 
parameters and subsequent values of the penalty 
parameters.  

In the later part of this study, the exact penalty 
methods, the exact l1 penalty function and the augmented 
Lagrangian penalty function methods will be discussed in 
detail. The sequential methods suffer from numerical 
difficulties in solving the unconstrained problem. 
Furthermore, the solution of the unconstrained problem 
approaches the solution of the original problem in the 
limit, but is never actually equal to the exact solution. To 
overcome these shortcomings, the so-called exact 
penalty functions have been developed.  
 
 
Statement of the problem 
 

The focus of this research paper is on investigating 
constraint handling to solve constrained optimization 
problems using penalty function methods and thereby 
indicating ways of revitalizing them by bringing to 
attention.  
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Objectives of the research 
 
General objective 
 
The purpose of the research is generally to see how the 
penalty methods are successful to solve constrained 
optimization problems. 
 
 

Specific objectives 
 

The specific objectives of the research are to: 
 
i. Describe the essence of penalty function methods, 
ii. Clearly identify the procedures in solving constrained 
optimization problems using penalty function methods, 
iii. Develop an algorithm and MATLAB code for penalty 
function methods, 
iv. Solve real life application problems which frequently 
appeared in the optimization literature and facility location 
problems using the investigated code and compare with 
other methods,  
v. Compare the effectiveness of the penalty methods. 
 
 
Significance of the research 
 
i. All algorithms for constrained optimization are 
unreliable to a degree. Any one of them works well on 
one problem and fails to another. Thus, this work will be 
having its own contribution in bridging the gap, 
ii. It will also pave way and serves as an eye opener to 
other researchers to carry out an extensive and/or detail 
study along the same or other related issue. 
 
 
PENALTY FUNCTION METHODS 
 
In this section, we are concerned with exploring the 
computational properties of penalty function methods. We 
present and prove an important result that justifies using 
penalty function methods as a means for solving 
constrained optimization problems. We also discuss 
some computational difficulties associated with these 
methods and present some techniques that should be 
used to overcome such difficulties. Using the special 
structure of the penalty function, a special purpose one-
dimensional search procedure algorithm is developed. 
The procedure is based on Powell’s method for 
unconstrained minimization technique together with 
bracketing and golden section for one dimensional 
search. 

When solving a general nonlinear programming 
problem in which the constraints cannot easily be 
eliminated, it is necessary to balance the aims of 
reducing the objective function and staying inside or 
close to the feasible region, in order to induce global 
convergence (that is convergence to a local solution from  
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any initial approximation). This inevitably leads to the 
idea of a penalty function, which is a combination of the 
some constraints that enables the objective function to be 
minimized whilst controlling constraint violations (or near 
constraint violations) by penalizing them. The philosophy 
of penalty methods is simple; you give a “fine” for 
violating the constraints and obtain approximate solutions 
to your original problem by balancing the objective 
function and a penalty term involving the constraints. By 
increasing the penalty, the approximate solution is forced 
to approach the feasible domain and hopefully, the 
solution of the original constrained problem. Early penalty 
functions were smooth so as to enable efficient 
techniques for smooth unconstrained optimization to be 
used.  

The use of penalty functions to solve constrained 
optimization problems is generally attributed to Courant. 
He introduced the earliest penalty function with equality 
constraint in 1943. Subsequently, Pietrgykowski (1969) 
discussed this approach to solve nonlinear problems. 
However, significant progress in solving practical 
problems by use of penalty function methods follows the 
classic work of Fiacco and McCormick under the title 
sequential unconstrained minimization technique 
(SUMT). The numerical problem of how to change the 
parameters of the penalty functions have been 
investigated by several authors.  

Fiacco and McCormick (1968) and Himmelblau (1972) 
discussed effective unconstrained optimization algorithms 
for solving penalty function methods. According to 
Fletcher, several extensions to the concepts of penalty 
functions have been made; first, in order to avoid the 
difficulties associated with the ill-conditioning as the 
penalty parameter approaches to infinity, several 
parameter-free methods have been proposed. We will 
discuss some of the effective techniques in reducing 
these difficulties in the following sections.  
 
 
The concept of penalty functions 
 

Consider the following problem with single constraint h(x) 
= 0: 
 

Minimize f(x),  
subject to h(x) = 0. 
 
Suppose this problem is replaced by the following 
unconstrained problem, where µ > 0 is a large number:  
 

Minimize f(x) + µh
2
(x),  

subject to x ∈  
 
we can intuitively see that an optimal solution to the 
above problem must have h

2
(x) close to zero, otherwise a 

large penalty term µh
2
(x) will be incurred and hence f(x) +  

µh
2
(x) approaches to infinity which makes it difficult to 

minimize   the      unconstrained       problem      (Bazaraa 

 
 
 
 
et al. (2006). 

Now consider the following problem with single 

inequality constraint g(x)  0: 
 
Minimize f(x),  

subject to g(x)  0. 
 
It is clear that the form f(x) + µg

2
(x) is not appropriate, 

since a penalty will be incurred where g(x) < 0 or g(x) > 0; 
that is a penalty is added to the objective function 
whether x is inside or outside the feasible region. 
Needless to say, a penalty is desired only if the point is 
not feasible, that is, if g(x) > 0. A suitable unconstrained 
problem is therefore given by:  
 
Minimize f(x) + µmaximum {0, g(x)},  
subject to x ∈ R

n
. 

 

Note that if g(x)  0, then maximum {0, g(x)} = 0, and no 
penalty is incurred on the other hand, if g(x) > 0, then 
maximum {0, g(x)} > 0, and the penalty term µg(x) is 
realized. However, it is observe that at points x where 
g(x) = 0, the forgoing objective function might not be 
differentiable, even though g is differentiable. 
 
Example 1 
 
Minimize x, 

subject to –x + 2  0, 
 

the constraint, g(x) = -x + 2 0 is active at x = 2 and the 
corresponding forgoing objective function is: 
 

f(x) + µmaximum {0, g(x)} =  

 

Clearly this is not differentiable at x = 2. If differentiability 
is desirable in such cases, then one could, for example, 
consider instead a penalty function term of the type 
µ(maximum{0, g(x)})

2
. 

In general, a suitable penalty function must incur a 
positive penalty for infeasible points and no penalty for 
feasible points. If the constraints are of the form gi(x) ≤ 0 
for i = 1. . . m, then a suitable penalty function p is 
defined by 
 

p(x) = ,                                                 (2.1a) 
 

where:  
 

 is a continuous function satisfying the following 
properties: 
 

(y) = 0 if y ≤ 0 and (y) > 0 if y > 0.                        (2.1b) 
 

Typically  is of the form 
 

(y) = (maximum {0, y})
 q
, 



 
 
 
 
where q is a nonnegative real number. Thus, the penalty 
function p is usually of the form p(x) 
= . 
  

Definition 1. A function p : R
n
 → R is called a penalty 

function if p satisfies 
 

i. p(x) is continuous on R
n
 

ii. p(x) = 0 if g(x)  0 and  

iii. p(x) > 0 if g(x) 0.  
 

An often-used class of penalty functions for optimization 
problems with only inequality constraints is: 
 

p(x) = , where q ≥ 1 
 

We refer to the function f(x) + μp(x) as the auxiliary 
function. Denoting θ(x, μ): = f(x) + 
μ , for the auxiliary function. The 

effect of the second term on the right side is to increase 
θ(x, μ) in proportion to the qth

 
power of the amount by 

which the constraints are violated. Thus there will be a 
penalty for violating the constraints and the amount of 
penalty will increase at a faster rate compared to the 

amount of violation of a constraint (for q  Rao (2009). 
Let us see the behavior of θ(x, μ) for various values of q. 
 
i. q = 0, 
 

θ(x, μ) = f(x) + μ  
 

           =  

 

This function is discontinuous on the boundary of the 
acceptable region and hence it will be very difficult to 
minimize this function. 
 

ii. 0  
 

Here the θ-function will be continuous, but the penalty for 
violating a constraint may be too small. Also the 
derivatives of the function are discontinuous along the 
boundary. Thus, it will be difficult to minimize the θ-
function. 
 

iii. q = 1 
 

In this case, under certain restrictions, it has been shown 
that there exists a μo large enough that the minimum of θ 
is exactly the constrained minimum of the original 

problem for all μk  μo; however, the contours of the θ-
function posses discontinuous first derivatives along the 
boundary.  

Hence, in spite of the convenience of choosing a single 
μk that yields the constrained minimum in one 
unconstrained minimization, the method is not very 
attractive from computational point of view. 
 

iv. q  
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The θ-function will have continuous first derivatives. 
These derivatives are given by 

 

= + .  

 
Generally, the value of q is chosen as 2 in practical 
computations and hence, will be used as q = 2 in the 
subsequent discussion of the penalty method with 

 
p(x) = . 

 
 
Example 2  
 
Consider the optimization problem in example1,  

Let p(x) = , then, 

 

p(x) =  

 
Note that the minimum of f + μp occurs at the point 2 – 

( ) and approaches the minimum point x = 2 of the 

original problem as μ → ∞. The penalty and auxiliary 
functions are as shown in Figure 1.  

If the constraints are of the form gi(x) ≤ 0 for I = 1, . . . , 
m and hi(x) = 0 for I = 1, . . . , l, then a suitable penalty 
function p is defined by 
 
p(x) =  + ,                        (2.2a) 

 

where  and ψ are continuous functions satisfying the 
following properties: 
 

(y) = 0 if y ≤ 0 and (y) > 0 if y > 0.                        (2.2b) 

(y) = 0 if y = 0 and (y) > 0 if y ≠ 0. 
 

Typically,  and  are of the forms 
 

(y) = (maximum {0, y})
 q 

(y) = |y| 
q
 

 
where q is a nonnegative real number. Thus, the penalty 
function p is usually of the form 
 

p(x) =  + . 

 
 
Definition 2  
 
A function p : R

n
 → R is called a penalty function if p 

satisfies 
 
i. p(x) is a continuous function on R

n
 

ii. p(x) = 0 if g(x)  0 and h(x) = 0 and 

iii. p(x) > 0 if g(x) 0 and h(x) 0. 
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(a) (b)  
 

Figure 1. Penalty and auxiliary functions. 

 
 
 
An often used class of penalty functions for this is: 
 

p(x) =  + , where q ≥ 

1. 
 
We note the following: 

  
If q = 1, p(x) is called “linear penalty function.” This 
function may not be differentiable at points where gi(x) = 
0 or hi(x) = 0 for some i. 

Setting q = 2 is the most common form that is used in 
practice and is called the “quadratic penalty function”. 
We focus here mainly on the quadratic penalty function 
and investigate how penalty function methods are useful 
to solve constrained optimization problems by changing 
into the corresponding unconstrained optimization 
problems.  

 
 
Penalty function methods for mixed constraints 
 
Consider the following constrained optimization problem: 
 
Minimize f(x) (P) 
subject to  ≤ 0, I = 1, . . . , m 

, I = 1, . . . , l, 
 
where functions f, hi(x), I = 1, . . . , l and gi, I = 1, . . . , m 
are continuous and usually assumed to posses 
continuous partial derivatives on R

n
. For notational 

simplicity, we introduce the vector-valued functions h = 

(h1, h2, . . . , hl)
T 

 R
l 
and g = (g1, g2, . . . , gm)

T ∈ R
m 

and 
rewrite (P) as:  

Minimize f(x) 

subject to g(x) 0 
h(x) = 0 (P) 

x X, 
 
whose feasible region we denote by S: 

=  The constraints h(x) = 0 

and g(x) ≤ 0 are referred to as functional constraints, 
while the constraint x X is a set constraint. The set X is 
a nonempty set in R

n
 and might typically represent simple 

constraints that could be easily handled explicitly, such 
as lower and upper bounds on the variables. We 
emphasize the set constraint, assuming in most cases 
that either X is in the whole R

n 
or that the solution to (P) is 

in the interior of X. 

By converting the constraints “ (x) = 0” to 

“ (x)  or considering only problems with 
inequality constraints we can assume that (P) is of the 
form: 
 
Minimize f(x) (P) 

subject to g(x) 0  
x  X,  
 
whose feasible region we denote by S: 

=  We then consider solving the 
following penalty problem, 
 
θ(μ): Minimize f(x) + μp(x) 
subject to x ∈ X, 
 

and investigate the connection between a sequence 

{ }, M(f, X), a  minimum  point of θ and a solution of  



 
 
 
 
the original problem (P), where the set of minimum points 
of θ is denoted by M(f, X) and the set of all minimum 
points of (P) is denoted by M(f, S). 

The representation of penalty methods above has 
assumed either that the problem (P) has no equality 
constraints, or that the equality constraints have been 
converted into inequality constraints. For the latter, the 
conversion is easy to do, but the conversion usually 
violates good judgments in that it unnecessarily 
complicates the problem. Furthermore, it can cause the 
linear independence condition to be automatically 
violated for every feasible solution. Therefore, instead let 
us consider the constrained optimization problem (P) with 
both inequality and equality constraints since the above 
can be easily verified from this. To describe penalty 
methods for problems with mixed constraints, we denote 
the penalty parameter by l(μ) = μ ≥ 0, which is a 
monotonically increasing function and the penalty 

function P(x) =  + , satisfying the 

properties given in (2.2b) and then consider the following 
Primal and Penalty problems: 
 
 
Primal problem 
 
Minimize f(x)  
subject to g(x)   

 0 h(x) = 0 (P) x X. 
  
 
Penalty problem 
 
The basic penalty function approach attempts to solve 
the following problem: 
 
Maximize θ(μ) 
subject to μ ≥ 0, 
 

where θ(μ) = inf{f(x) + μp(x) : x  X}. The penalty problem 
consists of maximizing the infimum (greatest lower 

bound) of the function {f(x) + μp(x): x  X}; therefore, it is 
a max-min problem. Therefore the penalty problem can 
be formulated as: 
 
Find  which is equivalent to the 

form; 
 
Find  We remark here that, 

strictly speaking, we should write the penalty problem as 
sup{θ(μ), μ ≥ 0}, rather than maximum{θ(μ), μ ≥ 0}, since 
the maximum may not exist. The main theorem of this 
section states that:  
 
inf{f(x) : x  S} = = . 

 
From this result, it is clear that we can get arbitrarily close 
to  the  optimal  objective  value of the original problem by  
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computing θ(µ) for a sufficiently large µ.This result is 
established in Theorem 2. First, the lemma theorem is 
needed. 

 
Lemma 1 (Penalty Lemma) 
 
Suppose that f, g1, . . . , gm, h1, . . . , hl are continuous 
functions on R

n
, and let X be a nonempty set in R

n
. Let p 

be a continuous function on R
n 

as given by definition 1, 
and suppose that for each µ, there exists an xµ ∈ X, which 
is a solution of θ(µ), where θ(µ) := f(xµ ) + µp(xµ ). 
Then, the following statements hold: 

 
1. p(xµ) is a non-increasing function of µ. 
2. f(xµ) is a non-decreasing function of µ. 
3. θ(µ) is a non-decreasing function of µ. 
4. nf{f(x) : x  S} ≥ , where θ(µ) = inf{f(x) + 

µp(x) : x  X}, and g, h are vector valued functions whose 
components are g1, g2, . . . , gm and h1, h2 , . . . , hl 
respectively. 

 
Proof: Assume that µ and λ are penalty parameters such 
that λ < µ. 
 
1. By the definition of θ(λ), xλ is a solution of θ(λ) such 
that, 
 

θ(λ) = f(xλ) + λp(xλ) ≤ inf{f(x) + λp(x), for all x  X}, which 
follows  
 
f(xλ) + λp(xλ) ≤ f(xµ) + λp(xµ), since xµ ∈ X.              (2.3a)  
 
Again by the definition of θ(µ) 

 
θ(µ) = f(xµ) + µ p(xµ) ≤ inf{f(x) + µ p(x), for all x ∈ X} which 
follows that 

 
f(xµ) + µp(xµ) ≤ f(xλ) + µp(xλ), since  ∈ X.              (2.3b)  

 
Adding equation (2.3a) and (2.3b) holds:  

 
f(xλ) + λp(xλ) + f(xµ) + µp(xµ) ≤ f(xµ) + λp(xµ) + f(xλ) + µp(xλ)  

 
and simplifying like term, we get  

 
λp(xλ) + µ p(xµ) ≤ λp(xµ) + µp(xλ),  

 
which implies by rearranging that  

 
(λ - µ)[p(xλ) – p(xµ)] ≤ 0. 

 
Since λ - µ ≤ 0 by assumption, p(xλ) – p(xµ) ≥ 0. Then, 
p(xλ) ≥ p(xµ).  

 
Therefore, p(xµ) is a non increasing function of µ. 
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2. By (2.3a) above 

 
f(xλ) + λp(xλ) ≤ f( ) + λp( ).  

 
Since p(xλ) ≥ p( ) by part 1, we concluded that  

 
f(xλ) ≤ f( ). 

  
3. θ(λ) = f(xλ) + λp(xλ) ≤ f( ) + λp( ) 

                                 ≤ f( ) + µp( ) = θ(µ). 

 

4. Suppose  be any feasible solution to problem (P) 
with 

 
g( ) ≤ 0, h( ) = 0 and p( ) = 0, where  ∈ X. Then, 

f( ) + µp( ) = inf{f(x), x ∈ S} which implies that 

f( ) = inf{f(x), x ∈ S}. (2.3c) 

 
By the definition of θ(µ) 

 
θ(µ) = f( ) + µp( ) ≤ f( ) + µp( ) = inf{f(x), x ∈ S }, for 

all µ ≥ 0.  

 
Therefore, ≤ {inf{f(x), x ∈ S }}.  

 
The next result concerns convergence of the penalty 
method. It is assumed that f(x) is bounded below on the 
(nonempty) feasible region so that the minimum exists.  

 
 
Theorem 2 (Penalty convergence theorem) 
 
Consider the following Primal problem: 
 
Minimize f(x) 
subject to g(x)  0 
h(x) = 0 (P) 

x X, 

 
where f, g, h are continuous functions on R

n
 and X is a 

nonempty set in R
n
. Suppose that the problem has a 

feasible solution denoted by , and p is a continuous 
function of the form (2.2). Furthermore, suppose that for 
each µ, there exists a solution  ∈ X to the problem to 

minimize {f(x) + µp(x) subject to x ∈ X}, and {xµ} is 
contained in a compact subset X then, 
 
inf{f(x) : x ∈ S } = = , 

 
where θ(µ) = inf{f(x) + µp(x) : x ∈ X} = f( ) + µp( ). 

Furthermore, the limit  of any convergent subsequence 
of { } is an optimal solution to the original problem, and 

µp( ) → 0 as µ → ∞. 

 
 
 
 
Proof 
 
We first show that p( ) → 0 as µ → ∞. Let y be any 

feasible point and ε > 0. 
 

Let x1 be an optimal solution to the problem minimize {f(x) 
+ µp(x), x ∈ X}, for µ = 1. 

If we choose µ ≥ |f(y) – f(x1)| + 2, then by part 2 of 

Lemma 1 we have f( ) ≥ f(x1).  

We now show that p( ) ≤ ε. By contradiction, suppose 

p(xµ) > ε. Noting part 4 of lemma 1, we get 
 
inf{f(x), x ∈ S} ≥ θ(µ) = f(xµ) + µp(xµ) ≥ f(x1)+µp(xµ)  

> f(x1) + ( |f(y) – f(x1)| + 2)ε 

= f (x1) + |f(y) – f(x1)| + 2ε > f(y) 
 
it follows that inf{f(x), x ∈ S} > f(y). This is not possible in 
the view of feasibility of y. 

Thus, p( ) ≤ ε for all µ ≥ 
1

|f(y) – f(x1)| + 2. Rearranging 

the above we get ε ≥  |f(y) – f(x1))| +  , since ε > 0 is 

arbitrary, p( ) → 0 as µ → ∞. 

To show inf{f(x) : x ∈ S } = = . 

Let { } be any arbitrary convergent sequence of {xµ}, 

and let be its limit. Then, 
 

≥ θ(µk) = f( ) +  p( ) ≥ f( ).  

 
Since  →  and f is continuous function with 

= f( ) , then the above inequality implies 

that  
 

≥ f( ).                                                       (2.4) 

 
Since p( ) → 0 as µ → ∞, then p( ) = 0 , that is,  is a 

feasible solution to the original problem (P) which follows 

that inf{f(x) : x ∈ S } = f( ). 
 

By part 3 of Lemma 1 θ(µ) is a nondecreasing function of 
µ, then 
 

= .                                        (2.5a) 

 

 is an optimal solution to (P) by assumption implies that  
 

inf{f(x) : x ∈ S } = f( )                                              (2.5b) 
 
and by part 4 of the Lemma 1 above  
 

≤ inf{f(x) : x ∈ S }.                                   (2.5c) 
 

Equating (2.4), (2.5a), (2.5b) and (2.5c), we get 
inf{f(x) : x ∈ S } = =  



 
 
 
 
To show µp( ) → 0 as µ → ∞. 

θ(µ) = f( ) + µp( )  

µp( ) = θ(µ) – f( ). 
 

Taking the limit as µ → ∞ to both sides  
 

 =  

= – f( ) 

= f( ) – f( ) 
= 0. 
 

So that µp( ) → 0 as µ → ∞. 
 

Note: It is interesting to observe that this result is 
obtained in the absence of differentiability or Karush 
Kuhn-Tucker regularity assumptions. 
 

Corollary 3 
 

If p( ) = 0 for some µ, then  is an optimal solution to 

the original problem (P) 
 
Proof  
 

If p( ) = 0 ,then  is a feasible solution to the problem 

(P). Furthermore, since 
inf{f(x), x ∈ S} ≥ θ(µ) = f( )+ µp( ) = f( ) it follows that 

inf{f(x), x ∈ S} ≥ f( ) 

 
it immediately follows that  is an optimal solution to (P). 

Note the significance of the assumption that { } is 

contained in a compact subset X. obviously, this 
assumption holds if X is compact. Without this 
assumption, it is possible that the optimal objective 
values of the primal problem and the penalty problems 
are not equal. This assumption is not restricted in most 
practical cases, since the variables usually lie between 
finite lower and upper bounds. 

From the above theorem, it follows that the optimal 
solution  to the problem to minimize f(x) + µp(x) subject 

to x ∈ X can be made arbitrarily close to the feasible 
region by choosing µ large enough. Furthermore, by 
choosing µ large enough, f( ) + µp( ) can be made 

arbitrarily close to the optimal objective value of the 
original problem. One popular scheme for solving the 
penalty problem is to solve a sequence of problems of 
the form: 
 

Minimize f(x) + µp(x) 
subject to x ∈ X, 
 

for an increasing sequence of penalty parameters. The 
optimal points { } are generally infeasible as seen in 

proof of the Theorem 2, as the penalty parameter µ is 
made large, the points generated approach an optimal 
solution from outside the feasible region. 

Hence,  as  mentioned  earlier,  this  technique  is   also  
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referred to as an exterior penalty function method. 
 
 

Karush Kuhn Tucker multipliers at optimality 
 

Under certain conditions, we can use the solutions to the 
sequence of penalty problems to recover the KKT 
Lagrange multipliers associated with the constraints at 
optimality. Suppose X = R

n
 for simplicity and consider the 

primal problem (P) and the penalty function given in (2.2). 
In the penalty methods we solved, for various values of µ, 
the unconstrained problem is 
 
Minimize f(x) + µp(x)                       (2.6) 
subject to x ∈ X.  
 

Most algorithms require that the objective function has 
continuous first partial derivatives. Hence we shall 
assume that f, g, h ∈ C

1
. It is natural to require, that the 

penalty function p ∈ C
1
. As we explained earlier, the 

derivative of maximum {0, (x)} is usually discontinuous 

at points where (x) = 0 and thus, some restrictions must 

be placed on  in order to guarantee p ∈ C
1
. We assume 

that the functions  and  are continuously differentiable 
and satisfy: 
 

(y) = 0 if y ≤ 0 and (y) ≥ 0 for all y.          (2.7) 
    
In view of this assumption p is differentiable whenever f, 
g, h are differentiable, that is, f, g, h ∈ C

1 
implies p ∈ C

1 

and we can write  
 

p(x) =  + . 

 
Assuming that the conditions of Theorem 2 hold true, 
since  solves the problem to minimize {f(x) + µp(x), x ∈ 

X}, the gradient of the objective function of this penalty 
problem must vanish at . This gives  

 
f( ) + p( ) = 0 for all μ,  

 

that is, 

 
f(xμ) +  +  

= 0. 
 

Now let  be an accumulation point of the generated 
sequence { }. Without loss of generality, assume that 

{ } itself converges to  and so  is an optimal solution 

 
to (P). 

 
Denoted by:  

 
I = {I : ( ) = 0} to be the set of inequality constraints that 

are binding at  and 

N = {I : ( ) < 0} for all constraints not binding at . 
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Since gi( ) < 0 for all elements of N then by Theorem 2.2, 
We have gi( ) < 0 for sufficiently large μ which results 

 = 0 (by assumption). Hence, we can write the 

foregoing identity as 
 

f(xμ) +  +  = 0,   (2.8a) 

 
for all μ large enough, where  and  are vectors 

having components 
 

 μ )) ≥ 0 for all I ∈ I and  = μ ( ( ))  

for all I = 1, . . . , l.                                                    (2.8b)  
 

Let us now assume that  is a regular solution such that 
 and  are linearly independent then, we 

know that there exist unique scalars  , I ∈ I and , I 
= l, . . . , l such that 
  

f(xμ) +  +  = 0. 

 

Since g, h, ,  are all continuously differentiable and 

since {xμ} → , which is a regular point, we must then 
have in (2.8) that  
 

  , for all I ∈ I and  →  , for all I = 1, . . . , l. 

 
For sufficiently large values of μ, the multipliers given in 
(2.8) can be used to estimate KKT Lagrange multipliers 
at optimality and so we can interpret  and vμ as a sort 

of vector of Karush-Kuhn-Tucker multipliers. The result 
stated in next lemma insures that  → and vμ → . 

 
 
Lemma 4 
 

Suppose (y) and ψ(y) are continuously differentiable 
and satisfy (2.7), and that f, g, h are differentiable. 
Let , vμ) be defined by (2.8). Then, if → , and  

satisfies the linear independence condition for gradient 

vectors of active constraints (  is a regular solution), then 
 → , , where , ) are vectors of KKT 

multipliers for the optimal solution  of (P). 
 

Proof: From the Penalty Convergence Theorem,  is an 
optimal solution of (P).  
 
Let 
 

I = {I | ( ) = 0} and  
 

N = {I | ( ) < 0}. 
 
For I ∈ N, ( ) < 0 for all μ sufficiently large, so = 0 

for all μ sufficiently large, whereby  = 0 for I ∈ N. 
From  (2.8b)  and  the  definition of a penalty function, it 

 
 
 
 
follows that ≥ 0 for I ∈ I, for all μ sufficiently large. 

 
 → ,  as μ → ∞. Then  = 0 for I ∈ N. 

From the continuity of all functions involved, 
 

f(xμ) +  +  = 0, implies  

f( ) +  +  = 0.  

 

From the above remarks, we also have  ≥ 0 and  = 0 

for all I ∈ N. Thus ( ,  are vectors of Karush-Kuhn-
Tucker multipliers. It therefore remains to show  

→ ,  as μ → ∞ for some unique ( , ). 

Suppose  has no accumulation point, then 

||(uμ, )|| → ∞. But then define (Wμ, ) = ( ), and 

then ||(Wμ, )|| = 1 for all μ, and so the sequence 

has some accumulation point ( , ) point. 

For all I ∈ N,  = 0 for all μ large, where by  = 0 for 

all I ∈ N, and  
 ( ) + (  = ( ) + 

( ) 

 = ( ) + ( ) 

 = -   

 
for μ large. As μ → ∞, we have xμ → , (Wμ, ) → , 

and ||(uμ, )|| → ∞ by assumption, and so the above 

equation becomes; 
 

( ) + (  = 0, and ||(Wμ, )|| = 

1, which violates the linear independence condition. 
Therefore { } is bounded sequence, and so has at 

least one accumulation point. 
Now suppose that { } has two accumulation 

points, ( , ) and ( , ). Note  = 0 and  = 0 for I ∈ N, 
and so  

 
 +  = -  =  + 

,  

so that 

 +  = 0. 

 

But by the linear independence condition, = 0 for all 

I ∈ I, and . This implies that ( , ) = ( ). 

 
Remark: The quadratic penalty function satisfies the 
condition (2.7), but the linear penalty function does not 
satisfy. 

As a final observation we note that in general if  → , 

then since  μ )) →  and  = 

μ ( ( )) → , the sequence xμ approaches  from 

outside   the   constraint   region.  Indeed  as    →   all  



 
 
 
 

constraints that are active at  and have positive 
Lagrange multipliers will be violated at xμ because the 
corresponding )) are positive. Thus, if we assume 

that the active constraints are non degenerate (all 
Lagrange multipliers are strictly positive), every active 
constraint will be approached from outside of the feasible 
region. 

Consider the special case if p is the quadratic penalty 
function given by: 

 
p(x) =  + , then p(y) = 

 + ,  2maximum{0, y} 

and  2y. Hence, from (2.8), we obtain  

 
 , for all I ∈ I, and 

 = 2μ (xμ) for all I = 1, . . . , l.                             (2.9) 

 
In particular, observe that if  > 0 for some I ∈ I, then 

 > 0 for μ large enough and then (xμ) > 0 and by 

our assumption )) > 0 for (xμ) > 0. This means 

that (x) ≤ 0 is violated all along the trajectory leading to 

, and in the limit ( ) = 0. Hence, if  > 0 for some I ∈ I, 

 ≠ 0 for all I, then all the constraints binding at  are 
violated along the trajectory { } leading to . 

 
 
Example 3 
 
Consider the following optimization problem: 
 

Minimize  +   

subject to  +  = 1 
 
and the corresponding penalty problem: 

 
Minimize  μ  

subject to ( ) ,  

 
where μ is a large number.  

 
Xμ = [ ] is the solution for the penalty problem. 

And  

h(xμ) = -1 =  ; and so, 

 

(vμ) = 2μh(xμ) = 2μ( ) 

 
Implies 

 

vμ =  from                                                              (2.8) 

 
As μ → ∞, , which is the optimal value of the 

Lagrange multiplier for this example. 
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Example 4 
 
Minimize x 
subject to -x + 2 ≤ 0. 
 
The corresponding penalty problem is: 
 

Minimize x + μ  
subject to x ∈ R, 

 = 1 + 2μ[maximum ](-1) = 0, for x < 2 

which implies that 1 + 2μ  – 4μ = 0.  

Therefore,  = 2 –  , and 

( ( )), for I ∈ I 

= 2μ(-( ) + 2) 

= 1 
It follows that Uµ = 1. 
 
Note that, as μ → ∞,  1, the optimal value of the 

Lagrange multiplier for the primal problem. 
 
 
Example 5 
 

Minimize  + 2   

subject to -  –  + 1 ≤ 0, x . 
 

For this problem the Lagrangian is given by  

L(x, u) =  + 2  + u( -  –  + 1). The KKT 
conditions yield: 
 

  = 2  – u = 0 and  = 4  – u = 0; u(-  –  + 

1) = 0. 
 

Solving these results in = 2/3;  = 2/3;  = 4/3; (u = 0 
yields an infeasible solution). 
To consider this example using penalty method, define 
the penalty function 
 

p(x) =  

 
The unconstrained problem is then, 
 

minimize  + 2  + . 
If p(x) = 0, then the optimal solution is x* = (0, 0) which is 
infeasible. 
 

Therefore, p(x) =   =  + 2  

+ and the necessary conditions for the 
optimal solution yield the following: 
 

  = 2  + 2µ( )(-1), and  

  = 2  + 2 )(-1) = 0. 
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Thus,  =  and  =  for any fixed µ. 

When μ → ∞, this converges to the optimum solution of 

 = (  ). 

Now suppose we use (2.8) to define 
 

= , then 
 

 = 1 – {2μ/(2+3μ)} – {μ/(2+3μ)}) 

= 2μ(1 – {3μ/(2+3μ)}) 
= (4μ/(2+3μ)). 
  

Then it is readily seen that  = 4/3 =  

(the optimal Lagrangian multiplier for this example). 
Therefore the above Lemma 4 is true under some 
regularity conditions.  
 
 
Ill-Conditioning of the Hessian matrix 
 

Since the penalty function method must, for various 
(large) values of μ, solve the unconstrained problem:  
 
Minimize f(x) + μp(x)  

subject to x X,  
 

It is important, in order to evaluate the difficulty of such a 
problem, to determine the eigenvalue structure of the 
Hessian of this modified objective function. The 
motivation for this is that the eigenvalue structure of the 
Hessian of the objective function determines the natural 
rates of convergence for algorithms designed for 
unconstrained optimization problems. We show here that 
the structure of the eigenvalue of the corresponding 
unconstrained problem becomes increasingly unfavora-
ble as μ increases. Although, one usually insists for 
computational as well as theoretical purposes that the 
function p ∈ c

1
, one usually does not insist that p ∈ c

2
. In 

particular, the most popular penalty function p(x) = 
(maximum {0, y})

2
, has discontinuity in its second 

derivative at any point where the component of g is zero, 

that is, 2(maximum{0, y}), but  would have 
been undefined at y = 0 (as shown below).

 
Hence, the 

Hessian of the unconstrained problem would be 
undefined at points having binding inequality constraints. 
At first this might appear to be a serious drawback, since 
it means the Hessian is discontinuous at the boundary of 
the constraint region-right where, in general, the solution 
is expected to lie.  

However, as pointed out above, the penalty method 
generates points that approach a boundary solution from 
the outside the constraint region. Thus, except for some 
possible chance occurrences, the sequence will, as 

→ , be at points where the Hessian is well-defined. 

Furthermore, in iteratively solving the above 
unconstrained problem with a fixed µ, a sequence will be 
generated that converges to  which is (for most value of 

µ) a  point  where  the  Hessian  is  well-defined,  and  the  

 
 
 
 
standard type of analysis will be applicable to the tail of 
such a sequence (Luenberger,

 
1974). 

 
Consider the constrained optimization problem: 

 
Minimize {f(x), x ∈ S} 

 
whose feasible region we denote by S: = {x ∈ X | g(x) ≤ 0, 
h(x)} and the corresponding unconstrained problem: 

  
( ) = f(x) + μp(x), p(x) =  + , 

 
where f, g, h, , ψ are assumed to be twice continuously 
differentiable at . Then denoting by  and  the 

gradient and the Hessian operators for the functions Q, f, 
g, h, respectively, and denoting the first and second 

derivatives of  and ψ as ,  and ,  (all with 
respect to x) we have, 

 

 = f( ) +  + 

  

And 

 
Q(x, µ) =  + ] + 

 + .                                 

                                                                          (2.10) 

 
To estimate the convergence rate of algorithms designed 
to solve the modified objective function let us examine 
the eigenvalue structure of (2.10) as μ → ∞, and under 
the conditions of Theorem 2.2, as x   , an 

optimum solution to the given problem. Assuming that 
→  and  is a regular solution, we have from (2.8) 

that,  
  
μ )) →  ≥ 0 for i ∈ I and μ ( ( )) → , i = 1, . . 

. , l,  
 
where the optimal Lagrange multipliers associated with 

the  constraint. Hence, the term in [.] approaches the 
Hessian of the Lagrangian function of the original 
problem as → , which is  

 
=  + ,  

 
and has a limit that is independent of μ. The other term in  
(2.10), however, is strongly tied in with μ, and is 
potentially explosive. 

 
For example, if   and ψ(y) = , 
as the popular quadratic penalty functions for the 
inequality and equality constraints and considering a 
primal problem with equality or inequality constraints 
separately we have two matrices. 



 
 
 
 

 )) =  

where  
 

                 =  

Thus,  
 

 = 2μ , 

 
which is 2µ times a matrix that approaches 

. This matrix has rank equal to the rank 

of the active constraints at  (Luenberger,
 
1974). 

Assuming that there are r1 active constraints at the 

solution , then for well behaved  the matrix Q(x, µ) with 
only inequality constraints has r1 eigenvalues that tend to 
∞ as μ → ∞, but the n – r1 eigenvalues, though varying 
with μ, tend to finite limits. These limits turnout to be the 

eigenvalues of L( ) restricted to the tangent subspace M 
of the active constraints. The other matrix 
2μ  with l equality constraints has 

rank l. As μ → ∞, → , the matrix Q(x, µ) with only 

equality constraints has l eigenvalues that approach 
infinity while the n - l eigenvalues approach some finite 
limits. Consequently, we can expect a severely ill-
conditioned Hessian matrix for large values of μ.  

Considering equation (2.10) with both equality and 
inequality constraints we have as → , is a local 

solution to the constrained minimization problem (P) and 
that it satisfies  
 

h( ) = 0 and gA ( ) = 0 and gI( ) < 0, 
 
where gA and gI, is the induced partitioning of g into r1 
active and r2 inactive constraints, respectively. Assuming 
that the l gradients of h and the r1 gradients of gA 

evaluated at together are linearly independent, then  is 
said to be regular. It follows from this expression that, for 
large µ and for close to the solution of (P) the matrix Q 

has l + , eigenvalues of the order of µ. Consequently, 
we can expect a severely ill-conditioned Hessian matrix 
for large values of μ. Since the rate of convergence of the 
method of steepest descent applied to a functional is 
determined by the ratio of the smallest to the largest 
eigenvalues of the Hessian of that functional, it follows in 

particular that the steepest descent method applied to  

converges slowly for large . 
In examining the structure of Q is therefore; first, as µ is 

increased, the solution of the penalty problem 
approaches the solution of the original problem, and, 
hence, the neighborhood in which attention is focused for 
convergence  analysis  is  close  to the true solution. This  
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means that the structure of the Lagrangian in the 
neighborhood of interest is close to that of Lagrangian at 
the true solution. Secondly, we conclude that, for large µ, 
the matrix Q is positive definite. For any µ, Q must be at 
least positive semi definite at the solution to the penalty 
problem: it is indicated that a stronger condition holds for 
large µ.  
 
 

Example 6 
 

Consider the auxiliary function, (x, µ) =  

+ , of example 2.5. The Hessian is: 
 

 H = . 

 
Suppose we want to find its eigenvalues by solving det |H 

– | = 0, 

|H – | =  - 4  

=  – (6 +4  + 8 + 12 . 
  
This quadratic equation yields 
 

 = (3 + 2μ) ± , 

 = (3 + 2μ) -  and  = (3 + 2μ) + . 

 

Note that  → ∞ as µ → ∞, while  is finite; and, hence, 
the condition number of H approaches ∞ as µ → ∞. 
Taking the ratio of the largest and the smallest 
eigenvalue yields  

It should be clear that as μ → ∞, the limit of the 
preceding ratio also goes to ∞. This indicates that as the 
iterations proceed and we start to increase the value of μ, 
the Hessian of the unconstrained function that we are 
minimizing becomes increasingly ill-conditioned. This is a 
common situation and is especially problematic if we are 
using a method for the unconstrained optimization that 
requires the use of the Hessian. 
 
 

Unconstrained minimization techniques and penalty 
function methods 
 

In this we mainly concentrate on the problems of 
efficiently solving the unconstrained problems with a 
penalty method. The main difficulty as explained above is 
the extremely unfavorable eigenvalue structure. Certainly 
straight forward application of the method of steepest 
descent is out of the question. 
 
 
Newton’s method and penalty function methods 
 

One method for avoiding slow convergence for the 
problems is to apply Newton’s method (or one of its 
variations), since the order two convergence of Newton’s 
method is unaffected by the poor eigenvalue structure.  
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In applying the method, however, special care must be 
devoted to the manner by which the Hessian is inverted, 
since it is ill-conditioned. Nevertheless, if second order 
information is easily available, Newton’s method offers an 
extremely attractive and effective method for solving 
modest size penalty and barrier optimization problems.  

When such information is not readily available, or if 
data handling and storage requirements of Newton’s 
method are excessive, attention naturally focuses on zero 
order or first order methods. 
 
 

Conjugate gradients and penalty function methods  
 

According to Luenberger (1984) the partial conjugate 
gradient method for solving unconstrained problems is 
ideally suited to penalty and barrier problems having only 
a few active constraints. If there are l active constraints, 
then taking cycles of 1+1 conjugate gradient steps will 
yield a rate of convergence that is independent of µ. For 
example, consider the problem having only equality 
constraints: 
  

Minimize f(x)   (P) 
subject to h(x) = 0, 
 

where x  R
n
, h(x)  R

l
, l < n. Applying the standard 

quadratic penalty method, we solve instead the 
unconstrained problem:  
 

minimize f(x) + µ ,  
 

for large µ. The objective function of this problem has a 
Hessian matrix that has l eigenvalues that are of order µ 
in magnitude, while the remaining n – l eigenvalues are 
close to the eigenvalues of the matrix LM, corresponding 
to the primal problem (P). Thus, letting xµ+1 be 
determined from xµ by making l + 1 steps of a 
(nonquadratic) conjugate gradient method, and assuming  

xµ → , a solution to , the sequence {f(xµ)} converges 

linearly to f( ) with a convergence ratio equal to 
approximately 
 

(
β − α

β + α
)2 

 
 

where  and are, respectively, the smallest and largest 

eigenvalues of LM( ). This is an extremely effective 
technique when l is relatively small. The method can be 
used for problems having inequality constraints as well 
but it is advisable to change the cycle length, depending 
on the number of constraints active at the end of the 
previous cycle. 

Here we will use Powell’s method which is the zero 
order method. Powell’s method is an extension of the 
basic pattern search methods. It is the most widely used 
direct search method and can be proved to be a method 
of conjugate directions. This is as effective as the first 
order methods like the gradient method for solving 
unconstrained optimization problems. The reason why we 

 
 
 
 
use it here is: 
 

a. First, it is assumed that the objective and constraint 
functions be continuous and smooth (continuously 
differentiable). Experience has shown this to be a more 
theoretical than practical requirement and this restriction 
is routinely violated in engineering design and in some 
facility location problems. Therefore it is better to develop 
a general code that solves both differentiable and non-
differentiable problems. 
b. The input of the derivative if it exists is tiresome for 
problems with large number of variables. In spite of its 
advantages, Newton’s method for example is not 
generally used in practice due to the following features of 
the method: 
 

i. It requires the storing of the n n Hessian matrix of the 
objective function, 
ii. It becomes very difficult and sometimes, impossible to 
compute the elements of the Hessian matrix of the 
objective function, 
iii. It requires the inversion of the Hessian matrix of the 
objective function at each step, 
iv. It requires the evaluation of the product of inverse of 
the Hessian matrix of the objective function and the 
negative of the gradient of the objective function at each 
step. 
 

Because of the above reasons I do not prefer first and 
second order methods and I did not give more emphasis 
on these methods and their algorithms. 

Finally, we should not use second-order gradient 
methods (e.g., pure Newton's method) with the quadratic 
loss penalty function for inequality constraints, since the 
Hessian is discontinuous (Belegundu and, Chandrupatla, 
1999). To see this clearly, consider: 
 

Minimize f(x) = 100/x  
subject to g = x -5 ≤ 0,  
 

with f(x) being a monotonically decreasing function of x. 

At the optimum  = 5, the gradient of p(x) is 2µmax(0, x – 

5). Regardless of whether we approach  from the left or 

right, the value of  at  is zero. So, (x) is first-order 

differentiable. However,  = 0 when approaching  from 

the left while  = 2µ when approaching from the right. 

Thus, the penalty function is not second-order 
differentiable at the optimum. 
 
 

Powell’s method and penalty function methods  
 
Powell’s method is a zero-order method, requiring the 
evaluation of f(x) only. If the problem involves n design 
variables, the basic algorithm is (Kiusalaas, 2005): 
 
Choose a point x0 in the design space. 



 
 
 
 
Choose the starting vectors vi , i = 1, 2, . . . , n(the usual 
choice is v i = ei , where ei is the unit vector in the xi-
coordinate direction). 
Cycle  
do with i = 1, 2, . . . , n 
Minimize f(x) along the line through xi−1 in the direction of 
vi. Let the minimum point be xi. 
 

end  
do vn+1 ← xn - x0 (this vector is conjugate to vn+1 produced 
in the previous loop). 
Minimize f(x) along the line through x0 in the direction of 
vn+1. Let the minimum point be xn+1. 
if |xn+1 − x0| < ε exit loop 
do with i = 1, 2, . . . , n 
vi ← vi+1 (v1 is discarded, the other vectors are reused) 
end do end cycle. 

Powell (1997) demonstrated that the vectors vn+1 

produced in successive cycles are mutually conjugate, so 
that the minimum point of a quadratic surface is reached 
in precisely n cycles. In practice, the merit function is 
seldom quadratic, but as long as any function can be 
approximated locally by quadratic function, Powell’s 
method will work. Of course, it usually takes more than n 
cycles to arrive at the minimum of a non quadratic 
function. Note that it takes n line minimizations to 
construct each conjugate direction. 

Powell’s method does have a major flaw that has to be 
remedied; if f(x) is not a quadratic, the algorithm tends to 
produce search directions that gradually become linearly 
dependent, thereby ruining the progress towards the 
minimum. The source of the problem is the automatic 
discarding of v1 at the end of each cycle. It has been 
suggested that it is better to throw out the direction that 
resulted in the largest decrease of f(x), a policy that we 
adopt. It seems counter intuitive to discard the best 
direction, but it is likely to be close to the direction added 
in the next cycle, thereby contributing to linear depen-
dence. As a result of the change, the search directions 
cease to be mutually conjugate, so that a quadratic form 
is not minimized in n cycles any more. This is not a 
significant loss since in practice f(x) is seldom a quadratic 
anyway. Powell suggested a few other refinements to 
speed up convergence. Since they complicate the 
bookkeeping considerably, we did not implement them. 
 
 

General description of the penalty function method 
algorithm 
 

The detail of this and a MATLAB computer program for 
implementing the penalty method using Powell’s method 
of unconstrained minimization is given in the appendix. 
 

 

Algorithm 1 (Algorithm
 

for the penalty function 
method) 
 

To  solve  the  sequence  of unconstrained problems with  
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monotonically increasing values of μk, let {μk}, k = 1, . . . 
be a sequence tending to infinity such that μk ≥ 0 and μk+1 
> μk. Now for each k we solve the problem 
 

Minimize {θ(x, μk), x  X}. (2.11)  
 
To obtain xk, the optimum it is assumed that problem 
(2.11) has a solution for all positive values of μk. A simple 
implementation known as the sequential unconstrained 
minimization technique (SUMT) is given below. 
 
Step 0: (Initialization) Select a growth parameter β > 1 
and a stopping parameter ε > 0 and an initial value of the 
penalty parameter μ0. Choose a starting point x0 that 
violates at least one constraint and formulate the 
augmented objective function θ(x, µk). Let k = 1. 
 
Step 1: Iterative - Starting from xk-1, use an 
unconstrained search technique to find the point that 
minimizes θ(x, μk–1) and call it xk . 
 
Step 2: Stopping Rule - If the distance between xk–1 and 
xk is smaller than ε, that is, || xk–1

 
– xk || < ε or the 

difference between two successive objective function 
values is smaller than ε, that is, |f(xk-1) – f(xk)| < ε, stop 
with xk

 
an estimate of the optimal solution otherwise, put 

μk = βμk–1, and formulate the new θ(x, µk) and put k = k+1 
and return to the iterative step. 
 
 
Considerations for implementation of the penalty 
function method 
 
Starting point x1  
 
First in the solution step is to select a starting point. A 
good rule of thumb is to start at an infeasible point. By 
design then, we will see that every trial point, except the 
last one, will be infeasible (exterior to the feasible region). 
A reasonable place to start is at the unconstrained 
minimum. Always we should ensure that the penalty does 
not dominate the objective function during initial iterations 
of penalty function method. 

 
 
Selecting the initial penalty parameter (µ0) 
 
The initial penalty parameter μ0 should be fixed so that 
the magnitude of the penalty term is not much smaller 
than the magnitude of objective function. If an imbalance 
exists, the influence of the objective function could direct 
the algorithm to head towards an unbounded minimum 
even in the presence of unsatisfied constraints. Because 
the exterior penalty method approach seems to work so 
well, it is natural to conjecture that all we have to do is set 
μ to a very large number and then optimize the resulting 
augmented   objective  function   θ(x, μk)   to   obtain   the  
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solution to the original problem. Unfortunately, this 
conjecture is not correct. First, “large” depends on the 
particular model. It is almost always impossible to tell 
how large μ must be to provide a solution to the problem 
without creating numerical difficulties in the computations. 
Second, in a very real sense, the problem is dynamically 
changing with the relative position of the current value of  
x and the subset of the constraints that are violated. The 
third reason why the conjecture is not correct is 
associated with the fact that large values of μ create 
enormously steep valleys at the constraint boundaries. 
Steep valleys will often present formidable if not 
insurmountable convergence difficulties for all preferred 
search methods unless the algorithm starts at a point 
extremely close to the minimum being sought. 
Fortunately, there is a direct and sound strategy that will 
overcome each of the difficulties mentioned above. All 
that needs to be done is to start with a relatively small 
value of μ. The most frequently used initial penalty 
parameters in the literature are 0.01, 0.1, 2, 5, and 10. 
This will assure that no steep valleys are present in the 
initial optimization of θ(x, μk ). Subsequently, we will solve 
a sequence of unconstrained problems with 
monotonically increasing values of μ chosen so that the 
solution to each new problem is “close” to the previous 
one. This will preclude any major difficulties in finding the 
minimum of θ(x, μk ) from one iteration to the next. 
 
 
Subsequent values of the penalty parameter 
 
Once the initial value of the μk is chosen, the subsequent 
values of μk have to be chosen such that μk+1 > μk.  
 
For convenience, the value of μk is chosen according to 
the relation: 
 
μk+1 = βμk.  
where β > 1. The value of β can be taken as in most 
literatures 2, 5, 10,100 etc. 

Various approaches to selecting the penalty parameter 
sequence exist in the literature. The simplest is to keep it 
constant during all iterations and we consider here the 
penalty parameter as same for all constraints. 

 
 
Normalization of the constraints 
 
An optimization may also become ill-conditioned when 
the constraints have widely different magnitudes and thus 
badly affect the convergence rate during the minimization 
of θ-function. Much of the success of SUMT depends on 
the approach used to solve the intermediate problems, 
which in turn depends on their complexity. One thing that 
should be done prior to attempting to solve a nonlinear 
programming using a penalty function method is, to scale 
the  constraints  so  that the penalty generated by each is  

 
 
 
 
about the same magnitude. This scaling operation is 
intended to ensure that no subset of the constraints has 
an undue influence on the search process. If some 
constraints are dominant, the algorithm will steer towards 
a solution that satisfies those constraints at the expense 
of searching for the minimum. In either case, 
convergence may be exceedingly slow. Discussion on 
how to normalize constraints is given on barrier function 
methods. 
 
 
Test problems (Testing practical examples) 
 
As discussed in previous sections, a number of 
algorithms are available for solving constrained nonlinear 
programming problems. In recent years, a variety of 
computer programs have been developed to solve 
engineering optimization problems. Many of these are 
complex and versatile and the user needs a good 
understanding of the algorithms/computer programs to be 
able to use them effectively. Before solving a new 
engineering design optimization problem, we usually test 
the behavior and convergence of the algorithm/computer 
program on simple test problems. Eight test problems are 
given in this section. All these problems have appeared in 
the optimization and on facility location literature and 
most of them have been solved using different 
techniques. 
 
 
Example 1 
 
Consider the optimization problem:  
 

Minimize f(x) =  +  

subject to  - 4 ≤ 0 

  - ≤ 0 
 x1 + 2x2 - 4 ≤ 0 
 x1 ≥ 0 
 x2 ≥ 0 
 
We consider the sequence of problems: 
 

 = f(x) + µ[  

+  ] +  + 

] 
 
Optimum solution point using Mathematica is x = 

(1.67244, 1.21942) and Optimum solution is at  = 
34.1797 
Optimum solution point using MATLAB is x = 
(2.000000003129, 1.000000123435) and  

Optimum solution is at  = 34.0000050125 
 
The graph of the feasible region and steps of a computer 
program (Deumlich, 1996) with the contours of the 
objective function are shown in Figure 2.  
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Figure 2. The sequence of unfeasible results from outside the 

feasible region. And the iteration step using MATLAB for penalty 
and the necessary data are given.  

 
 
 

Table 1. The iteration step using MATLAB. 

 

µ xmin fmin augmin 

1.00 (-10.000000000000,-10.000000000000) 481.00 485615721.72568649 

10.00 (2.055936255098, 1.977625505064) 24.847007912 65.8104676667 

100.00 (2.003470085541, 1.120258484331) 32.791068788 38.7633368822 

1000.00 (2.000316074133, 1.012311179827) 33.875143422 34.4986676000 

10000.00 (2.000031285652, 1.001234049950) 33.987473310 34.0500992010 

100000.00 (2.000003125478, 1.000123433923) 33.998746923 34.0050122192 

1000000.00 (2.000000312552, 1.000012343760) 33.999874687 34.0005012538 

10000000.00 (2.000000031250, 1.000001234352) 33.999987469 34.0000501229 

100000000.00 ( 2.000000003129, 1.000000123435) 33.999998747 34.0000050125 

 
 
 
And the iteration step using MATLAB for penalty method 
and the necessary data are given as follows: 
 
Initial: 
 

x1 = [2; 5]; 
µ = 1; beta = 10; 
tol = 1.0e-4; tol1 = 1.0e-6; h = 0.1;N = 10 (Table 1). 
 
 

Example 2 
 

Consider the optimization problem:  
 

Minimize f(x) =  +  

subject to  -  ≤ 0 
 

 - ≤ 0 
-x1 + 2x2 - 2 ≤ 0 
 
We consider the sequence of problems: 

 = f(x) + µ[  + 

] 
Optimum solution point using Mathematica is x = 

(1.33271, 1.7112) and Optimum solution is at  = 
8.26363 
Optimum solution point using MATLAB is x =  
(1.280776520285, 1.640388354297) and  

Optimum solution is at  = 8.5235020151. 
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Figure 3. The sequence of unfeasible results. 

 
 

 
Table 2. The iteration step using MATLAB. 

 

 µ xmin fmin augmin 

1.00 (10.00000000000, 10.00000000000) 85.000000000 8249.000000000 

10.00 (1.762313021963, 2.438395531128) 3.9704775728 20.8446729268 

100.00 (1.376888913083, 1.774431551334) 7.5876445202 12.0187470067 

1000.00 (1.291940370698, 1.655287557366) 8.4151441359 8.9534555697 

10000.00 (1.281912903137, 1.641896920522) 8.5124734059 8.5675584019 

100000.00 (1.280890263154, 1.640539267595) 8.5223932351 8.5279146690 

1000000.00 (1.280787794313, 1.640403311676) 8.5233871397 8.5239394231 

10000000.00 (1.280777545189, 1.64038971403) 8.5234865508 8.5235417778 

100000000.00 (1.280776520285, 1.64038835429) 8234964917 8.5235020150 
 
 
 

The graph of the feasible region and steps of a computer 
program (based on Mathematica) with the contours of the 
objective function are shown in Figure 3.  

And the iteration step using MATLAB for penalty 
method and the necessary data are given as follows: 

 
Initial: 

 
x = [10; 10]; 
µ = 1; beta = 10; 
tol = 1.0e-3; tol1 = 1.0e-5; h = 0.1; N = 10 (Table 2). 

 
 
Example 3 
 

Consider the optimization problem: 

Minimize f(x) = -ln( ) 

subject to  ≥ 0 

 

2  + 3  ≤ 6 

 
 
Solution 

 
The -function of the corresponding unconstrained 
problem is: 
 

 = f(x) + µ[ ] 
 
The Exterior penalty function method, coupled with the 
Powell method of unconstrained minimization and golden 
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Figure 4. The sequence of unfeasible results from outside the feasible region. 

 
 

 
Table 3. The iteration step using MATLAB. 

 

 µ xmin fmin augmin 

1.00000 (100.0000000000, 100.0000000000) -2.9957322736 244033.0042677264 

1.50000 (1.812414390011, 0.805517491028) -0.8081555566 -0.805586944500 

2.25000 (1.812414390377, 0.805517490784) -0.8081555566 -0.804302638400 

3.37500 (1.812414395786, 0.805517487178) -0.8081555566 -0.802376179003 

5.06250 (1.803696121437, 0.801642712659) -0.8057446020 -0.804976156000 
 
 
 

bracket and golden search method of one-dimensional 
search, is used to solve this problem.  
Optimum solution point using Mathematica is x = 
(1.80125, 0.800555) and 

Optimum solution is at  = -0.804892 
 
Optimum solution point using MATLAB is x = 
(1.803696121437, 0.801642712659) and  

Optimum solution is at  = -0.8057446020  
The graph of the feasible region and steps of a computer  
program (Deumlich,  1996) with the contours of the 
objective function are shown in Figure 4. And the iteration 
step using MATLAB for penalty method and the 
necessary data are given as follows: 
 
Initial: 
 
x1 = [100; 100]; 
µ = 1; beta = 1.5; 

tol = 1.0e-9; tol1 = 1.0e-3; h = 0.1;N = 10; Table 3  
 
 
Example 4 
 
Consider the optimization problem:  
 

Minimize f(x) =  - 5ln( ) 

subject to  +  - 4 ≤ 0 

  - ≤ 0. 
 
We consider the sequence of problems: 
 

 =  - 5ln( ) + 

µ[ ]. 
We can solve this problem numerically. Since the 
function f is not convex we can expect local minimum 
points depending on the choice of the initial point. 



228         Afr. J. Math. Comput. Sci. Res. 
 
 
 

 

Optimal 

point 

 
 
Figure 5. The sequence of unfeasible results from outside the feasible region. 

 

 
 

Table 4. The iteration step using MATLAB. 

 

µ xmin fmin augmin 

1.0 (2 .000000000000, 3.000000000000) -8.0471895622 0.9528104378 

10.0 (0.584383413070, 4.869701406514) -11.851026032 2.8191586927 

100.0 (0.491210873054, 3.912290440909) -8.9702340739 -6.6115965813 

1000.0 (0.478587312848, 3.786849015552) -8.5400072779 -8.2873616072 

10000.0 (0.477272005299, 3.773806675110) -8.4944671131 -8.4690191379 

100000.0 (0.477139883021, 3.772497114149) -8.4898858321 -8.4873391868 

1000000.0 (0.477126692178, 3.772366078499) -8.4894274297 -8.4891727436 

10000000.0 (0.477125354746, 3.772352991728) -8.4893815863 -8.4893561184 
 
 

 

Optimum solution point using Mathematica is x = 
(0.472776, 3.80538) and  

Optimum solution is at  = -8.52761 
Optimum solution point using MATLAB is x = 
(0.477125354746, 3.772352991728) and  

Optimum solution is at  = -8.4893815863  
 
The graph of the feasible region and steps of a computer 
program (Deumlich  1996) with the contours of the 
objective function are shown in Figure 5. And the iteration 
step using MATLAB for penalty method and the 
necessary data are given as follows: 

 
Initial: 
x1 = [2; 3]; 
µ = 1; beta = 10; 
tol = 1.0e-4; tol1 = 1.0e-6; h = 0.1;N = 10 (Table 4). 

Example 5 
 
A new facility is to be located such that the sum of its 
distance from the four existing facilities is minimized. The 
four facilities are located at the points (1, 2), (-2, 4), (2, 6), 
and (-6,-3). If the coordinates of the new facility are x1 
and x2, suppose that x1 and x2 must satisfy the 
restrictions x1 + x2 = 2, x1 ≥ 0, and x2 ≥ 0. 
 
Formulate the problem 
Solve the problem by a penalty function method using a 
suitable unconstrained optimization technique. 
 

Minimize f(x) =  +  +  + 

  

 
subject to x1 + x2 = 2 
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Figure 6. The sequence of unfeasible results from outside the feasible region. 
 

 
 

Table 5. The iteration step using MATLAB. 

 

 µ xmin fmin augmin 

0.1 (-100000.0000000,-100000.0000000) 565688.2534900 6000645688.6535 

1.0 (-0.504816443491, 2.941129889320) 5.6534514664 16.0986605310 

10.0 (-0.235317980540, 2.465609185550) 15.7843894418 16.8684753525 

100.0 (-0.043496067432, 2.086197027712) 16.0316892765 16.4032172656 

1000.0 (-0.004877163871, 2.009622311363) 16.1014887806 16.1477919328 

10000.0 (0.000981076620, 2.000347630256) 16.1105064270 16.1281610467 

100000.0 (0.003030519805, 1.997102981748) 16.1136901197 16.1154723862 

1000000.0 (0.003236508228, 1.996776847061) 16.1140109620 16.1141893257 

 
 
 
x1 ≥ 0 

x2 ≥ 0  
 
The corresponding unconstrained optimization problem 
 
is: 
 

 = f(x) + µ[ ]. 
Optimum solution point using Mathematica is x 

=  

Optimum solution is at  = 16.0996. 
Optimum solution point using MATLAB is x = 
(0.003236508228, 1.996776847061) and  

Optimum solution is at  = 16.1140109620.  
The graph of the feasible region and steps of a computer 
program (Deumlich  1996) with the contours of the 
objective function are shown in Figure 6.  
And the iteration step using MATLAB for penalty method 
and the necessary data are given as follows: 
 
Initial: 
x = [-100000; -100000]; µ = 0.1; beta = 10; 
tol = 1.0e-6; tol1 = 1.0e-3; h = 0.1;N = 10 (Table 5). 

Example 6 
 
A new facility is to be located such that the sum of its 
distance from the four existing facilities is minimized. The 
four facilities are located at the points (1, 2), (-2, 4), (2, 6), 
and (-6,-3). If the coordinates of the new facility are x1 
and x2, suppose that x1 and x2 must satisfy the 
restrictions x1 + x2 = 2,  +  ≤2, -  -  ≤-3, x1 ≥ 0, 
and x2 ≥ 0. 
 
Formulate the problem 
Solve the problem by a penalty function method using a 
suitable unconstrained optimization technique. 
 

Minimize f(x) =  +  +  

  +   

subject to x1 + x2 = 2 

  +  ≤ 2 

 -  -  ≤ -3 

 -x1  0 

 -x2 ≤ 0  
 
The      corresponding         unconstrained      optimization  
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Figure 7. The sequence of unfeasible results from outside the feasible region. 
 

 
 

Table 6. The iteration step using MMATLAB. 
 

µ xmin fmin augmin 

0.01 (-100.00000000000,-100.0000000000) 568.62244178640 4000376.7024418 

0.10 (-0.204074540511, 2.488615905901) 15.7748455724 17.5805067419 

1.00 (-0.005676255570, 1.87710924673) 16.2384983466 18.5763296826 

10.0 (0.208853398412, 1.519794991416) 16.7514115057 18.7366197410 

100.0 (0.541258580758, 1.337453329403) 17.2205864696 19.3598462433 

1000.0 (0.774045018932, 1.191529581681) 17.7152204663 19.2571015793 

10000.0 (0.894859224075, 1.097008320463) 18.0550540479 18.8928463977 

100000.0 (0.951465363246, 1.046723818830) 18.2363926667 18.6484042954 

1000000.0 (0.977561265017, 1.022043406130) 18.3250429734 18.5208297859 

10000000.0 (0.989607061234, 1.01030727942) 18.3670763153 18.4588852580 
 

 
 

problem is:  
 

=f(x)+ [ + 
 

. 
Optimum solution point using Mathematica is x = 
{0.624988, 1.28927} and 
Optimum solution is at  = 17.579. 
Optimum solution point using MATLAB is x = 
(0.989607061234, 1.010307279416) and  

Optimum solution is at  = 18.3670763153. 
The graph of the feasible region and steps of a computer 
program (Deumlich 1996) with the contours of the 
objective function are shown in Figure 7.   
   
And the iteration step using MATLAB for penalty method 
and the necessary data are given as follows:  
 

Initial: 
 
x1 = [-100; -100]; 

µ = 0.01; beta = 10; 
tol = 1.0e-6; tol1 = 1.0e-3; h = 0.1; N = 10; Table 6 
 
 
Example 7 
  
The detail of this location problem is given in example 1 
of the barrier method. 
 
Minimize 
 

3600  + 2500  +  

+ 2200  +                                             

+  

 

+  +  

+  +  

 
subject to  +  ≤ 25 
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Table 7. The iteration step using MMATLAB. 
 

 µ xmin fmin augmin 

 10.0 (-100.000000,-100.0000000) 4201299.48370 3994823869.4837 

100.0 (5.18664531200, 5.613234562710) 217725.1471 335935.8823 

1000.0 (3.874734526, 3.94912345612000) 243622.3686 306218.6111 

10000.0 (4.28341223, 2.646232345145123) 256672.3825 399517.2275 

100000.0 (4.175642351, 0.46232345145100) 293524.5216 342434.4427 

1000000.0 (4.01825125, 0.047812341001001) 302445.1718 307672.3810 

10000000.0 (4.001831234, 0.00479123410010) 303387.2635 303913.3990 

100000000.0 (4.000181234, 0.00047912341001) 303481.9797 303534.6277 

1000000000.0 (4.000018123, 0.00004791234100) 303491.4564 303496.7216 

10000000000.0 (4.0000018123, 0.0000047912340) 303492.4042 303492.9307 

100000000000.0 (4.0000001812, 0.0000004790123) 303492.4989 303492.5516 

100000000000.0 (4.000000018, 0.00000004812331) 303492.5084 303492.5137 

10000000000000.0 (4.0000000018, 0.0000000048123) 303492.5100 303492.5099 

100000000000000.0 (4.000000000185, 0.00000000048) 303492.5095 303492.5095 

1000000000000000.0 (4.00000000002, 0.00000000005) 303492.5095 303492.5095 
 
 
 

x1 + x2 = 4 
x1 – x2 = 4 
-x1 ≤ 0 
-x2 ≤ 0  

 
The corresponding unconstrained optimization problem 
is: 

 
 = f(x) +  + 

 + ].  
Optimum solution point using Mathematica is x = 

(4, ) 

Optimum solution is at  = 303493.0. 
Optimum solution point using MATLAB is x = 
(4.000000000018, 0.000000000048) and  

Optimum solution is at  = 303492.50947.  
And the iteration step using MATLAB for penalty method 
and the necessary data are given as follows: 
 
Initial: 
 
x = [-100; -100]; 
µ = 10; beta = 10; 
tol = 1.0e-6; tol1 = 1.0e-6; h = 0.1; N = 20 (Table 7). 

 
 
Example 8 
 
Here, we test the well studied welded beam design 
problem, which has been solved by using a number of 
classical optimization methods and by using Genetic 
Algorithms [Deb, 128 to 129]. The welded beam is 
designed for minimum cost subject to constraints on 
shear stress in weld (η), bending stress in the beam (ζ), 
buckling load on  the bar (Pc), end deflection of the beam 

(δ), and side constraints. It has four design variables  

  
  

Design vector:  =  

 

Objective function: f (x) = 1.10471x1x2 + 0.04811x3x4   
(14.0 + x2)  
 
Constraints:  
g1(x) = η(x) − ηmax ≤ 0  
g2(x) = ζ(x) − ζmax ≤ 0  
g3(x) = x1 − x4 ≤ 0  
g4(x) = 0.10471x1 + 0.04811x3x4 (14.0 + x2) − 5.0 ≤ 0  
g5 (x) = 0.125 − x1 ≤ 0  
g6 (x) = δ(x) − δmax ≤ 0  
g7 (x) = P − Pc (x) ≤ 0 
g8 (X) to g11 (x): 0.1 ≤ xi ≤ 2.0, i = 1, 4 
g12 (x) to g15 (x): 0.1 ≤ xi ≤ 10.0, i = 2, 3  
where  
 

 

 

 
 

 

 

 

 

 
, 

 

 

 , 

 

 

 , 

 

 

 , 
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Table 8. The iteration step using MMATLAB. 
  

µ xmin fmin augmin 

0.01 (2.00000, 3.00000, 0.100000, 0.050000) 13.2606093500 10160035228635306 

0.02 (0.3634872, 2.7826082, 10.558957, 0.232105300) 2.3849380 2.39159576770 

0.04 (0.3634872, 2.7826082, 10.55895716, 0.2321053) 2.3849380 2.39825371460 

0.08 (0.3738517, 2.8145296, 10.10980684, 0.2340900) 2.3490380 2.35157651770 

0.16 (0.375852754, 2.8212375, 10.0249324, 0.234488) 2.3426482 2.34679527470 
 
 

 

P = 6000 lb, ηmax =13,600 psi, ζmax = 30,000 psi, and δmax 
= 0.25 in.  
 
Starting and optimum solutions: 

xstart = 

 

 

 

 = 

 

 
 , fstart = 5.398 and X* =

 

 

 
 and 

 

 

 

  = $2.3810  
 
Optimum solution point given by Rao (2009) is x = 
(0.2444, 6.2177, 8.2915, 0.2444) and Optimum solution 

is at 

 

 

 = 2.3810. Optimum solution point using MATLAB 
is x = (0.375852754, 2.8212375, 10.0249324, 0.234488) 

and Optimum solution is at 

 

 

 = 2.3467952747. 

 
And the iteration step using MATLAB for penalty method 
and the necessary data are given as follows: 
 

Initial:  
 

x1 = [2; 3; 0.1; 0.05]; 
µ = 0.01; beta = 2;  
tol = 1.0e-2; tol1 = 1.0e-6; h = 0.1; N = 5 (Table 8). 
 

Using other starting point we have different solution but 
the difference is not significant as given below. 
 

Initial: 
 

x1 = [0.4; 6; 0 .01; 0.05]; 
µ = 0.1; beta = 2;  
tol = 1.0e-2; tol1 = 1.0e-6; h = 0.1;N = 30 (Table 9). 

 
 
EXACT PENALTY FUNCTION METHODS 
 
In this chapter, we analyze two important extensions of 
the transformation methods, which are called exact 
penalty functions and have been most frequently used. In 
these methods a single unconstrained minimization 
problem, with a reasonable sized penalty parameter can 
yield an optimum solution to the original problem. This 
suggests an algorithm which attempts to locate the 
optimum value of  whilst keeping µ finite and so avoids 
the ill-conditioning in the limit µ goes to infinity that we 
face in penalty function methods. 

For the types of penalty functions considered thus far, 
we have seen that we need to make the penalty 
parameter infinitely large in a limiting sense to recover an 
optimal solution. This can cause numerical difficulties and 
ill-conditioning effects. To alleviate the computational 
difficulties associated with having to take the penalty 
parameter to infinity in order to recover an optimal 
solution to the original problem, we present below two 
penalty functions that possess this property and are 
known as exact penalty functions. These are exact 
absolute value (l1 penalty function) and augmented 
Lagrangian penalty function method.  
 
 

The exact absolute value or l1 penalty function 
 
An attractive approach to nonlinear programming is to 
attempt to determine an exact penalty function  by which 
is meant a function defined in terms of the objective 
function and constraints. This holds out the possibility 
that the solution can be found by a single application of 

an unconstrained minimization technique to , as against 
the sequential processes described above cannot be 
used. Consider problem (P) to minimize f(x) subject to 

 ≤ 0, i = 1, . . . , m, and  = 0, i = 1, . . . , l, and a 
penalty parameter μ > 0. 

Roughly speaking, an exact penalty function for 

problem (P) is a function , where μ > 0 is the 
penalty parameter, with the property that there exists a 

lower bound  > 0 such that for μ ≥  any local minimizer 
of (P) is also a local minimizer of the penalty problem. 
Exact penalty functions can be divided into two classes: 
continuously differentiable and non-differentiable exact 
penalty functions. Continuously differentiable exact 
penalty functions were introduced by Fletcher (1987) for 
equality constrained problems and by Gland and Polak 
(1979) for problems with inequality constraints; further 
contributions have been assumed in Di Pillo. Non-
differentiable exact penalty functions were introduced by 
Zangwill (1967); Pietrgykowski (1969). The most 
frequently used type of exact penalty function is the l1 
exact penalty function. This function has been 
researched widely, for example by Pietrgykowski (1969); 
Coleman and Conn (1982); in nonlinear programming 
applications amongst others. Unfortunately the many 
effective techniques for smooth minimization cannot 
adequately   be  used because  of  its  non-differentiability 



 
 
 
 
and the best way of using this penalty function is 
currently being researched. A more realistic approach is 
to use this function as a criterion function to be used in 
conjunction with other iterative methods for nonlinear 
programming. The most satisfactory approach of all is to 
apply methods of non-smooth optimization.  

A class of non-differentiable exact penalty functions 
associated to (P) for X = R

n 
was analyzed by 

Charalambous in 1978. It is assumed by 
 

(x, ) = f(x)  q , 
 

where q ≥ 1, , > 0, i = 1, . . . , m and i = 1, . . . , l. For 
q = 1 and considering all the penalty parameters equal to 
µ; we have the l1 penalty function, introduced by 
Pietrgykowski (1969), 
  

 = f(x)  μ , (4.1) 
 

Where:  

p(x) =    

      = , is the penalty 

function.  
 

Pietrgykowski (1969), has shown that function (4.1) is 
exact in the sense that there is a finite µ > 0 such that 
any regular local minimizer of (P) is also a local minimizer 
of the penalized unconstrained problem. In 1970, 
Luenberger showed that, under convex assumptions, 
there is a lower bound for µ, equal to the largest 
Lagrange multiplier in absolute value, associated to the 
nonlinear problem. In 1978, Charalambous generalized 
the result of Luenberger for the l1 penalty function (4.1), 
assuming the second-order sufficient conditions for (P). 
The following result shows that, under suitable convexity 
assumptions, there does exist a finite value of μ that will 
recover an optimum solution to (P) via the minimization 
of . Alternatively, it can be shown that if  satisfies the 
second-order sufficiency conditions for a local minimum 
of (P) (the Hessian is positive definite). Then, for μ at 

least as large as the theorem below,  will also be a local 

minimum of . 
 
 
Theorem 4 
 

Consider the following primal problem: 
 

Minimize f(x) 
subject to g(x)  0 
h(x) = 0. (P) 
  

Let  be a KKT point with Lagrangian multipliers , i ∈  I , 

and , i = 1, . . . , l associated with the inequality and 
equality constraints, respectively, where I = {i ∈  {1, . . . , 

m} : ( ) = 0} is the index set of active constraints.  
 

Furthermore,  suppose  that  f  and  ,  i  I   are   convex 
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functions and that , i = 1, . . . , l are affine functions. 

Then, for μ ≥ maximum { , i  I, | |, i = 1, . . . , l},  also 

minimizes the exact l1 penalized objective function  
defined by (4.1). 

 
 
Proof 

 
Since  is a KKT point to (P), it is feasible to (P) and 
satisfies 

 
f( ) +  +  = 0,  ≥0 for i ∈  I 

(.4.2) (Moreover solves (P).)  
 

Now, consider the problem of minimizing  over x 
∈  R

n
. This can equivalently be restated as follows, for 

any μ ≥ 0: 

 
Minimize f(x) + μ                            (4.3a) 

 
subject to  ≥ (x) and  ≥ 0 for i = 1, . . . , m         (4.3b) 

 
  ≥ (x) and  ≥ (x) for i = 1, . . . , l.                 (4.3c) 

 
The equivalence follows easily by observing that for any x 
∈  R

n
, the maximum value of the objective function in 

(4.3a), subject to (4.3b) and (4.3c), is realized by taking  

= maximum {0, } for i = 1, . . . , m and = | | 

for i = 1, . . . , l. In particular, given , define  = 

maximum {0, } for i = 1, …, m and = | | 0 for i 
= 1, …, l. 

 
Note that, of the inequalities  ≥ (x), i = 1, . . . , m, only 
those corresponding to i ∈  I are binding, while all the 
other inequalities in (4.3) are binding at ( ). Hence, 

for ( ) to be a KKT point for (4.3), we must find 
Lagrangian multipliers , , i = 1, . . . , m, and , , i 

= 1, . . . , l, associated with the respective pairs of 
constraints in (4.3b) and (4.3c) such that  

 
f( ) +  +  = 0,  

μ   = 0 for i = 1, . . . , m, 

μ    = 0 for i = 1, . . . , l, 

,  ≥ 0 for i = 1, . . . , m, 

, ) ≥ 0 for i = 1, . . . , l,     = 0 for i  I. 

 
Assumed that μ ≥ , i ∈  I, | |, i = 1, . . . , l}, 
we then have, using (4.2), that =  for all i ∈  I, = 0 

for i ≠ I,  = μ -  for all i = 1, . . . , m, and =  

and  =  for i = 1, . . . , l satisfy the forgoing KKT 

conditions. By stated convexity assumptions, it follows 

that ( ) solves (4.3), and, so,  minimizes . This 
completes the proof.  We proof it as follows in detail:  
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Lemma 5 
 
Suppose (P) is a convex program for which the Karush-
Kuhn-Tucker conditions are necessary. Suppose that 

 
p(x) = 

 
+ . 

 
Then as long as µ is chosen sufficiently large, the sets of 

optimal solutions of  and (P) coincide. In fact, it 

suffices to choose µ > maximum , i = 1, . . . , 

l}, where ( , ) is a vector of Karush-Kuhn-Tucker 
multipliers. 

 
 
Proof  

 
Suppose  solves (P). For any x  R

n
 we have: 

 
(x, µ) = f(x) + µ   

 ≥ f(x) + 
 
+   

  ≥ f(x) + 
 
+   

 

≥f(x)+ +

)
 
 

 = f(x) + ( ) 

   = f(x) - ( ) ≥ f( ) 
   = f( ) + µ  = 

( , µ). 

Thus ( , µ) ≤ (x, µ) for all x, and therefore solves 

(x, µ). 

Next suppose that  solves . Then if  solves (P), 
we have: 

 
f( )+µ ≤f( )+

 = f( ) 

and so  
f( ) ≤ f( ) - µ . ( ) 
 

However, if  is not feasible for (P), then 
 

  f( )  f( ) ( ) 

= f( ) - )
 
- ) 

  ≥ f( ) + - )
 

+ 

  

= f( ) + 
 
-  

  > f( ) - , 

 

which contradicts ( ). Thus  is feasible for (P). That 
being the case,  
 

f( ) ≤ f( ) - µ = f( )  

from (4.3.1.) and so  solves (P). Therefore they have the 
same optimal value.  

 
 
 
 
Example 1 
 

Minimize +  

subject to  +  -1 = 0 
 

 =  is the KKT point with the Lagrangian multiplier 

associated with this point is found as: 
 

 + = 0, which follows that 2  + = 0 and 2  

+ = 0.  
 

Equating the two we have  = -2  = -2( ) = -1.  

The function  defined by (4.1) for μ ≥ 0 is: 

 +  + μ|  +  -1|. 

 
If μ = 0,  is minimized at (0, 0). For μ > 0, 

minimizing  is equivalent to:  

 
Minimizing +  + μz 

subject to -z +  +  - 1 ≤ 0 ( ) 

 -z –  –  + 1 ≤ 0 
 

For ( , ) to be a KKT point for ( ) above, we must 

find Lagrange multipliers , associated with the 
respective constraints such that: 

 

 =  ( ) 

µ   = 0 

(-z +  +  -1) = 0 

(-z – –  + 1) = 0  

and, moreover, optimality dictates that z = |  +  -1|.  
 
Now let us consider the cases, 

 
Case 1: if (  + ) < 1, then  

 (-z +  +  -1) = 0, from this  since -z +  +  
-1 < 0.  

And, hence ( ) is:  

    =  

 μ =  =  

 2  –  and  

 2  -  = 0 

It follows that =  = .  

 
This is a KKT point, provided that 0 ≤ μ < 1. 

 
Case 2: if  +  = 1, then z = |  +  -1| = 0. 
 
By ( ) 

 =   

 μ   = 0, then  



 
 
 
 

2 =  = 2      =  =  = . 

From this we have; 
 

= μ – [ ] with  and  = .  

This is a KKT point, provided that μ  1. 
 

Case 3: if (  + ) > 1, so that ( ) is: 
 

 +  =      = 0, 

 

which implies that  =  = , and 

that  +  = -μ > 1, a 
contradiction to μ > 0. Consequently, as μ increases from 

0, the minimum of  occurs at ( ) until μ reaches the 

value 1, after which it remains at ( , ), which is the 

optimum to the original problem. 
 
 

Augmented lagrangian penalty function (ALAG) 
 

As we have seen in the above discussion, most “smooth” 
penalty functions (such as quadratic penalty function) 
never generate exact solutions to the constrained 
minimization problem. Therefore, we would need to solve 
the (penalized) unconstrained problems with very large 
values of the constant µ in order to obtain solutions that 
are close to being feasible and optimal. (In theory, we 
need to let µ → ∞ to obtain a solution.) This is 
unfortunate, since the unconstrained optimization 
problems one encounters in implementing penalty 
methods tend to become ill-conditioned when µ 
increases, and therefore, it will be hard to solve each of 
the unconstrained problems required by the algorithm. 
Alternatively, one could employ an exact penalty method, 
that is, a method that guarantees termination at an 
optimal solution provided that the value of µ is sufficiently 
large (but finite). As we have established, linear penalty 
function is an exact penalty function; unfortunately, it is 
not differentiable at points at the boundary of the feasible 
region, and therefore poses difficulties in solving 
corresponding unconstrained problems.  

Motivated by our discussion of exact penalty functions, 
it is natural to raise the question whether we can design a 
penalty function that not only recovers an exact optimum 
for finite penalty parameter values but also enjoys the 
property of being differentiable. The Augmented 
Lagrangian Penalty Function (ALAG), also known as the 
multiplier penalty function, is one such exact penalty 
function. This approach uses both a Lagrangian multiplier 
term and a penalty term in the auxiliary function. This 
approach was independently proposed by Hestenes 
(1969); Powell (1997). The original proposal of this 
method may be viewed as a significant milestone in the 
recent history of the constrained optimization area. As 
described  by Hestenes, augmented Lagrangian methods  
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are not only practically important in their own right, but 
have also served as the starting point for a chain of 
research developments centering around the use of 
penalty functions, Lagrange multiplier iterations, and 
Newton's method for solving the system of necessary 
optimality conditions. Again, the motivation here is to 
avoid the ill-conditioning difficulties encountered by the 
classical approach as the penalty parameter approaches 
to infinity. 

For simplicity, let us begin by discussing the case with 
only equality constraints, for which augmented 
Lagrangians are first introduced, and then readily extend 
the discussion to include inequality constraints as well. 
 
 

ALAG penalty function for equality constrained 
problems 
  
Consider Problem (P) of minimizing f(x) subject to hi(x) = 
0 for i = 1, . . . , l. we have seen if we employ the 
quadratic penalty function problem to minimize f(x) + 

, then we typically need to µ  to obtain a 

constrained minimum for (P). We might then be curious 
whether, if we were to shift the origin of the penalty term 

to  = ( , i = l, . . . , l) and consider the penalized 

objective function f(x) +  with respect to 

the problem in which the constraint right-hand sides are 

perturbed to  from 0, it can be shown (Theorem 4.1 
below) that if the Lagrange multipliers are fixed at their 

optimum values , the minimization of (x, v, µ) 
gives the solution of the original problem (P) in one step 
for any value of µ. In such a case there is no need to 

minimize the function for an increasing sequence of 
values of µ. In expanded form, this latter objective 
function is  
 

f(x) –  +  + . 

Denoting  = -  for i = 1, . . . , l and dropping the 
final constant term (independent of x), this can be written 
as 
 

(x, v) = f(x) +  + ,           (4.4) 

 

where v R
l
 is some vector of multipliers, that can be 

either kept constant or updated as we proceed with the 
penalty algorithm. (Compare this to the usual Lagrangian 
function L(x, v) = f(x) + .) The usage of this 

function as a penalty function can be partially motivated 

by the following observation: suppose that  is the 

optimal solution of (P), and  is the vector of 
corresponding multipliers. Taking the (partial) gradient of 

the function , we obtain 
  

 =  2µ  = 0         (4.5)                                            

                      

For all values of ; whereas this was not necessary the 

case with the quadratic penalty function, unless  was  
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itself zero. Hence, whereas we need to take µ  to 

recover  in a limiting sense using the quadratic penalty 
function, it is possible that we only need to make µ large 
enough (under suitable regularity conditions as 
enunciated below) for the critical point  of (.,  ) to 
turn out to be its (local) minimizer. In this respect, the last 
term in (4.5) turns out to be a local convexifier of the 
overall function. 

Observe that the function (4.5) is the ordinary 
Lagrangian function augmented by the quadratic penalty 
term; hence the name augmented Lagrangian penalty 
function. Accordingly, (4.5) can be viewed as the usual 
quadratic penalty function with respect to the following 
problem that is equivalent to (P): 
 
Minimize {f(x) +  :  1, l}.   (4.6) 

                                                                           
Alternatively, (4.4) can be vied as a Lagrangian function 
for the following problem which is equivalent to (P): 
 

Minimize {f(x) +  : 1,  l}. (4.7) 

  
inclusion of a “multiplier based term” in the quadratic 
penalty objective function; it is also sometimes called a 
multiplier penalty function. These view points lead to a 
reach theory and algorithmic felicity that is not present in 
the pure quadratic penalty function. 

The following result provides the basis by virtue of 
which the ALAG penalty function can be classified as an 
exact penalty function. Namely, if the vector of multipliers 

 is known, one can hope that under some regularity 

assumptions, the point  is the local minimizer of FALAG(x, 

) for large (but finite) values of µ. 

 
 
Theorem 6 (ALAG Theorem) 
 
Consider problem (P) to minimize f(x) subject to hi(x) = 0 

for i = 1, . . . , l, and let the KKT solution ( ) satisfy the 
second‐ order sufficiency conditions for a local minimum 

(the Hessian is positive definite.) Then, there exists a  

such that for μ ≥ , FALAG(., ) also achieves a strict local 

minimum at . In particular, if f is convex and hi are affine, 

then any minimizing solution  for (P) also minimizes 

FALAG(., ) for all μ ≥ 0. 

 
 
Proof  
 

Since ( ) is a KKT solution, we have, from (4.5), that 

 = 0. 
 
Furthermore, letting G( ) denote the Hessian of FALAG( . , 

) at x = , we have 
 

G( ) =  +  + 2µ  +  

 
 
 
 

] 

=  + 2                                 (4.8) 

 

where  is the Hessian of the Lagrangian function 

for (P) with a multiplier vector  at x = . From the 

second-order sufficiency conditions, we know that  
is positive definite on the cone  
 

C = {d ≠ 0 : d = 0 for i = 1, . . . , l}. 
 
Now, on the contrary, if there does not exist a  such that 

G( ) is positive definite for μ ≥ , then it must be the case 

that, given any  = k, k = 1, . . . , l, there exists a  with 

|| || = 1 such that  
 

G( )  =  + 2k  ≤ 0.      (4.9) 

 

Since, || || = 1 for all k, there exists a convergent 

subsequence for { } with limit point , where || || = 1. 
Over this subsequence, since the first term in (4.9) 

approaches L( ) , a constant, we must have 

 = 0 for all i = 1, . . . , l for (4.9) to hold for all k. 
Hence,   C. Moreover, since  ≤ 0 for all k by 

(4.9), we have  ≤ 0. This contradicts the 

second-order sufficiency conditions. Consequently, G( ) 

is positive definite for µ exceeding some value , and so, 

 is a strict local minimum for FALAG(., ). 

Finally, suppose that f is convex and hi are affine, and  
is optimal to (P). There exists a set of Lagrange 

multipliers  such that ( ) is a KKT solution. As before, 

we have  = 0, and since for FALAG(. , ) is 
convex for any µ ≥ 0, this completes the proof. 

We remark here that without the second-order 
sufficiency conditions of Theorem 4.3, there might not 

exist any finite value µ that will recover an optimum  for 

problem (P), and it might be that we need to take µ  
for this to occur. The following example from (1987) 
illustrates this point. 
 
 
Example 2 
 

Consider the following optimization problem: 
 

Minimize f(x) = 
4
 +   

subject to  = 0 
 

 =  is the optimal solution. From the KKT 

conditions,  +  = 0 and we get  = 0 as the 
unique Lagrange multiplier. Note that: 
 
 L( ) = f( ) +  = f( ). Then,  

  =  and 

  =  

  =  = H 



 
 
 
 

The eigenvalues of H are found by solving: |H- | = 0, 

With  Or . Therefore  is indefinite. 
This shows the second-order sufficiency condition does 

not hold at ( ). Now, consider  
 

( ) = ( ) = f( ) +  + 

 

= 
4
 +  + 0 + µ

2
. 

 
Note that for any µ > 0 
   ,  

vanishes at  =  and  = . Furthermore,   

 =  and  = ,  

 

is indefinite and, hence,  is not a local minimizer for any 
µ > 0. Hence worth it is assumed that second order 
sufficient conditions hold and µ is sufficiently large.  
 
However, 
 

 = , 

 

The eigenvalues of  are all positive for µ > 0 

which shows that  is positive definite, and  is 

in fact the minimizer of  for all µ > 0. Moreover, as µ 

→ ∞,  approaches the constrained minimum for problem 
(P). 

It is demonstrated in the following examples that if the 
optimum Lagrange multipliers are known, then the 
solution of this unconstrained problem corresponds to the 
solution of the original problem regardless of the value of 
the penalty parameter. 
 
 

Example 3 
 

Consider the optimization problem (P) in example 4.1. 

 = , with  = -1 is the unique KKT point and 

optimum for this problem. Furthermore,  =  is 
positive definite, and thus second-order sufficiency 

condition holds at ( , ). Moreover from equation (4.4), 

 ( ) = 
2 
+ 

2
 – (  +  -1) +  

 =  +  +  + ,  

which is clearly uniquely minimized at  =  for all µ 

≥ 0. Hence, both assertions of Theorem 4.3 are verified. 
 
 

Example 4 
 

Consider the following optimization problem: 
 

Minimize f(x) =  + x   
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subject to x +  = 10 
 
using KKT conditions, it is easy to compute the optimal 
solutions as follows (This is computed using 
Mathematica): 
 

KTSolution[  + x ,{ x +  -10= 0},{x,y}]; 

 Lagrangian→  + x  + [-10+ x + ]   

 Valid KT point(s)  
f → 50 
x → 10 

y → 0   → -10 
Optimum: x = 10, y = 0 Lagrange multiplier, v = -10 
 

In the augmented Lagrangian approach, the 
unconstrained function is defined by adding exterior 
penalty term to the Lagrangian of the original problem. 
Thus we have the following unconstrained function. 

 + x  + v(x +  -10) + µ  

 
The necessary conditions for the minimum of this function 
give the following equations: 
 

 

 
If v is set to the optimum value of the Lagrange multiplier, 
we get the following equations: 
 

 

 
The second equation can be written as follows: 
 
y( ) = 0. 
 
Thus, y = 0 satisfies this equation for any value µ. 
Substituting y = 0 in the first equation, we get  
 

  
or  

( )(1 + 2µ) = 0. 
 

Thus, x = 10 satisfies this equation. Thus, the Lagrangian 
penalty function has the property that the optimum 
solution of the original problem is recovered, if we know 
the optimum values of the Lagrange multipliers. 
Therefore, in this sense it is an exact penalty function. 

Obviously, when we are solving a problem we don’t 
know the optimum Lagrange multipliers. (If they were 
known we wouldn’t need to spend time in developing new 
algorithms. We could simply use them with the KKT 
conditions to get a solution). However, the presence of 
Lagrange multipliers makes the choice of penalty 
parameter less critical. In a computational procedure 
based  on  the  augmented  Lagrangian  penalty  function  
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method, we start with arbitrary values of Lagrange 
multipliers and develop a procedure that moves the 
Lagrange multipliers closer to their optimum values. 
Thus, near the optimum, the function is not as sensitive 

to the value of  and the procedure converges to the true 
optimum. 

Therefore, to make use of the above result, one 
attempts to estimate the multipliers by updating the 
vector v after solving each (or some) unconstrained 
minimizations of FALAG. The outline of such an algorithm 
is given in the following section. 
 
 
Schema of an algorithm using augmented Lagrangian 
penalty functions 
 
Method of multipliers 
 
The method of multipliers is an approach for solving 
nonlinear programming problems by using the 
augmented Lagrangian penalty function in a manner that 
combines the algorithmic aspects of both Lagrangian 
duality methods and penalty function methods. However, 
this is accomplished while gaining from both these 
concepts without being impaired by their respective 
shortcomings. The method adopts a dual ascent step 
similar to the sub-gradient optimization scheme for 
optimizing the Lagrangian dual; but, unlike the latter 
approach, the overall procedure produces both primal 
and dual solutions. The primal solution is produced via a 
penalty function minimization; but because of the 
properties of the ALAG penalty function, this can usually 
be accomplished without having to make the penalty 
parameter infinitely large and, hence, having to contend 
with the accompanying ill-conditioning effects. Moreover, 
we can employ efficient derivative based methods in 
minimizing the penalized objective function. The 
fundamental scheme of this algorithm is as follows. 
 
 
Schema of the algorithm for equality constraints 
 
Consider the problem of minimizing f(x) subject to the 
equality constraints hi(x) = 0 for i = 1, . . . , l. (The 
extension to include inequality constraints is relatively 
straight forward and is addressed in the following 
subsection). Below, we outline the procedure first, and 
then provide some interpretations, motivations, and 
implementation comments. As is typically the case, the 
augmented Lagrangian function employed is of the form 
(4.4), except that each constraint is assigned its own 

specific penalty parameter , instead of a common 
parameter µ. Hence, constraint violations, and 
consequent penalizations, can be individually monitored. 
Accordingly, we replace (4.4) by  

 
(x, v) = f(x) +  +   

 
 
 
 
Although, there are different algorithms to solve this kind 
of problems the algorithm due to Powell (1997) is given 
below and ensures global convergence. The outline of 
such an algorithm is as follows. 
 
 

Algorithm 1: Algorithm for ALAG with equality 

constraints 
  
Initialization: Select some initial Lagrangian multipliers v 

=  usually 0 and positive values μ1, . . . , μl for the 
penalty parameters. Let xo be a null vector, and denote 
VIOL(xo) = ∞, where for any x ∈  R

n
, VIOL(x) = 

maximum{|hi(x)| : i = 1, . . . , l} is a measure of constraint 
violations. Put k = 1 and proceed to the "inner loop" of the 
algorithm. 
 
Inner loop (Penalty function minimization): Solve 

minimize FALAG(x, ) subject to x ∈  R
n
 and let xk denote 

the optimal solution obtained. If VIOL (xk) = 0, stop with xk 
as a KKT point. (Practically, one would terminate if VIOL 

(xk) is less than some tolerance  > 0). Otherwise, if VIOL 
(xk) ≤ 0.25VIOL (xk‐ 1), proceed to the outer loop. On the 
other hand, if VIOL (xk) > 0.25VIOL (xk‐ 1) then, for each 
constraint i = 1, . . . , l for which |hi(xk)| >0.25VIOL(xk‐ 1), 
replace the corresponding penalty parameter μi by 10μi 
and repeat this inner loop step. 
 
 

Outer loop (Lagrange multiplier update): Replace  

by ,  
Where, 
 

 =  + 2  for i = 1, . . . , l.                     (4.10) 
 
Increment k by 1, and return to the inner loop.  
 
The inner loop of the forgoing method is concerned with 
the minimization of the augmented Lagrangian penalty 
function. For this purpose, we can use xk‐ 1 (for k ≥ 2) as a 
starting solution and employ Newton’s method (with line 
searches) in case the Hessian is available, or else use a 
quasi-Newton method if only gradients are available, or 
use some conjugate gradient method for relatively large-
scale problems. If VIOL (xk) = 0, then xk is feasible, and, 
moreover, 

 
 =  +  + 2  = 0                                            

                                                                             (4.11) 
 
implies that a KKT point. Whenever the revised 

iterate  of the inner loop does not improve the measure 
for constraint violations by selected factor 0.25, the 
penalty parameter is increased by a factor of 10. Hence, 
the outer loop will be visited after a finite number of 

iterations  when  the  tolerance    is used in the inner  



 
 
 
 

loop, since, as in Theorem 2.2 we have  → 0 as  
→ ∞ for i = 1, . . . , l. 

Observe that the forgoing argument holds regardless of 
the dual multiplier update scheme used in the outer loop, 
and that it is essentially related to using the standard 
quadratic penalty function approach on the equivalent 
problem (4.6). In fact, if we adopt this view point, then the 
Lagrange multiplier estimate associated with the 

constraints in (4.6) is assumed by 2  for i = 1, . . . , 
l, as (2.8). Since the relationship between the Lagrange 
multipliers of the original problem (P) and its primal 

equivalent from (4.6) with v =  is that the Lagrange 

multiplier vector for (P) equals  plus the Lagrange 
multiplier vector for (4.6), equation (4.10) then gives the 
corresponding estimate for the Lagrange multiplier 
associated with the constraints for (P). 

This observation can be reinforced more directly by the 
following interpretation. Note that having 
minimized , we have (4.11) holding true. 

However, for  and  to be a KKT solution, we want 

 = 0, where L(x, v) = f(x) +  is the 

Lagrangian function for (P). Hence, we can choose to 
revise  to  in a manner such that  

 
 +  = 0. 

 
Super imposing this identity on (4.11), we get  

 
 = ,  

 
which follows that 

 
 +  + 2  =  + 

 

 
by eliminating like terms, we get 

 
 =  

 
From this, 

 
 =  + 2  which is the update scheme in 

(4.10). 
 
Hence, from the view point of problem (4.6), convergence 
is obtained above in one of the two ways. First, we might 
finitely determine a KKT point as is frequently the case. 
Alternatively, viewing the forgoing algorithm as a one of 
applying the standard quadratic penalty function 
approach, in sprit, to the equivalent sequence of 
problems of the type (4.6), each having particular 
estimates of the Lagrangian multipliers in the objective 
function, convergence is achieved by letting the penalty 
parameters approach infinity. In the latter case, the inner 
loop problems become increasingly ill-conditioned and 
second-order methods become imperative. 
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Example 4.5 
 

Consider the optimization problem of Example 4.1. Given 
any v, the inner loop of the method of multipliers 

evaluates  = ,  

Where  = 
2
 + 

2
 + v(  +  -1) + 

.  

Solving  = 0 yields 

x(v) = . (The KKT point) 

The outer loop then updates the Lagrangian multiplier 
according to  

 =  + 2   

which gives  = v + 2µ[ (v) + (v) -1] = . Note 

that, as µ → ∞,  → -1, the optimal Lagrange 
multiplier value.  

Hence, if we start the algorithm with  = 0, and µ = 1, the 
inner loop will determine 
 

x(0) =  =  with VIOL[x(0)] =  +  – 1 =  - 1 

= ,  

 

and the outer loop will find  = 0 + 2(1)( ) = . Next, 

at the second iteration, the inner loop solution will be 
obtained as  
 

x(v) =  =  =  

x( ) =  with VIOL(x( )) = h[x( )] =  > 

( )( ) with VIOL(x(1)) > VIOL(x(0)).  

 
Hence we will increase µ to 10, and recompute the 
revised 
 

x( ) =  =  =  with VIOL(x( )) = .  

The outer loop will then revise the Lagrange multiplier  = 

 to     =  + 2(10) ( ) = . 

 

The iteration will progress in this fashion, using the 
forgoing formulas, until the constraint violation at the 
inner loop solution is acceptably small. 
 
 

ALAG penalty function for problems with mixed 
constraints  
 

Consider problem (P) to minimize f(x) subject to the 
constraints gi(x) ≤ 0 for i = 1, . . . , m and hi(x) = 0 for i = 
1, . . . , l (Bhatti (2000). The extension of the forgoing 
theory of augmented Lagrangians and the method of 
multipliers to this case, which also includes inequality 
constraints, is readily accomplished by equivalently 
writing the inequalities as the equations gi(x) +  = 0 for i 

= 1, . . . , m. Now suppose that  is a KKT point for 
problem (P)  
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with optimal Lagrange multipliers , i = 1, . . . , m, and , 
i = 1, . . . , l, associated with the inequality and equality 
constraints, respectively, and such that the strict 
complementary slackness condition holds, namely, that 

gi( ) = 0 for all i = 1, . . . , m, with  > 0 for each i ( ) 

= {i : gi( ) = 0}. Furthermore, suppose that the second-

order sufficiency condition holds at ( ), namely, that 

 is positive definite over the cone 
 

 C = {d ≠ 0 :  = 0 for i 
= 1, . . . , l}.  
 
Then it can be verified that the conditions of Theorem 4.3 

are satisfied for problem  to minimize f(x) subject to 
gi(x) +  = 0 for i = 1, . . . , m, and hi(x) = 0 for i = 1, . . . , 

l, at the solution ( , ), where  = - gi(x) for i = 1, . . . 

, m. Hence, for µ large enough, the solution ( , ) will turn 
out to be a strict local minimizer for the following ALAG 

penalty function at (u, v) = ( , ): 
 

 f(x) +    + 

µ .                             (4.12) 

 
The augmented Lagrangian function defined in (4.12) 
includes slack variables for inequality constraints. Their 
presence increases the number of variables in the 
problem. It is possible to remove these variables by 
writing the necessary conditions for the minimum with 
respect to s. Before proceeding it is convenient to 
combine the two terms involving the slack variables by 
noting that; 
 

µ  = µ . 

 

Rearranging the terms gives, 
 

µ  + ( ) = µ  - . 

 

For a given penalty parameter µ > 0, let  represent 
the minimum of (4.12) over (x, s) for any given set of 
Lagrange multipliers (u, v). Now let us rewrite (4.12) more 
conveniently as follows: 
 

f(x) + µ  -  +  + 

].                                                              (4.13) 

 

Hence, in computing , we can minimize (4.13) over 

(x, s) by first minimizing [ ] over  in terms 

of x for each i = 1, . . . , m and then minimizing the 

resulting expression over the x  R
n
. The former task is 

accomplished by writing the necessary conditions for the 

minimum of  with respect to the slack variables, we get 
 

 = 0 implies that  

 
 
 
 

 2( )(2 ) = ) = 0, i = 1, . . 

. , m. 

 
These conditions state that either 

 
 = 0 Or  = 0 which follows 

 = 0 Or  = - ( ) ≥ 0. 

 
Using this  can be written as: 

 

  =  

 = , say.                              (4.14) 

 
Similar to (4.14), the function  is sometimes 
referred to as the ALAG penalty function itself in the 
presence of both equality and inequality constraints. In 
particular, in the context of the method of multipliers, the 

inner loop evaluates , measures the constraint 
violations, and revises the penalty parameter(s) in an 
identical fashion as before. 

In order the augmented Lagrangian penalty function to 
solve constrained optimization problems, we need to 
determine a procedure that, starting from arbitrary values, 
leads to near optimum values of Lagrange multipliers. A 
simple procedure is based on comparing the necessary 
conditions for the minimum of the Lagrangian function 
and the augmented Lagrangian penalty function for 
problem only with equality constraint. In the presence of 
inequality constraints, the above analysis does not work 
out as clearly as for the equality case. In practice, the 
following rule based on similarity with the equality is 
adopted: 

 
 =  + maximum .  

If  minimizes (4.14), then the sub-gradient component 

to  at (u, v) = ( , ) is found at 

  = 2µ  – 2  

and is  

 - . 

Adopting the fixed step length of 2µ along this sub-
gradient direction as for the equality constraint case 

revises  to  

  =  + 2µ[  - ] 

  = 0 + maximum  

  =  + maximum  for i = 1, . . . , m.  (4.15)  

 
To start the process, arbitrary values, usually zero, are 
assigned to all multipliers. Also, the multiplier updating is 
done only after a substantial decrease in constraint 
violation is achieved. The following algorithm from [6] is 
used in most literatures.  



 
 
 
 

Algorithm 2: Algorithm for ALAG with mixed 

constraints 
 

Set iteration counter k = 0. Set multipliers  = 0, i = 1, …, 

m and  = 0, i = 1,…,l. Set multiplier update counter l = 0. 

Choose a penalty parameter µ and a factor  > 1 to 
increase the penalty parameter value during iterations. 

Typically µ = 10 and  = 2. 
Set up the unconstrained minimization problem. 
 

  =  
 
use a suitable unconstrained minimization problem to find 

 the minimum. The derivative of  with respect to  are 

evaluated according to the following: 
  

  =  + 2µ  + 2µ  +  + 

2µ  , j = 1, . . . , n. 

 

Check for convergence: A simple convergence criterion is 
to stop if all constraints are satisfied and the objective 
function is not changing much between successive 
iterations. Thus, stop if the following two criteria are 
satisfied. Otherwise continue to step (iv). 
 

If Abs[( )] <  

    VIOL(xk) <  
VIOL(xk) = maximum{Abs(hi(x), i = 1, . . . , l), 

} is the maximum constraint violation. 
 Update the multiplier and the penalty parameter: 
 

If VIOL(xk) ≤ 0.25VIOL(xk‐ 1) then update the multipliers 

 =  + maximum  i = 1, …, m  

  =  + 2  
 Set l = l + 1. 
Else update the penalty parameter 
 

  = 10μk .  
 

(v) Update the iteration counter k = k +1 and go back to 
step (ii). 
 

The ALAG has several advantages. As stated earlier, the 
penalty parameter need not be increased to infinity for 
convergence. The starting design vector, x0, need not be 
feasible. Finally, it is possible to achieve  = 0 and 

 = 0 precisely and the nonzero values of the 

Lagrange multipliers  ≠ 0) identify the active 
constraints automatically. It is to be noted the function 

, assumed by (4.14), is continuous and has 
continuous first derivatives but has discontinuous second 

derivatives with respect to x at  = - . Hence, a 

second-order methods cannot be used to minimize the 

function  (Rao, 2009). 
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SUMMARY AND CONCLUSION 
 

The intent of this section is to point out some of the key 
points discussed in the previous chapters; and based on 
that it aims to draw some conclusions. 

As discussed in the previous sections all algorithms for 
constrained optimization are unreliable to a degree. This 
fact also holds true in the penalty and function methods.  

Penalty methods are among the most powerful class of 
algorithms available for attacking general nonlinear 
optimization problems. This statement is supported by 
the fact that these techniques will converge to at least a 
local minimum in most cases, regardless of the convexity 
characteristics of the objective function and constraints. 
They work well even in the presence of cusps and similar 
anomalies that can stymie other approaches. Penalty 
methods approximate a constrained problem that assigns 
high cost to points that are far from the feasible region. 
As the approximation is made more exact (by letting) the 
penalty parameter μ tend to infinity) the solution of the 
unconstrained penalty problem approaches the solution 
to the original constrained problem from outside of the 
active constraints. This method is not used in cases 
where feasibility must be maintained, for example, if the 
objective function is undefined or ill-conditioned outside 
the feasible region.  

Penalty methods are quite different than other 
algorithms that they are not iterative in nature. The 

definition of  in no way depends on that of . From 
this point of view, if one decides to terminate the 
sequence at the Nth term corresponding to μN, obtaining 
xN, the calculation of the previous vectors x1, x2, …, xN-1 is 
irrelevant, since xN could have been calculated directly by 
solving a single unconstrained problem. Indeed, this is 
the generally the manner that penalty functions are 
employed; one selects a large value of μ, solves the 
unconstrained problem, and takes the resulting solution 
as the final approximate answer to the original problem. It 
is sometimes recognized, however, that selecting a single 
large value of μ can lead to difficulty. First, exactly what is 
a large value relative to a given problem may not be 
known in advance and consequently an initial trial may 
produce a solution point that is not close enough to the 
feasible region in which case μ must be increased. 
Second, large values of μ yield, as shown in the above 
sections, ill-conditioned Hessians which in turn imply slow 
convergence for many algorithms. 

A partial remedy to these difficulties is obtained by 

noting that the search for  can be initiated from , a 

starting point that may be fairly close to . Solution of 
the k +1th problem will then probably require less time 
than if the search were initiated from an arbitrary point x0. 
For this reason the penalty methods are often regarded 
as truly iterative algorithms. It has never been 
determined, however, that solving a sequence of 
unconstrained problems for increasing value of μ leads to 
a computational saving over just solving the 
corresponding  to  the  largest  value of μ directly. Indeed,  
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indications are that it does not. The Hessian matrix of (x, 

) becomes increasingly ill-conditioned as µ → ∞ and the 
minimization becomes more difficult. That's why the 
parameter µ should not be increased too quickly and the 
previous iterate should be used as a starting point. As μ 
→ ∞ the Hessian (at the solution) is equal to the sum of 
L, the Hessian of the Lagrangian associated with the 
original constrained problem, and a matrix of rank r that 
tends to infinity (where r is the number of active 
constraints). This is the fundamental property of these 
methods.  

Though penalty functions are old methods for solving 
constrained optimization problems, it is, nevertheless, 
worthy of noticing to recognize the wrong assumption and 
generalization that everything which is old method is 
nonsense. We have to be very careful not to trivialize old 
methods for solving constrained optimization problems 
and erroneously assume it to be as synonymous to 
backwardness, as some might misconceive it. In fact, this 
sequential methods needs to be modified in one way or 
another so that they would serve for the ever-changing 
and growing demands of algorithms for certain 
optimization problems. Though these methods suffer 
from some computational disadvantages, in the absence 
of alternative software especially for no-derivative 
problems they are still recommended. They work well for 
zero order methods like Powell’s method with some 
modifications and taking different initial points and 
monotonically increasing parameters.  

Finally, In spite of their great initial success, their slow 
rates of convergence due to ill-conditioning of the 
associated Hessian led researchers to pursue other 
approaches. With the advent of interior point methods for 
linear programming, algorithm designers have taken a 
fresh look at penalty methods and have been able to 
achieve much greater efficiency than previously thought 
possible (Nash and Sofer, 1993).  

Exact transformation methods are newer and less well-
established as sequential transformation methods and 
are called the newly established modern penalty 
methods. Exact transformation methods avoid this long 
sequence by constructing penalty functions that are exact 
in the sense that the solution of the penalty problem 
yields the exact solution to the original problem for a finite 
value of the penalty parameter. However, it can be shown 
that such exact functions are not differentiable in most 
cases. Great consideration should be assumed to the 
convexity assumption and second-order conditions in 
using these methods.  
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Some notations 
 

The following notations are frequently appearing in this 
research: 
 
µ = Penalty parameter. 
x = (x1, x2, x3, …, xn) is n-dimensional vector. 
θ(x, µ) = Unconstrained representation of the primal 
problem (P). 
θ(µ) = is the infimum of θ(x, µ) with respect to x. 
xµ = A minimum point of θ(µ). 
X = A nonempty set in R

n
. 

M(f, S) = Set of minimum points of the constrained 
optimization problem (P). 
M(f, X) = Set of minimum points of the unconstrained 
optimization problem θ(x, µ). 
FALAG = Augmented Lagrangian Penalty Function. 
p(x) = Penalty function. 

LM( ) = L restricted to the subspace M that is tangent to 
the constraint surface. 
 
 
REFERENCES 

 
Bazaraa MS, Sherali HD, Shetty CM (2006). Nonlinear Programming: 

Theory and Algorithms, Second Edition, John Wiley & Sons, New 

York. pp. 469-500. 
Belegundu AD, Chandrupatla TR (1999). Optimization concepts and 

Applications in Engineering 2nd edition, Pensylvania State University, 

pp. 278-290.  
Bhatti MA (2000). Practical Optimization Methods with Mathematica 

Applications, Department of Civil and Environmental Engineering     

University of Iowa, Springer-Verlag New York, Inc. pp. 512-680.  
Charalambous CA (1978). Lower Bound for the controling parametres 

of exact panalty functions, Mathematical Programming, 15:278-290. 

Coleman TF, Conn AR (1982). Nonlinear Programming Via an exact 
penalty function: Asymptotic analysis, Mathematical programming, 
pp.123-136 

Deumlich R (1996). A course in Mathematica, Addis Ababa University, 
Faculty of science, Department of Mathematics. pp.1-140 

Fiacco AV, McCormick GP (1968). Extensions of SUMT for nonlinear 

programming: Equality constraints and extrapolation. Manage. Sci. 
12(11):816-828.  

Fletcher R (1987). Practical Methods of Optimization, Second Edition, 

John Wiley & Sons, New York. pp. 277-318. 
Gland ST, Polak E (1979). A multiplier method with Authomatic 

Limitation of penalty growth. Math. Programming,17:140-155 

Hestenes MR (1969). Multiplier and gradient methods. J. Optim. Theory 
Appl. 4(5):123-136.  

Himmelblau DH (1972). Applied Nonlinear Programming, New York, 

McGraw-Hill, pp. 342-355.  
Kiusalaas J (2005). Numerical Methods in Engineering with MATLAB, 

the Pennsylvania State University, and Cambridge University Press 

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, 
São Paulo. pp. 391-404.  



 
 
 
 
Luenberger

 
DG (1974). A combined penalty function and Gradient 

projection method for nonlinear programming. J. Opt. Appl. 14:5.  
Luenberger DG (1984). Linear and Nonlinear Programming, 2nd ed., 

Addison-Wesley Publishing Company, Reading, MA. pp. 401-430. 
Nash SG, Sofer A (1993). Linear and Nonlinear Programming, McGraw 

Hill, New York. pp. 469-765. 

Pietrgykowski T (1969). An exact potential method for constrained 
maxima, SIAM J. Num. Anal. 6:217-238. 

Powell MJD (1997). A fast algorithm for nonlinearity constrained 

optimization calculations, in Lecture Notes in Mathematics, Watson 
GA et al., Eds., Springer-Verlag, Berlin. pp. 343-357.  

Rao SS (2009). Engineering Optimization: Theory and Practice, Fourth 

Edition, John Wiley & Sons, Inc. pp. 248-318. 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

Berhe         243 
 
 
 
Zangwill WI (1967). Nonlinear programming via Penalty Functions. 

Manage. Sci. 13(5):344-358. 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



244          Afr. J. Math. Comput. Sci. Res. 
 
 
 
Appendix  
 
General description of the penalty function algorithm 
 
The SUMT iteration involves updating the penalty 
parameters and initial design vector and calling the 
unconstrained problem again. In the algorithm Powell’s 
method (which is the zero order method) together with 
golden-bracket and golden-section method for line 
minimization is used. The program expects the following 
files to be available in the path 
 

i. Objective function, 
ii. Equality and inequality constraints together, 
iii. Unconstrained function, 
iv. The flines function (for a line search). 
 

For each an iteration of the penalty method there is an 
inner iteration of the Powell’s method. 

The program uses global statements to communicate 
penalty parameters, initial point, search direction (V), 
whereas the initial penalty parameters, initial design 
variable, the number of iterations for penalty method, 
tolerances for the penalty and Powell’s method are given 
by user automatically. 

Several parameters are coded into the program, 
especially those needed for golden bracket and golden 
section methods. 
 

Step 0: (Initialization) Choose x0, number of SUMT 
iterations (N), penalty parameter (µ), and penalty 

multiplier ( ), tolerance for the penalty method (tol1) and 
for the Powell’s method (tol). 
k = 1 (SUMT iteration counter) 
Step 1: Start the Powell’s method to minimize f(x, µ) 
Output xk.  

Step 3: Convergence of exterior penalty method. 
Stopping criteria: 

 =  - ,  =  - . 

If  ≤  : stop (they have approximately the same 
solution) 

else if  ≤  : stop (design not changing) 

else if k =  : stop (max SUMT iteration reached) 
continue 
k  k + 1 

  

 =  

go to step 2 
 

Input for the welded beam example given in example 8 of 
penalty function method. 
 

function f = obweldedbeam(x) % objective function 
f=1.10471*x(1).^2*x(2)+0.04811*x(3)*x(4)*(14+x(2)); 
 

function [c,ceq] = conwelededbeam(x) % constraints 
 
l=(504000./((x(3)).^2*x(4))); 

 
 
 
 
k=64746.022*(1-0.0282346*x(3))*x(3)*x(4).^3; 
m =(2.1952./(x(3).^3*x(4))); 
t1=(6000./(sqrt(2)*x(1)*x(2))); 
t2=6000*(14+0.5*x(2))*sqrt(0.25*(x(2).^2+(x(1)+x(3)).^2)); 
t3=2*(0.707*x(1)*x(2)*((x(2).^2/12)+0.25*(x(1)+x(3)).^2)); 
t=t2./t3; 
T=sqrt((t1).^2+(t).^2+((x(2)*t1*t)./sqrt(0.25*(x(2).^2+(x(1)+
x(3)).^2)))); 
c=[T-13600;l-30000;x(1)-x(4);6000-k;m-0.25;-
x(1)+0.125;x(1)-10;-x(2)+0.1;x(2)-10;... 
-x(3)+0.1;x(3)-10;-x(4)+0.1;x(4)-10]; 
ceq =[]; % no equality constraints. 
 
function z = unconweldedbeam(x,miw) %  
The corresponding unconstrained problem 
l=(504000./((x(3)).^2*x(4))); 
k=64746.022*(1-0.0282346*x(3))*x(3)*x(4).^3; 
m =(2.1952./(x(3).^3*x(4))); 
t1=(6000./(sqrt(2)*x(1)*x(2))); 
t2=6000*(14+0.5*x(2))*sqrt(0.25*(x(2).^2+(x(1)+x(3)).^2)); 
t3=2*(0.707*x(1)*x(2)*((x(2).^2/12)+0.25*(x(1)+x(3)).^2)); 
t=t2./t3; 
T=sqrt((t1).^2+(t).^2+((x(2)*t1*t)./sqrt(0.25*(x(2).^2+(x(1)+
x(3)).^2)))); 
z=obweldedbeam(x)+miw*(max(0,T-13600)).^2 
+miw*(max(0,l-30000)).^2+... 
miw*(max(0,x(1)-x(4))).^2 +miw*(max(0,6000-
k)).^2+miw*(max(0,m-0.25)).^2 +miw*(max(0,-
x(1)+0.125)).^2+... 
miw*(max(0,x(1)-10)).^2 +miw*(max(0,-
x(2)+0.1)).^2+miw*(max(0,x(2)-10)).^2 +miw*(max(0,-
x(3)+0.1)).^2+... 
miw*(max(0,x(3)-10)).^2 +miw*(max(0,-
x(4)+0.1)).^2+miw*(max(0,x(4)-10)).^2; 
 
 

The MATLAB Code for Penalty Function Method: 
 
Function penaltyfunction  
% Penalty function method for minimizing f(x1,x2, ..., xn). 
% Example for Logarithmic function on Example 8.  
 
% input: 
% tol and tol1 are error tolerances for Powell’s method 
and penalty method respectively.  
% x = starting point (vector). 
% µ = the penalty parameter. 
% beta = the penalty multiplier. 
% N = number of iterations for the penalty method, we  
choose it depending on the problem. 
% h = initial step size used in search for golden bracket. 
% output: 
% xmin = minimum point. 
% objmin = miminum value of objective function. 
% augmin = minimum of the corresponding unconstrained 
problem 
 
% globals (must be declared global in calling program). 



 
 
 
 
% V = search direction, the same as the unit vectors in 
the coordinate directions. 

 
% Starting of the program. 
clc; % clears the screen. 
clear all; % clears all values of variables for memory 
advantage. 
global x µ V 
x = [0.4; 6; 0.01; 0.05]; 
µ = 0.1; beta = 2;  
tol = 1.0e-2; tol1 = 1.0e-6; h = 0.1;N = 30; 
if size(x,2) > 1; x = x'; end % x must be column vector 
n = length(x); % Number of design variables 
df = zeros(n,1); % Decreases of f stored here 
u = eye (n); % Columns of u store search directions V 
disp(sprintf(' µ xmin objmin augmin ')) 
disp(sprintf(' ------ ------------------ ------------ --------------- ')) 
for k=1:N % loop for the penalty function method 
[c,ceq]= conwelededbeam(x); 
obj= obweldedbeam(x); 
f= unconweldedbeam(x,µ); 
disp(sprintf('%1.5f (%3.12f,%3.12f) %2.10f %2.10f ',µ,x, 
obj,f)) 
for j = 1:30 % Allow up to 30 cycles for Powell’s method 
xold = x; 
fold = feval(@unconweldedbeam,xold,µ); 
% First n line searches record the decrease of f 
for i = 1:n 
V = u(1:n,i); 
[a,b] = goldbracket(@fline,0.0,h); 
[s,fmin] = goldsearch(@fline,a,b); 
df(i) = fold - fmin; 
fold = fmin; 
x = x + s*V; 
end 
% Last line search in the cycle 
V = x - xold; 
[a,b] = goldbracket(@fline,0.0,h); 
[s,fmin] = goldsearch(@fline,a,b); 
x = x + s*V; 
if sqrt(dot(x-xold,x-xold)/n) < tol 
y = x; % assign the solution to y 
end 
% Identify biggest decrease of f & update search 
directions 
imax = 1; dfmax = df(1); 
for i = 2:n 
if df(i) > dfmax 
imax= i; dfmax = df(i); 
end 
end 
for i = imax:n-1 
u(1:n,i) = u(1:n,i+1); 
end 
u(1:n,n) = V; 
end % end of Powell’s method 
x=y; % y is the minimum point found using Powell’s 
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method in the K

th
 iteration 

µ=beta*µ; 
sqrt(dot(f - obj,(f- obj)); 

if sqrt(dot(f - obj,  - obj)) < tol1 
return 
end 
end % end of SUMT iteration. 
 
% f in the direction of coordinate axes. 
 

function z = flines(s) % f in the search direction V 
global x µ V 
z = feval(@unconweldedbeam,x+s*V,µ); 
 

% Start of golden bracketing for the minimum. 
 

function [a,b] = goldbracket(func,x1,h) 
% Brackets the minimum point of f(x). 
% Usage: [a,b] = goldbracket(func,xstart,h) 
 
% input: 
% func = handle of function that returns f(x). 
% x1 = starting value of x. 
% h = initial step size used in search. 
% c = a constant factor used to increase the step size h 
 

% output: 
% a, b = limits on x at the minimum point. 
c = 1.618033989;  
f1 = feval(func,x1); 
x2 = x1 + h; f2 = feval(func,x2); 
% Determine downhill direction and change sign of h if 
needed. 
if f2 > f1 
h = -h; 
x2 = x1 + h; f2 = feval(func,x2); 
% Check if minimum is between x1 - h and x1 + h 
if f2 > f1 
a = x2; b = x1 - h; return 
end 
end 
% Search loop for the minimum 
for i = 1:100 
h = c*h; 
x3 = x2 + h; f3 = feval(func,x3); 
if f3 > f2 
a = x1; b = x3; return 
end 
x1 = x2; x2 = x3; f2 = f3; 
end 
error('goldbracket did not find a minimum please try 
another starting point') 
 
% Start of golden search for the minimum. 
function [xmin,fmin] = goldsearch(func,a,b,tol2) 
% Golden section search for the minimum of f(x). 
% The minimum point must be bracketed in a <= x <= b. 
% usage: [fmin,xmin] = goldsearch(func,xstart,h). 
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% input: 
% func = handle of function that returns f(x). 
% a, b = limits of the interval containing the minimum. 
% tol2 = error tolerance used in golden section. 
 
% output: 
% fmin = minimum value of f(x). 
% xmin = value of x at the minimum point. 
if nargin < 4; tol2 = 1.0e-6; end 
nIter = ceil(-2.078087*log(tol2/abs(b-a))); 
R = 0.618033989; % R is called golden ratio. 
C = 1.0 - R; 
% First telescoping 
x1 = R*a + C*b; 
x2 = C*a + R*b; 
f1 = feval(func,x1); 
f2 = feval(func,x2); 
% Main loop 
for i =1:nIter 
if f1 > f2 
a = x1; x1 = x2; f1 = f2; 
x2 = C*a + R*b; 
f2 = feval(func,x2); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
else 
b = x2; x2 = x1; f2 = f1; 
x1 = R*a + C*b; 
f1 = feval(func,x1); 
end 
end 
if f1 < f2; fmin = f1; xmin = x1; 
else 
fmin = f2; xmin = x2; 
end 
 
 
 


