
African Journal of Mathematics and Computer Science Research Vol. 5(13), pp. 209-246, November, 2012
Available online at http://www.academicjournals.org/AJMCSR
DOI: 10.5897/AJMCSR12.027
ISSN 2006-9731 ©2012 Academic Journals

Full Length Research Paper

Penalty function methods using matrix laboratory
(MATLAB)

Hailay Weldegiorgis Berhe

Department of Mathematics, Haramaya University, Ethiopia. E-mail: hailaywg@yahoo.com. Tel: +251913710270.

Accepted 15 May, 2012

The purpose of the study was to investigate how effectively the penalty function methods are able to
solve constrained optimization problems. The approach in these methods is to transform the
constrained optimization problem into an equivalent unconstrained problem and solved using one of
the algorithms for unconstrained optimization problems. Algorithms and matrix laboratory (MATLAB)
codes are developed using Powell’s method for unconstrained optimization problems and then
problems that have appeared frequently in the optimization literature, which have been solved using
different techniques compared with other algorithms. It is found out in the research that the sequential
transformation methods converge to at least to a local minimum in most cases without the need for the
convexity assumptions and with no requirement for differentiability of the objective and constraint
functions. For problems of non-convex functions it is recommended to solve the problem with different
starting points, penalty parameters and penalty multipliers and take the best solution. But on the other
hand for the exact penalty methods convexity assumptions and second-order sufficiency conditions for
a local minimum is needed for the solution of unconstrained optimization problem to converge to the
solution of the original problem with a finite penalty parameter. In these methods a single application of
an unconstrained minimization technique as against the sequential methods is used to solve the
constrained optimization problem.

Key words: Penalty function, penalty parameter, augmented lagrangian penalty function, exact penalty
function, unconstrained representation of the primal problem.

INTRODUCTION

Optimization is the act of obtaining the best result under
given circumstances. In design, construction and
maintenance of any engineering system, engineers have
to take many technological and managerial decisions at
several stages. The ultimate goal of all such decisions is
either to minimize the effort required or to maximize the
desired benefit. Since the effort required or the benefit
desired in any practical situation can be expressed as a
function of certain decision variables, optimization can be
defined as the process of finding the conditions that give
the maximum or minimum value of a function. It can be
taken to mean minimization since the maximum of a
function can be found by seeking the minimum of the
negative of the same function.

Optimization can be of constrained or unconstrained
problems. The presence of constraints in a nonlinear
programming creates more problems while finding the

minimum as compared to unconstrained ones. Several
situations can be identified depending on the effect of
constraints on the objective function. The simplest
situation is when the constraints do not have any
influence on the minimum point. Here the constrained
minimum of the problem is the same as the
unconstrained minimum, that is, the constraints do not
have any influence on the objective function. For simple
optimization problems it may be possible to determine
before hand, whether or not the constraints have any
influence on the minimum point. However, in most of the
practical problems, it will be extremely difficult to identify
it. Thus, one has to proceed with general assumption that
the constraints will have some influence on the optimum
point. The minimum of a nonlinear programming problem
will not be, in general, an extreme point of the feasible
region and may not even be on the boundary. Also, the

http://en.wikipedia.org/wiki/Ethiopia

210 Afr. J. Math. Comput. Sci. Res.

problem may have local minima even if the
corresponding unconstrained problem is not having local
minima. Furthermore, none of the local minima may
correspond to the global minimum of the unconstrained
problem. All these characteristics are direct
consequences of the introduction of constraints and
hence, we should have general algorithms to overcome
these kinds of minimization problems.

The algorithms for minimization are iterative
procedures that require starting values of the design
variable x. If the objective function has several local
minima, the initial choice of x determines which of these
will be computed. There is no guaranteed way of finding
the global optimal point. One suggested procedure is to
make several computers run using different starting
points and pick the best. Majority of available methods
are designed for unconstrained optimization where no
restrictions are placed on the design variables. In these
problems, the minima exist if they are stationary points
(points where gradient vector of the objective function
vanishes). There are also special algorithms for
constrained optimization problems, but they are not easily
accessible due to their complexity and specialization.

All of the many methods available for the solution of a
constrained nonlinear programming problem can be
classified into two broad categories, namely, the direct
methods and the indirect methods approach. In the direct
methods the constraints are handled in an explicit
manner whereas in the most of the indirect methods, the
constrained problem is solved as a sequence of
unconstrained minimization problems or as a single
unconstrained minimization problem. Here we are
concerned on the indirect methods of solving constrained
optimization problems. A large number of methods and
their variations are available in the literature for solving
constrained optimization problems using indirect
methods. As is frequently the case with nonlinear
problems, there is no single method that is clearly better
than the others. Each method has its own strengths and
weaknesses. The quest for a general method that works
effectively for all types of problems continues. The main
purpose of this research is to present the development of
two methods that are generally considered for solving
constrained optimization problems, the sequential
transformation methods and the exact transformation
methods.

Sequential transformation methods are the oldest
methods also known as sequential unconstrained
minimization techniques (SUMT) based upon the work of
Fiacco and McCormick (1968). They are still among the
most popular ones for some cases of problems, although
there are some modifications that are more often used.

These methods help us to remove a set of complicating
constraints of an optimization problem and give us a
frame work to exploit any available methods for
unconstrained optimization problems to be solved, perhaps,
approximately. However, this is not without a cost. In fact,
this transforms the problem into a problem of non smooth (in

most cases) optimization, which has to be solved
iteratively. The sequential transformation method is also
called the classical approach and is perhaps the simplest
to implement. Basically, there are two alternative
approaches. The first is called the exterior penalty
function method (commonly called penalty function
method), in which a penalty term is added to the objective
function for any violation of constraints. This method
generates a sequence of infeasible points, hence its
name, whose limit is an optimal solution to the original
problem. The second method is called interior penalty
function method (commonly called barrier function
method), in which a barrier term that prevents the points
generated from leaving the feasible region is added to the
objective function. The method generates a sequence of
feasible points whose limit is an optimal solution to the
original problem.

Penalty function methods are procedures for approxi-
mating constrained optimization problems by uncon-
strained problems. The approximation is accomplished by
adding to the objective function a term that prescribes a
high cost for the violation of the constraints. Associated
with this method is a parameter µ that determines the
severity of the penalty and consequently the degree to
which the unconstrained problem approximates the
original problem. As µ →∞ the approximation becomes
increasingly accurate.

Thus, there are two fundamental issues associated with
this method. The first has to do how well the uncon-
strained problem approximates the constrained one. This
is essential in examining whether, as the parameter µ is
increased towards infinity, the solution of the uncon-
strained problem converges to a solution of the
constrained problem. The other issue, most important
from a practical view point, is the question of how to solve
a given unconstrained problem when its objective
function contains a penalty term. It turns out that as µ is
increased yields a good approximating problem; the
corresponding structure of the resulting unconstrained
problem becomes increasingly unfavorable thereby
slowing the convergence rate of many algorithms that
may be applied. Therefore it is necessary to device
acceleration procedures that circumvent this slow
convergence phenomenon. To motivate the idea of
penalty function methods consider the following nonlinear
programming problem with only inequality constraints:

Minimize f(x), subject to g(x) 0 (P) x X;

Whose feasible region we denote by S =

. Functions f: R
n
 → R and g: R

n
→ R

m

are assumed to be continuously differentiable and X is a
nonempty set in R

n
. Let the set of minimum points of

problem (P) be denoted by M (f, S), where M (f, S) ≠ .
And we consider a real sequence {µk} such that ≥ 0.

The number is called penalty parameter, which controls

the degree of penalty for violating the constraints. Now we

consider functions θ: X (R+ {0}) → R, as defined by

θ(x, µ):= f(x) + µp(x), (x, µ) {(X) (R+ {0})}, (1.1)

where X R
n
 and p(x) is called penalty function, to be

used throughout this paper, and µp(x) is called penalty
term. µ is a strictly increasing function. Throughout this
paper we use penalty function methods for exterior
penalty function methods

Another apparently attractive idea is to define an exact
penalty function in which the minimizer of the penalty
function and the solution of the constrained primal
problem coincide. The idea in these methods is to choose
a penalty function and a constant penalty parameter so
that the optimal solution of the unconstrained problem is
also a solution of the original problem. This avoids the
inefficiency inherent in sequential techniques. The two
popular exact penalty functions are l1 exact penalty
function and augmented Lagrangian penalty function.

More emphasis is given here for sequential
transformation methods and practical examples, which
appeared frequently in the optimization literature (which
have been solved using different methods.) and facility
locations are solved using the MATLAB code given in the
appendix with special emphasis given to facility location
problems.

Some important techniques in the approach of the
primal problem and the corresponding unconstrained
penalty problems will be discussed later. We also discuss
properties of the penalty problem, convergence
conditions and the structure of the Hessian objective
function of the penalty problem and the methods for
solving unconstrained problems; the general description
of the algorithm for the penalty function problems in
addition to the considerations for the implementation of
the method. A major challenge in the penalty function
methods is the ill-conditioning of the Hessian matrix of
objective function as the penalty parameter approaches
to infinity, the choice of the initial starting points, penalty
parameters and subsequent values of the penalty
parameters.

In the later part of this study, the exact penalty
methods, the exact l1 penalty function and the augmented
Lagrangian penalty function methods will be discussed in
detail. The sequential methods suffer from numerical
difficulties in solving the unconstrained problem.
Furthermore, the solution of the unconstrained problem
approaches the solution of the original problem in the
limit, but is never actually equal to the exact solution. To
overcome these shortcomings, the so-called exact
penalty functions have been developed.

Statement of the problem

The focus of this research paper is on investigating
constraint handling to solve constrained optimization
problems using penalty function methods and thereby
indicating ways of revitalizing them by bringing to
attention.

Berhe 211

Objectives of the research

General objective

The purpose of the research is generally to see how the
penalty methods are successful to solve constrained
optimization problems.

Specific objectives

The specific objectives of the research are to:

i. Describe the essence of penalty function methods,
ii. Clearly identify the procedures in solving constrained
optimization problems using penalty function methods,
iii. Develop an algorithm and MATLAB code for penalty
function methods,
iv. Solve real life application problems which frequently
appeared in the optimization literature and facility location
problems using the investigated code and compare with
other methods,
v. Compare the effectiveness of the penalty methods.

Significance of the research

i. All algorithms for constrained optimization are
unreliable to a degree. Any one of them works well on
one problem and fails to another. Thus, this work will be
having its own contribution in bridging the gap,
ii. It will also pave way and serves as an eye opener to
other researchers to carry out an extensive and/or detail
study along the same or other related issue.

PENALTY FUNCTION METHODS

In this section, we are concerned with exploring the
computational properties of penalty function methods. We
present and prove an important result that justifies using
penalty function methods as a means for solving
constrained optimization problems. We also discuss
some computational difficulties associated with these
methods and present some techniques that should be
used to overcome such difficulties. Using the special
structure of the penalty function, a special purpose one-
dimensional search procedure algorithm is developed.
The procedure is based on Powell’s method for
unconstrained minimization technique together with
bracketing and golden section for one dimensional
search.

When solving a general nonlinear programming
problem in which the constraints cannot easily be
eliminated, it is necessary to balance the aims of
reducing the objective function and staying inside or
close to the feasible region, in order to induce global
convergence (that is convergence to a local solution from

212 Afr. J. Math. Comput. Sci. Res.

any initial approximation). This inevitably leads to the
idea of a penalty function, which is a combination of the
some constraints that enables the objective function to be
minimized whilst controlling constraint violations (or near
constraint violations) by penalizing them. The philosophy
of penalty methods is simple; you give a “fine” for
violating the constraints and obtain approximate solutions
to your original problem by balancing the objective
function and a penalty term involving the constraints. By
increasing the penalty, the approximate solution is forced
to approach the feasible domain and hopefully, the
solution of the original constrained problem. Early penalty
functions were smooth so as to enable efficient
techniques for smooth unconstrained optimization to be
used.

The use of penalty functions to solve constrained
optimization problems is generally attributed to Courant.
He introduced the earliest penalty function with equality
constraint in 1943. Subsequently, Pietrgykowski (1969)
discussed this approach to solve nonlinear problems.
However, significant progress in solving practical
problems by use of penalty function methods follows the
classic work of Fiacco and McCormick under the title
sequential unconstrained minimization technique
(SUMT). The numerical problem of how to change the
parameters of the penalty functions have been
investigated by several authors.

Fiacco and McCormick (1968) and Himmelblau (1972)
discussed effective unconstrained optimization algorithms
for solving penalty function methods. According to
Fletcher, several extensions to the concepts of penalty
functions have been made; first, in order to avoid the
difficulties associated with the ill-conditioning as the
penalty parameter approaches to infinity, several
parameter-free methods have been proposed. We will
discuss some of the effective techniques in reducing
these difficulties in the following sections.

The concept of penalty functions

Consider the following problem with single constraint h(x)
= 0:

Minimize f(x),
subject to h(x) = 0.

Suppose this problem is replaced by the following
unconstrained problem, where µ > 0 is a large number:

Minimize f(x) + µh
2
(x),

subject to x ∈

we can intuitively see that an optimal solution to the
above problem must have h

2
(x) close to zero, otherwise a

large penalty term µh
2
(x) will be incurred and hence f(x) +

µh
2
(x) approaches to infinity which makes it difficult to

minimize the unconstrained problem (Bazaraa

et al. (2006).

Now consider the following problem with single

inequality constraint g(x) 0:

Minimize f(x),

subject to g(x) 0.

It is clear that the form f(x) + µg

2
(x) is not appropriate,

since a penalty will be incurred where g(x) < 0 or g(x) > 0;
that is a penalty is added to the objective function
whether x is inside or outside the feasible region.
Needless to say, a penalty is desired only if the point is
not feasible, that is, if g(x) > 0. A suitable unconstrained
problem is therefore given by:

Minimize f(x) + µmaximum {0, g(x)},
subject to x ∈ R

n
.

Note that if g(x) 0, then maximum {0, g(x)} = 0, and no
penalty is incurred on the other hand, if g(x) > 0, then
maximum {0, g(x)} > 0, and the penalty term µg(x) is
realized. However, it is observe that at points x where
g(x) = 0, the forgoing objective function might not be
differentiable, even though g is differentiable.

Example 1

Minimize x,

subject to –x + 2 0,

the constraint, g(x) = -x + 2 0 is active at x = 2 and the
corresponding forgoing objective function is:

f(x) + µmaximum {0, g(x)} =

Clearly this is not differentiable at x = 2. If differentiability
is desirable in such cases, then one could, for example,
consider instead a penalty function term of the type
µ(maximum{0, g(x)})

2
.

In general, a suitable penalty function must incur a
positive penalty for infeasible points and no penalty for
feasible points. If the constraints are of the form gi(x) ≤ 0
for i = 1. . . m, then a suitable penalty function p is
defined by

p(x) = , (2.1a)

where:

 is a continuous function satisfying the following
properties:

(y) = 0 if y ≤ 0 and (y) > 0 if y > 0. (2.1b)

Typically is of the form

(y) = (maximum {0, y})
 q
,

where q is a nonnegative real number. Thus, the penalty
function p is usually of the form p(x)
= .

Definition 1. A function p : R
n
 → R is called a penalty

function if p satisfies

i. p(x) is continuous on R
n

ii. p(x) = 0 if g(x) 0 and

iii. p(x) > 0 if g(x) 0.

An often-used class of penalty functions for optimization
problems with only inequality constraints is:

p(x) = , where q ≥ 1

We refer to the function f(x) + μp(x) as the auxiliary
function. Denoting θ(x, μ): = f(x) +
μ , for the auxiliary function. The

effect of the second term on the right side is to increase
θ(x, μ) in proportion to the qth

power of the amount by

which the constraints are violated. Thus there will be a
penalty for violating the constraints and the amount of
penalty will increase at a faster rate compared to the

amount of violation of a constraint (for q Rao (2009).
Let us see the behavior of θ(x, μ) for various values of q.

i. q = 0,

θ(x, μ) = f(x) + μ

 =

This function is discontinuous on the boundary of the
acceptable region and hence it will be very difficult to
minimize this function.

ii. 0

Here the θ-function will be continuous, but the penalty for
violating a constraint may be too small. Also the
derivatives of the function are discontinuous along the
boundary. Thus, it will be difficult to minimize the θ-
function.

iii. q = 1

In this case, under certain restrictions, it has been shown
that there exists a μo large enough that the minimum of θ
is exactly the constrained minimum of the original

problem for all μk μo; however, the contours of the θ-
function posses discontinuous first derivatives along the
boundary.

Hence, in spite of the convenience of choosing a single
μk that yields the constrained minimum in one
unconstrained minimization, the method is not very
attractive from computational point of view.

iv. q

Berhe 213

The θ-function will have continuous first derivatives.
These derivatives are given by

= + .

Generally, the value of q is chosen as 2 in practical
computations and hence, will be used as q = 2 in the
subsequent discussion of the penalty method with

p(x) = .

Example 2

Consider the optimization problem in example1,

Let p(x) = , then,

p(x) =

Note that the minimum of f + μp occurs at the point 2 –

() and approaches the minimum point x = 2 of the

original problem as μ → ∞. The penalty and auxiliary
functions are as shown in Figure 1.

If the constraints are of the form gi(x) ≤ 0 for I = 1, . . . ,
m and hi(x) = 0 for I = 1, . . . , l, then a suitable penalty
function p is defined by

p(x) = + , (2.2a)

where and ψ are continuous functions satisfying the
following properties:

(y) = 0 if y ≤ 0 and (y) > 0 if y > 0. (2.2b)

(y) = 0 if y = 0 and (y) > 0 if y ≠ 0.

Typically, and are of the forms

(y) = (maximum {0, y})
 q

(y) = |y|
q

where q is a nonnegative real number. Thus, the penalty
function p is usually of the form

p(x) = + .

Definition 2

A function p : R

n
 → R is called a penalty function if p

satisfies

i. p(x) is a continuous function on R

n

ii. p(x) = 0 if g(x) 0 and h(x) = 0 and

iii. p(x) > 0 if g(x) 0 and h(x) 0.

214 Afr. J. Math. Comput. Sci. Res.

(a) (b)

Figure 1. Penalty and auxiliary functions.

An often used class of penalty functions for this is:

p(x) = + , where q ≥

1.

We note the following:

If q = 1, p(x) is called “linear penalty function.” This
function may not be differentiable at points where gi(x) =
0 or hi(x) = 0 for some i.

Setting q = 2 is the most common form that is used in
practice and is called the “quadratic penalty function”.
We focus here mainly on the quadratic penalty function
and investigate how penalty function methods are useful
to solve constrained optimization problems by changing
into the corresponding unconstrained optimization
problems.

Penalty function methods for mixed constraints

Consider the following constrained optimization problem:

Minimize f(x) (P)
subject to ≤ 0, I = 1, . . . , m

, I = 1, . . . , l,

where functions f, hi(x), I = 1, . . . , l and gi, I = 1, . . . , m
are continuous and usually assumed to posses
continuous partial derivatives on R

n
. For notational

simplicity, we introduce the vector-valued functions h =

(h1, h2, . . . , hl)
T

 R
l
and g = (g1, g2, . . . , gm)

T ∈ R
m

and
rewrite (P) as:

Minimize f(x)

subject to g(x) 0
h(x) = 0 (P)

x X,

whose feasible region we denote by S:

= The constraints h(x) = 0

and g(x) ≤ 0 are referred to as functional constraints,
while the constraint x X is a set constraint. The set X is
a nonempty set in R

n
 and might typically represent simple

constraints that could be easily handled explicitly, such
as lower and upper bounds on the variables. We
emphasize the set constraint, assuming in most cases
that either X is in the whole R

n
or that the solution to (P) is

in the interior of X.

By converting the constraints “ (x) = 0” to

“ (x) or considering only problems with
inequality constraints we can assume that (P) is of the
form:

Minimize f(x) (P)

subject to g(x) 0
x X,

whose feasible region we denote by S:

= We then consider solving the
following penalty problem,

θ(μ): Minimize f(x) + μp(x)
subject to x ∈ X,

and investigate the connection between a sequence

{ }, M(f, X), a minimum point of θ and a solution of

the original problem (P), where the set of minimum points
of θ is denoted by M(f, X) and the set of all minimum
points of (P) is denoted by M(f, S).

The representation of penalty methods above has
assumed either that the problem (P) has no equality
constraints, or that the equality constraints have been
converted into inequality constraints. For the latter, the
conversion is easy to do, but the conversion usually
violates good judgments in that it unnecessarily
complicates the problem. Furthermore, it can cause the
linear independence condition to be automatically
violated for every feasible solution. Therefore, instead let
us consider the constrained optimization problem (P) with
both inequality and equality constraints since the above
can be easily verified from this. To describe penalty
methods for problems with mixed constraints, we denote
the penalty parameter by l(μ) = μ ≥ 0, which is a
monotonically increasing function and the penalty

function P(x) = + , satisfying the

properties given in (2.2b) and then consider the following
Primal and Penalty problems:

Primal problem

Minimize f(x)
subject to g(x)

 0 h(x) = 0 (P) x X.

Penalty problem

The basic penalty function approach attempts to solve
the following problem:

Maximize θ(μ)
subject to μ ≥ 0,

where θ(μ) = inf{f(x) + μp(x) : x X}. The penalty problem
consists of maximizing the infimum (greatest lower

bound) of the function {f(x) + μp(x): x X}; therefore, it is
a max-min problem. Therefore the penalty problem can
be formulated as:

Find which is equivalent to the

form;

Find We remark here that,

strictly speaking, we should write the penalty problem as
sup{θ(μ), μ ≥ 0}, rather than maximum{θ(μ), μ ≥ 0}, since
the maximum may not exist. The main theorem of this
section states that:

inf{f(x) : x S} = = .

From this result, it is clear that we can get arbitrarily close
to the optimal objective value of the original problem by

Berhe 215

computing θ(µ) for a sufficiently large µ.This result is
established in Theorem 2. First, the lemma theorem is
needed.

Lemma 1 (Penalty Lemma)

Suppose that f, g1, . . . , gm, h1, . . . , hl are continuous
functions on R

n
, and let X be a nonempty set in R

n
. Let p

be a continuous function on R
n

as given by definition 1,
and suppose that for each µ, there exists an xµ ∈ X, which
is a solution of θ(µ), where θ(µ) := f(xµ) + µp(xµ).
Then, the following statements hold:

1. p(xµ) is a non-increasing function of µ.
2. f(xµ) is a non-decreasing function of µ.
3. θ(µ) is a non-decreasing function of µ.
4. nf{f(x) : x S} ≥ , where θ(µ) = inf{f(x) +

µp(x) : x X}, and g, h are vector valued functions whose
components are g1, g2, . . . , gm and h1, h2 , . . . , hl
respectively.

Proof: Assume that µ and λ are penalty parameters such
that λ < µ.

1. By the definition of θ(λ), xλ is a solution of θ(λ) such
that,

θ(λ) = f(xλ) + λp(xλ) ≤ inf{f(x) + λp(x), for all x X}, which
follows

f(xλ) + λp(xλ) ≤ f(xµ) + λp(xµ), since xµ ∈ X. (2.3a)

Again by the definition of θ(µ)

θ(µ) = f(xµ) + µ p(xµ) ≤ inf{f(x) + µ p(x), for all x ∈ X} which
follows that

f(xµ) + µp(xµ) ≤ f(xλ) + µp(xλ), since ∈ X. (2.3b)

Adding equation (2.3a) and (2.3b) holds:

f(xλ) + λp(xλ) + f(xµ) + µp(xµ) ≤ f(xµ) + λp(xµ) + f(xλ) + µp(xλ)

and simplifying like term, we get

λp(xλ) + µ p(xµ) ≤ λp(xµ) + µp(xλ),

which implies by rearranging that

(λ - µ)[p(xλ) – p(xµ)] ≤ 0.

Since λ - µ ≤ 0 by assumption, p(xλ) – p(xµ) ≥ 0. Then,
p(xλ) ≥ p(xµ).

Therefore, p(xµ) is a non increasing function of µ.

216 Afr. J. Math. Comput. Sci. Res.

2. By (2.3a) above

f(xλ) + λp(xλ) ≤ f() + λp().

Since p(xλ) ≥ p() by part 1, we concluded that

f(xλ) ≤ f().

3. θ(λ) = f(xλ) + λp(xλ) ≤ f() + λp()

 ≤ f() + µp() = θ(µ).

4. Suppose be any feasible solution to problem (P)
with

g() ≤ 0, h() = 0 and p() = 0, where ∈ X. Then,

f() + µp() = inf{f(x), x ∈ S} which implies that

f() = inf{f(x), x ∈ S}. (2.3c)

By the definition of θ(µ)

θ(µ) = f() + µp() ≤ f() + µp() = inf{f(x), x ∈ S }, for

all µ ≥ 0.

Therefore, ≤ {inf{f(x), x ∈ S }}.

The next result concerns convergence of the penalty
method. It is assumed that f(x) is bounded below on the
(nonempty) feasible region so that the minimum exists.

Theorem 2 (Penalty convergence theorem)

Consider the following Primal problem:

Minimize f(x)
subject to g(x) 0
h(x) = 0 (P)

x X,

where f, g, h are continuous functions on R

n
 and X is a

nonempty set in R
n
. Suppose that the problem has a

feasible solution denoted by , and p is a continuous
function of the form (2.2). Furthermore, suppose that for
each µ, there exists a solution ∈ X to the problem to

minimize {f(x) + µp(x) subject to x ∈ X}, and {xµ} is
contained in a compact subset X then,

inf{f(x) : x ∈ S } = = ,

where θ(µ) = inf{f(x) + µp(x) : x ∈ X} = f() + µp().

Furthermore, the limit of any convergent subsequence
of { } is an optimal solution to the original problem, and

µp() → 0 as µ → ∞.

Proof

We first show that p() → 0 as µ → ∞. Let y be any

feasible point and ε > 0.

Let x1 be an optimal solution to the problem minimize {f(x)
+ µp(x), x ∈ X}, for µ = 1.

If we choose µ ≥ |f(y) – f(x1)| + 2, then by part 2 of

Lemma 1 we have f() ≥ f(x1).

We now show that p() ≤ ε. By contradiction, suppose

p(xµ) > ε. Noting part 4 of lemma 1, we get

inf{f(x), x ∈ S} ≥ θ(µ) = f(xµ) + µp(xµ) ≥ f(x1)+µp(xµ)

> f(x1) + (|f(y) – f(x1)| + 2)ε

= f (x1) + |f(y) – f(x1)| + 2ε > f(y)

it follows that inf{f(x), x ∈ S} > f(y). This is not possible in
the view of feasibility of y.

Thus, p() ≤ ε for all µ ≥
1

|f(y) – f(x1)| + 2. Rearranging

the above we get ε ≥ |f(y) – f(x1))| + , since ε > 0 is

arbitrary, p() → 0 as µ → ∞.

To show inf{f(x) : x ∈ S } = = .

Let { } be any arbitrary convergent sequence of {xµ},

and let be its limit. Then,

≥ θ(µk) = f() + p() ≥ f().

Since → and f is continuous function with

= f() , then the above inequality implies

that

≥ f(). (2.4)

Since p() → 0 as µ → ∞, then p() = 0 , that is, is a

feasible solution to the original problem (P) which follows

that inf{f(x) : x ∈ S } = f().

By part 3 of Lemma 1 θ(µ) is a nondecreasing function of
µ, then

= . (2.5a)

 is an optimal solution to (P) by assumption implies that

inf{f(x) : x ∈ S } = f() (2.5b)

and by part 4 of the Lemma 1 above

≤ inf{f(x) : x ∈ S }. (2.5c)

Equating (2.4), (2.5a), (2.5b) and (2.5c), we get
inf{f(x) : x ∈ S } = =

To show µp() → 0 as µ → ∞.

θ(µ) = f() + µp()

µp() = θ(µ) – f().

Taking the limit as µ → ∞ to both sides

 =

= – f()

= f() – f()
= 0.

So that µp() → 0 as µ → ∞.

Note: It is interesting to observe that this result is
obtained in the absence of differentiability or Karush
Kuhn-Tucker regularity assumptions.

Corollary 3

If p() = 0 for some µ, then is an optimal solution to

the original problem (P)

Proof

If p() = 0 ,then is a feasible solution to the problem

(P). Furthermore, since
inf{f(x), x ∈ S} ≥ θ(µ) = f()+ µp() = f() it follows that

inf{f(x), x ∈ S} ≥ f()

it immediately follows that is an optimal solution to (P).

Note the significance of the assumption that { } is

contained in a compact subset X. obviously, this
assumption holds if X is compact. Without this
assumption, it is possible that the optimal objective
values of the primal problem and the penalty problems
are not equal. This assumption is not restricted in most
practical cases, since the variables usually lie between
finite lower and upper bounds.

From the above theorem, it follows that the optimal
solution to the problem to minimize f(x) + µp(x) subject

to x ∈ X can be made arbitrarily close to the feasible
region by choosing µ large enough. Furthermore, by
choosing µ large enough, f() + µp() can be made

arbitrarily close to the optimal objective value of the
original problem. One popular scheme for solving the
penalty problem is to solve a sequence of problems of
the form:

Minimize f(x) + µp(x)
subject to x ∈ X,

for an increasing sequence of penalty parameters. The
optimal points { } are generally infeasible as seen in

proof of the Theorem 2, as the penalty parameter µ is
made large, the points generated approach an optimal
solution from outside the feasible region.

Hence, as mentioned earlier, this technique is also

Berhe 217

referred to as an exterior penalty function method.

Karush Kuhn Tucker multipliers at optimality

Under certain conditions, we can use the solutions to the
sequence of penalty problems to recover the KKT
Lagrange multipliers associated with the constraints at
optimality. Suppose X = R

n
 for simplicity and consider the

primal problem (P) and the penalty function given in (2.2).
In the penalty methods we solved, for various values of µ,
the unconstrained problem is

Minimize f(x) + µp(x) (2.6)
subject to x ∈ X.

Most algorithms require that the objective function has
continuous first partial derivatives. Hence we shall
assume that f, g, h ∈ C

1
. It is natural to require, that the

penalty function p ∈ C
1
. As we explained earlier, the

derivative of maximum {0, (x)} is usually discontinuous

at points where (x) = 0 and thus, some restrictions must

be placed on in order to guarantee p ∈ C
1
. We assume

that the functions and are continuously differentiable
and satisfy:

(y) = 0 if y ≤ 0 and (y) ≥ 0 for all y. (2.7)

In view of this assumption p is differentiable whenever f,
g, h are differentiable, that is, f, g, h ∈ C

1
implies p ∈ C

1

and we can write

p(x) = + .

Assuming that the conditions of Theorem 2 hold true,
since solves the problem to minimize {f(x) + µp(x), x ∈

X}, the gradient of the objective function of this penalty
problem must vanish at . This gives

f() + p() = 0 for all μ,

that is,

f(xμ) + +

= 0.

Now let be an accumulation point of the generated
sequence { }. Without loss of generality, assume that

{ } itself converges to and so is an optimal solution

to (P).

Denoted by:

I = {I : () = 0} to be the set of inequality constraints that

are binding at and

N = {I : () < 0} for all constraints not binding at .

218 Afr. J. Math. Comput. Sci. Res.

Since gi() < 0 for all elements of N then by Theorem 2.2,
We have gi() < 0 for sufficiently large μ which results

 = 0 (by assumption). Hence, we can write the

foregoing identity as

f(xμ) + + = 0, (2.8a)

for all μ large enough, where and are vectors

having components

 μ)) ≥ 0 for all I ∈ I and = μ (())

for all I = 1, . . . , l. (2.8b)

Let us now assume that is a regular solution such that
 and are linearly independent then, we

know that there exist unique scalars , I ∈ I and , I
= l, . . . , l such that

f(xμ) + + = 0.

Since g, h, , are all continuously differentiable and

since {xμ} → , which is a regular point, we must then
have in (2.8) that

 , for all I ∈ I and → , for all I = 1, . . . , l.

For sufficiently large values of μ, the multipliers given in
(2.8) can be used to estimate KKT Lagrange multipliers
at optimality and so we can interpret and vμ as a sort

of vector of Karush-Kuhn-Tucker multipliers. The result
stated in next lemma insures that → and vμ → .

Lemma 4

Suppose (y) and ψ(y) are continuously differentiable
and satisfy (2.7), and that f, g, h are differentiable.
Let , vμ) be defined by (2.8). Then, if → , and

satisfies the linear independence condition for gradient

vectors of active constraints (is a regular solution), then
 → , , where ,) are vectors of KKT

multipliers for the optimal solution of (P).

Proof: From the Penalty Convergence Theorem, is an
optimal solution of (P).

Let

I = {I | () = 0} and

N = {I | () < 0}.

For I ∈ N, () < 0 for all μ sufficiently large, so = 0

for all μ sufficiently large, whereby = 0 for I ∈ N.
From (2.8b) and the definition of a penalty function, it

follows that ≥ 0 for I ∈ I, for all μ sufficiently large.

 → , as μ → ∞. Then = 0 for I ∈ N.

From the continuity of all functions involved,

f(xμ) + + = 0, implies

f() + + = 0.

From the above remarks, we also have ≥ 0 and = 0

for all I ∈ N. Thus (, are vectors of Karush-Kuhn-
Tucker multipliers. It therefore remains to show

→ , as μ → ∞ for some unique (,).

Suppose has no accumulation point, then

||(uμ,)|| → ∞. But then define (Wμ,) = (), and

then ||(Wμ,)|| = 1 for all μ, and so the sequence

has some accumulation point (,) point.

For all I ∈ N, = 0 for all μ large, where by = 0 for

all I ∈ N, and
 () + (= () +

()

 = () + ()

 = -

for μ large. As μ → ∞, we have xμ → , (Wμ,) → ,

and ||(uμ,)|| → ∞ by assumption, and so the above

equation becomes;

() + (= 0, and ||(Wμ,)|| =

1, which violates the linear independence condition.
Therefore { } is bounded sequence, and so has at

least one accumulation point.
Now suppose that { } has two accumulation

points, (,) and (,). Note = 0 and = 0 for I ∈ N,
and so

 + = - = +

,

so that

 + = 0.

But by the linear independence condition, = 0 for all

I ∈ I, and . This implies that (,) = ().

Remark: The quadratic penalty function satisfies the
condition (2.7), but the linear penalty function does not
satisfy.

As a final observation we note that in general if → ,

then since μ)) → and =

μ (()) → , the sequence xμ approaches from

outside the constraint region. Indeed as → all

constraints that are active at and have positive
Lagrange multipliers will be violated at xμ because the
corresponding)) are positive. Thus, if we assume

that the active constraints are non degenerate (all
Lagrange multipliers are strictly positive), every active
constraint will be approached from outside of the feasible
region.

Consider the special case if p is the quadratic penalty
function given by:

p(x) = + , then p(y) =

 + , 2maximum{0, y}

and 2y. Hence, from (2.8), we obtain

 , for all I ∈ I, and

 = 2μ (xμ) for all I = 1, . . . , l. (2.9)

In particular, observe that if > 0 for some I ∈ I, then

 > 0 for μ large enough and then (xμ) > 0 and by

our assumption)) > 0 for (xμ) > 0. This means

that (x) ≤ 0 is violated all along the trajectory leading to

, and in the limit () = 0. Hence, if > 0 for some I ∈ I,

 ≠ 0 for all I, then all the constraints binding at are
violated along the trajectory { } leading to .

Example 3

Consider the following optimization problem:

Minimize +

subject to + = 1

and the corresponding penalty problem:

Minimize μ

subject to () ,

where μ is a large number.

Xμ = [] is the solution for the penalty problem.

And

h(xμ) = -1 = ; and so,

(vμ) = 2μh(xμ) = 2μ()

Implies

vμ = from (2.8)

As μ → ∞, , which is the optimal value of the

Lagrange multiplier for this example.

Berhe 219

Example 4

Minimize x
subject to -x + 2 ≤ 0.

The corresponding penalty problem is:

Minimize x + μ
subject to x ∈ R,

 = 1 + 2μ[maximum](-1) = 0, for x < 2

which implies that 1 + 2μ – 4μ = 0.

Therefore, = 2 – , and

(()), for I ∈ I

= 2μ(-() + 2)

= 1
It follows that Uµ = 1.

Note that, as μ → ∞, 1, the optimal value of the

Lagrange multiplier for the primal problem.

Example 5

Minimize + 2

subject to - – + 1 ≤ 0, x .

For this problem the Lagrangian is given by

L(x, u) = + 2 + u(- – + 1). The KKT
conditions yield:

 = 2 – u = 0 and = 4 – u = 0; u(- – +

1) = 0.

Solving these results in = 2/3; = 2/3; = 4/3; (u = 0
yields an infeasible solution).
To consider this example using penalty method, define
the penalty function

p(x) =

The unconstrained problem is then,

minimize + 2 + .
If p(x) = 0, then the optimal solution is x* = (0, 0) which is
infeasible.

Therefore, p(x) = = + 2

+ and the necessary conditions for the
optimal solution yield the following:

 = 2 + 2µ()(-1), and

 = 2 + 2)(-1) = 0.

220 Afr. J. Math. Comput. Sci. Res.

Thus, = and = for any fixed µ.

When μ → ∞, this converges to the optimum solution of

 = ().

Now suppose we use (2.8) to define

= , then

 = 1 – {2μ/(2+3μ)} – {μ/(2+3μ)})

= 2μ(1 – {3μ/(2+3μ)})
= (4μ/(2+3μ)).

Then it is readily seen that = 4/3 =

(the optimal Lagrangian multiplier for this example).
Therefore the above Lemma 4 is true under some
regularity conditions.

Ill-Conditioning of the Hessian matrix

Since the penalty function method must, for various
(large) values of μ, solve the unconstrained problem:

Minimize f(x) + μp(x)

subject to x X,

It is important, in order to evaluate the difficulty of such a
problem, to determine the eigenvalue structure of the
Hessian of this modified objective function. The
motivation for this is that the eigenvalue structure of the
Hessian of the objective function determines the natural
rates of convergence for algorithms designed for
unconstrained optimization problems. We show here that
the structure of the eigenvalue of the corresponding
unconstrained problem becomes increasingly unfavora-
ble as μ increases. Although, one usually insists for
computational as well as theoretical purposes that the
function p ∈ c

1
, one usually does not insist that p ∈ c

2
. In

particular, the most popular penalty function p(x) =
(maximum {0, y})

2
, has discontinuity in its second

derivative at any point where the component of g is zero,

that is, 2(maximum{0, y}), but would have
been undefined at y = 0 (as shown below).

Hence, the

Hessian of the unconstrained problem would be
undefined at points having binding inequality constraints.
At first this might appear to be a serious drawback, since
it means the Hessian is discontinuous at the boundary of
the constraint region-right where, in general, the solution
is expected to lie.

However, as pointed out above, the penalty method
generates points that approach a boundary solution from
the outside the constraint region. Thus, except for some
possible chance occurrences, the sequence will, as

→ , be at points where the Hessian is well-defined.

Furthermore, in iteratively solving the above
unconstrained problem with a fixed µ, a sequence will be
generated that converges to which is (for most value of

µ) a point where the Hessian is well-defined, and the

standard type of analysis will be applicable to the tail of
such a sequence (Luenberger,

1974).

Consider the constrained optimization problem:

Minimize {f(x), x ∈ S}

whose feasible region we denote by S: = {x ∈ X | g(x) ≤ 0,
h(x)} and the corresponding unconstrained problem:

() = f(x) + μp(x), p(x) = + ,

where f, g, h, , ψ are assumed to be twice continuously
differentiable at . Then denoting by and the

gradient and the Hessian operators for the functions Q, f,
g, h, respectively, and denoting the first and second

derivatives of and ψ as , and , (all with
respect to x) we have,

 = f() + +

And

Q(x, µ) = +] +

 + .

 (2.10)

To estimate the convergence rate of algorithms designed
to solve the modified objective function let us examine
the eigenvalue structure of (2.10) as μ → ∞, and under
the conditions of Theorem 2.2, as x , an

optimum solution to the given problem. Assuming that
→ and is a regular solution, we have from (2.8)

that,

μ)) → ≥ 0 for i ∈ I and μ (()) → , i = 1, . .

. , l,

where the optimal Lagrange multipliers associated with

the constraint. Hence, the term in [.] approaches the
Hessian of the Lagrangian function of the original
problem as → , which is

= + ,

and has a limit that is independent of μ. The other term in
(2.10), however, is strongly tied in with μ, and is
potentially explosive.

For example, if and ψ(y) = ,
as the popular quadratic penalty functions for the
inequality and equality constraints and considering a
primal problem with equality or inequality constraints
separately we have two matrices.

)) =

where

 =

Thus,

 = 2μ ,

which is 2µ times a matrix that approaches

. This matrix has rank equal to the rank

of the active constraints at (Luenberger,

1974).

Assuming that there are r1 active constraints at the

solution , then for well behaved the matrix Q(x, µ) with
only inequality constraints has r1 eigenvalues that tend to
∞ as μ → ∞, but the n – r1 eigenvalues, though varying
with μ, tend to finite limits. These limits turnout to be the

eigenvalues of L() restricted to the tangent subspace M
of the active constraints. The other matrix
2μ with l equality constraints has

rank l. As μ → ∞, → , the matrix Q(x, µ) with only

equality constraints has l eigenvalues that approach
infinity while the n - l eigenvalues approach some finite
limits. Consequently, we can expect a severely ill-
conditioned Hessian matrix for large values of μ.

Considering equation (2.10) with both equality and
inequality constraints we have as → , is a local

solution to the constrained minimization problem (P) and
that it satisfies

h() = 0 and gA () = 0 and gI() < 0,

where gA and gI, is the induced partitioning of g into r1
active and r2 inactive constraints, respectively. Assuming
that the l gradients of h and the r1 gradients of gA

evaluated at together are linearly independent, then is
said to be regular. It follows from this expression that, for
large µ and for close to the solution of (P) the matrix Q

has l + , eigenvalues of the order of µ. Consequently,
we can expect a severely ill-conditioned Hessian matrix
for large values of μ. Since the rate of convergence of the
method of steepest descent applied to a functional is
determined by the ratio of the smallest to the largest
eigenvalues of the Hessian of that functional, it follows in

particular that the steepest descent method applied to

converges slowly for large .
In examining the structure of Q is therefore; first, as µ is

increased, the solution of the penalty problem
approaches the solution of the original problem, and,
hence, the neighborhood in which attention is focused for
convergence analysis is close to the true solution. This

Berhe 221

means that the structure of the Lagrangian in the
neighborhood of interest is close to that of Lagrangian at
the true solution. Secondly, we conclude that, for large µ,
the matrix Q is positive definite. For any µ, Q must be at
least positive semi definite at the solution to the penalty
problem: it is indicated that a stronger condition holds for
large µ.

Example 6

Consider the auxiliary function, (x, µ) =

+ , of example 2.5. The Hessian is:

 H = .

Suppose we want to find its eigenvalues by solving det |H

– | = 0,

|H – | = - 4

= – (6 +4 + 8 + 12 .

This quadratic equation yields

 = (3 + 2μ) ± ,

 = (3 + 2μ) - and = (3 + 2μ) + .

Note that → ∞ as µ → ∞, while is finite; and, hence,
the condition number of H approaches ∞ as µ → ∞.
Taking the ratio of the largest and the smallest
eigenvalue yields

It should be clear that as μ → ∞, the limit of the
preceding ratio also goes to ∞. This indicates that as the
iterations proceed and we start to increase the value of μ,
the Hessian of the unconstrained function that we are
minimizing becomes increasingly ill-conditioned. This is a
common situation and is especially problematic if we are
using a method for the unconstrained optimization that
requires the use of the Hessian.

Unconstrained minimization techniques and penalty
function methods

In this we mainly concentrate on the problems of
efficiently solving the unconstrained problems with a
penalty method. The main difficulty as explained above is
the extremely unfavorable eigenvalue structure. Certainly
straight forward application of the method of steepest
descent is out of the question.

Newton’s method and penalty function methods

One method for avoiding slow convergence for the
problems is to apply Newton’s method (or one of its
variations), since the order two convergence of Newton’s
method is unaffected by the poor eigenvalue structure.

222 Afr. J. Math. Comput. Sci. Res.

In applying the method, however, special care must be
devoted to the manner by which the Hessian is inverted,
since it is ill-conditioned. Nevertheless, if second order
information is easily available, Newton’s method offers an
extremely attractive and effective method for solving
modest size penalty and barrier optimization problems.

When such information is not readily available, or if
data handling and storage requirements of Newton’s
method are excessive, attention naturally focuses on zero
order or first order methods.

Conjugate gradients and penalty function methods

According to Luenberger (1984) the partial conjugate
gradient method for solving unconstrained problems is
ideally suited to penalty and barrier problems having only
a few active constraints. If there are l active constraints,
then taking cycles of 1+1 conjugate gradient steps will
yield a rate of convergence that is independent of µ. For
example, consider the problem having only equality
constraints:

Minimize f(x) (P)
subject to h(x) = 0,

where x R
n
, h(x) R

l
, l < n. Applying the standard

quadratic penalty method, we solve instead the
unconstrained problem:

minimize f(x) + µ ,

for large µ. The objective function of this problem has a
Hessian matrix that has l eigenvalues that are of order µ
in magnitude, while the remaining n – l eigenvalues are
close to the eigenvalues of the matrix LM, corresponding
to the primal problem (P). Thus, letting xµ+1 be
determined from xµ by making l + 1 steps of a
(nonquadratic) conjugate gradient method, and assuming

xµ → , a solution to , the sequence {f(xµ)} converges

linearly to f() with a convergence ratio equal to
approximately

(
β − α

β + α
)2

where and are, respectively, the smallest and largest

eigenvalues of LM(). This is an extremely effective
technique when l is relatively small. The method can be
used for problems having inequality constraints as well
but it is advisable to change the cycle length, depending
on the number of constraints active at the end of the
previous cycle.

Here we will use Powell’s method which is the zero
order method. Powell’s method is an extension of the
basic pattern search methods. It is the most widely used
direct search method and can be proved to be a method
of conjugate directions. This is as effective as the first
order methods like the gradient method for solving
unconstrained optimization problems. The reason why we

use it here is:

a. First, it is assumed that the objective and constraint
functions be continuous and smooth (continuously
differentiable). Experience has shown this to be a more
theoretical than practical requirement and this restriction
is routinely violated in engineering design and in some
facility location problems. Therefore it is better to develop
a general code that solves both differentiable and non-
differentiable problems.
b. The input of the derivative if it exists is tiresome for
problems with large number of variables. In spite of its
advantages, Newton’s method for example is not
generally used in practice due to the following features of
the method:

i. It requires the storing of the n n Hessian matrix of the
objective function,
ii. It becomes very difficult and sometimes, impossible to
compute the elements of the Hessian matrix of the
objective function,
iii. It requires the inversion of the Hessian matrix of the
objective function at each step,
iv. It requires the evaluation of the product of inverse of
the Hessian matrix of the objective function and the
negative of the gradient of the objective function at each
step.

Because of the above reasons I do not prefer first and
second order methods and I did not give more emphasis
on these methods and their algorithms.

Finally, we should not use second-order gradient
methods (e.g., pure Newton's method) with the quadratic
loss penalty function for inequality constraints, since the
Hessian is discontinuous (Belegundu and, Chandrupatla,
1999). To see this clearly, consider:

Minimize f(x) = 100/x
subject to g = x -5 ≤ 0,

with f(x) being a monotonically decreasing function of x.

At the optimum = 5, the gradient of p(x) is 2µmax(0, x –

5). Regardless of whether we approach from the left or

right, the value of at is zero. So, (x) is first-order

differentiable. However, = 0 when approaching from

the left while = 2µ when approaching from the right.

Thus, the penalty function is not second-order
differentiable at the optimum.

Powell’s method and penalty function methods

Powell’s method is a zero-order method, requiring the
evaluation of f(x) only. If the problem involves n design
variables, the basic algorithm is (Kiusalaas, 2005):

Choose a point x0 in the design space.

Choose the starting vectors vi , i = 1, 2, . . . , n(the usual
choice is v i = ei , where ei is the unit vector in the xi-
coordinate direction).
Cycle
do with i = 1, 2, . . . , n
Minimize f(x) along the line through xi−1 in the direction of
vi. Let the minimum point be xi.

end
do vn+1 ← xn - x0 (this vector is conjugate to vn+1 produced
in the previous loop).
Minimize f(x) along the line through x0 in the direction of
vn+1. Let the minimum point be xn+1.
if |xn+1 − x0| < ε exit loop
do with i = 1, 2, . . . , n
vi ← vi+1 (v1 is discarded, the other vectors are reused)
end do end cycle.

Powell (1997) demonstrated that the vectors vn+1

produced in successive cycles are mutually conjugate, so
that the minimum point of a quadratic surface is reached
in precisely n cycles. In practice, the merit function is
seldom quadratic, but as long as any function can be
approximated locally by quadratic function, Powell’s
method will work. Of course, it usually takes more than n
cycles to arrive at the minimum of a non quadratic
function. Note that it takes n line minimizations to
construct each conjugate direction.

Powell’s method does have a major flaw that has to be
remedied; if f(x) is not a quadratic, the algorithm tends to
produce search directions that gradually become linearly
dependent, thereby ruining the progress towards the
minimum. The source of the problem is the automatic
discarding of v1 at the end of each cycle. It has been
suggested that it is better to throw out the direction that
resulted in the largest decrease of f(x), a policy that we
adopt. It seems counter intuitive to discard the best
direction, but it is likely to be close to the direction added
in the next cycle, thereby contributing to linear depen-
dence. As a result of the change, the search directions
cease to be mutually conjugate, so that a quadratic form
is not minimized in n cycles any more. This is not a
significant loss since in practice f(x) is seldom a quadratic
anyway. Powell suggested a few other refinements to
speed up convergence. Since they complicate the
bookkeeping considerably, we did not implement them.

General description of the penalty function method
algorithm

The detail of this and a MATLAB computer program for
implementing the penalty method using Powell’s method
of unconstrained minimization is given in the appendix.

Algorithm 1 (Algorithm

for the penalty function
method)

To solve the sequence of unconstrained problems with

Berhe 223

monotonically increasing values of μk, let {μk}, k = 1, . . .
be a sequence tending to infinity such that μk ≥ 0 and μk+1
> μk. Now for each k we solve the problem

Minimize {θ(x, μk), x X}. (2.11)

To obtain xk, the optimum it is assumed that problem
(2.11) has a solution for all positive values of μk. A simple
implementation known as the sequential unconstrained
minimization technique (SUMT) is given below.

Step 0: (Initialization) Select a growth parameter β > 1
and a stopping parameter ε > 0 and an initial value of the
penalty parameter μ0. Choose a starting point x0 that
violates at least one constraint and formulate the
augmented objective function θ(x, µk). Let k = 1.

Step 1: Iterative - Starting from xk-1, use an
unconstrained search technique to find the point that
minimizes θ(x, μk–1) and call it xk .

Step 2: Stopping Rule - If the distance between xk–1 and
xk is smaller than ε, that is, || xk–1

– xk || < ε or the

difference between two successive objective function
values is smaller than ε, that is, |f(xk-1) – f(xk)| < ε, stop
with xk

an estimate of the optimal solution otherwise, put

μk = βμk–1, and formulate the new θ(x, µk) and put k = k+1
and return to the iterative step.

Considerations for implementation of the penalty
function method

Starting point x1

First in the solution step is to select a starting point. A
good rule of thumb is to start at an infeasible point. By
design then, we will see that every trial point, except the
last one, will be infeasible (exterior to the feasible region).
A reasonable place to start is at the unconstrained
minimum. Always we should ensure that the penalty does
not dominate the objective function during initial iterations
of penalty function method.

Selecting the initial penalty parameter (µ0)

The initial penalty parameter μ0 should be fixed so that
the magnitude of the penalty term is not much smaller
than the magnitude of objective function. If an imbalance
exists, the influence of the objective function could direct
the algorithm to head towards an unbounded minimum
even in the presence of unsatisfied constraints. Because
the exterior penalty method approach seems to work so
well, it is natural to conjecture that all we have to do is set
μ to a very large number and then optimize the resulting
augmented objective function θ(x, μk) to obtain the

224 Afr. J. Math. Comput. Sci. Res.

solution to the original problem. Unfortunately, this
conjecture is not correct. First, “large” depends on the
particular model. It is almost always impossible to tell
how large μ must be to provide a solution to the problem
without creating numerical difficulties in the computations.
Second, in a very real sense, the problem is dynamically
changing with the relative position of the current value of
x and the subset of the constraints that are violated. The
third reason why the conjecture is not correct is
associated with the fact that large values of μ create
enormously steep valleys at the constraint boundaries.
Steep valleys will often present formidable if not
insurmountable convergence difficulties for all preferred
search methods unless the algorithm starts at a point
extremely close to the minimum being sought.
Fortunately, there is a direct and sound strategy that will
overcome each of the difficulties mentioned above. All
that needs to be done is to start with a relatively small
value of μ. The most frequently used initial penalty
parameters in the literature are 0.01, 0.1, 2, 5, and 10.
This will assure that no steep valleys are present in the
initial optimization of θ(x, μk). Subsequently, we will solve
a sequence of unconstrained problems with
monotonically increasing values of μ chosen so that the
solution to each new problem is “close” to the previous
one. This will preclude any major difficulties in finding the
minimum of θ(x, μk) from one iteration to the next.

Subsequent values of the penalty parameter

Once the initial value of the μk is chosen, the subsequent
values of μk have to be chosen such that μk+1 > μk.

For convenience, the value of μk is chosen according to
the relation:

μk+1 = βμk.
where β > 1. The value of β can be taken as in most
literatures 2, 5, 10,100 etc.

Various approaches to selecting the penalty parameter
sequence exist in the literature. The simplest is to keep it
constant during all iterations and we consider here the
penalty parameter as same for all constraints.

Normalization of the constraints

An optimization may also become ill-conditioned when
the constraints have widely different magnitudes and thus
badly affect the convergence rate during the minimization
of θ-function. Much of the success of SUMT depends on
the approach used to solve the intermediate problems,
which in turn depends on their complexity. One thing that
should be done prior to attempting to solve a nonlinear
programming using a penalty function method is, to scale
the constraints so that the penalty generated by each is

about the same magnitude. This scaling operation is
intended to ensure that no subset of the constraints has
an undue influence on the search process. If some
constraints are dominant, the algorithm will steer towards
a solution that satisfies those constraints at the expense
of searching for the minimum. In either case,
convergence may be exceedingly slow. Discussion on
how to normalize constraints is given on barrier function
methods.

Test problems (Testing practical examples)

As discussed in previous sections, a number of
algorithms are available for solving constrained nonlinear
programming problems. In recent years, a variety of
computer programs have been developed to solve
engineering optimization problems. Many of these are
complex and versatile and the user needs a good
understanding of the algorithms/computer programs to be
able to use them effectively. Before solving a new
engineering design optimization problem, we usually test
the behavior and convergence of the algorithm/computer
program on simple test problems. Eight test problems are
given in this section. All these problems have appeared in
the optimization and on facility location literature and
most of them have been solved using different
techniques.

Example 1

Consider the optimization problem:

Minimize f(x) = +

subject to - 4 ≤ 0

 - ≤ 0
 x1 + 2x2 - 4 ≤ 0
 x1 ≥ 0
 x2 ≥ 0

We consider the sequence of problems:

 = f(x) + µ[

+] + +

]

Optimum solution point using Mathematica is x =

(1.67244, 1.21942) and Optimum solution is at =
34.1797
Optimum solution point using MATLAB is x =
(2.000000003129, 1.000000123435) and

Optimum solution is at = 34.0000050125

The graph of the feasible region and steps of a computer
program (Deumlich, 1996) with the contours of the
objective function are shown in Figure 2.

Berhe 225

-4 -2 2 4 6

-4

-2

2

4

6

8

Figure 2. The sequence of unfeasible results from outside the

feasible region. And the iteration step using MATLAB for penalty
and the necessary data are given.

Table 1. The iteration step using MATLAB.

µ xmin fmin augmin

1.00 (-10.000000000000,-10.000000000000) 481.00 485615721.72568649

10.00 (2.055936255098, 1.977625505064) 24.847007912 65.8104676667

100.00 (2.003470085541, 1.120258484331) 32.791068788 38.7633368822

1000.00 (2.000316074133, 1.012311179827) 33.875143422 34.4986676000

10000.00 (2.000031285652, 1.001234049950) 33.987473310 34.0500992010

100000.00 (2.000003125478, 1.000123433923) 33.998746923 34.0050122192

1000000.00 (2.000000312552, 1.000012343760) 33.999874687 34.0005012538

10000000.00 (2.000000031250, 1.000001234352) 33.999987469 34.0000501229

100000000.00 (2.000000003129, 1.000000123435) 33.999998747 34.0000050125

And the iteration step using MATLAB for penalty method
and the necessary data are given as follows:

Initial:

x1 = [2; 5];
µ = 1; beta = 10;
tol = 1.0e-4; tol1 = 1.0e-6; h = 0.1;N = 10 (Table 1).

Example 2

Consider the optimization problem:

Minimize f(x) = +

subject to - ≤ 0

 - ≤ 0
-x1 + 2x2 - 2 ≤ 0

We consider the sequence of problems:

 = f(x) + µ[+

]
Optimum solution point using Mathematica is x =

(1.33271, 1.7112) and Optimum solution is at =
8.26363
Optimum solution point using MATLAB is x =
(1.280776520285, 1.640388354297) and

Optimum solution is at = 8.5235020151.

226 Afr. J. Math. Comput. Sci. Res.

-4 -2 2 4 6

-2

2

4

6

8

Figure 3. The sequence of unfeasible results.

Table 2. The iteration step using MATLAB.

 µ xmin fmin augmin

1.00 (10.00000000000, 10.00000000000) 85.000000000 8249.000000000

10.00 (1.762313021963, 2.438395531128) 3.9704775728 20.8446729268

100.00 (1.376888913083, 1.774431551334) 7.5876445202 12.0187470067

1000.00 (1.291940370698, 1.655287557366) 8.4151441359 8.9534555697

10000.00 (1.281912903137, 1.641896920522) 8.5124734059 8.5675584019

100000.00 (1.280890263154, 1.640539267595) 8.5223932351 8.5279146690

1000000.00 (1.280787794313, 1.640403311676) 8.5233871397 8.5239394231

10000000.00 (1.280777545189, 1.64038971403) 8.5234865508 8.5235417778

100000000.00 (1.280776520285, 1.64038835429) 8234964917 8.5235020150

The graph of the feasible region and steps of a computer
program (based on Mathematica) with the contours of the
objective function are shown in Figure 3.

And the iteration step using MATLAB for penalty
method and the necessary data are given as follows:

Initial:

x = [10; 10];
µ = 1; beta = 10;
tol = 1.0e-3; tol1 = 1.0e-5; h = 0.1; N = 10 (Table 2).

Example 3

Consider the optimization problem:

Minimize f(x) = -ln()

subject to ≥ 0

2 + 3 ≤ 6

Solution

The -function of the corresponding unconstrained
problem is:

 = f(x) + µ[]

The Exterior penalty function method, coupled with the
Powell method of unconstrained minimization and golden

Berhe 227

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

Figure 4. The sequence of unfeasible results from outside the feasible region.

Table 3. The iteration step using MATLAB.

 µ xmin fmin augmin

1.00000 (100.0000000000, 100.0000000000) -2.9957322736 244033.0042677264

1.50000 (1.812414390011, 0.805517491028) -0.8081555566 -0.805586944500

2.25000 (1.812414390377, 0.805517490784) -0.8081555566 -0.804302638400

3.37500 (1.812414395786, 0.805517487178) -0.8081555566 -0.802376179003

5.06250 (1.803696121437, 0.801642712659) -0.8057446020 -0.804976156000

bracket and golden search method of one-dimensional
search, is used to solve this problem.
Optimum solution point using Mathematica is x =
(1.80125, 0.800555) and

Optimum solution is at = -0.804892

Optimum solution point using MATLAB is x =
(1.803696121437, 0.801642712659) and

Optimum solution is at = -0.8057446020
The graph of the feasible region and steps of a computer
program (Deumlich, 1996) with the contours of the
objective function are shown in Figure 4. And the iteration
step using MATLAB for penalty method and the
necessary data are given as follows:

Initial:

x1 = [100; 100];
µ = 1; beta = 1.5;

tol = 1.0e-9; tol1 = 1.0e-3; h = 0.1;N = 10; Table 3

Example 4

Consider the optimization problem:

Minimize f(x) = - 5ln()

subject to + - 4 ≤ 0

 - ≤ 0.

We consider the sequence of problems:

 = - 5ln() +

µ[].
We can solve this problem numerically. Since the
function f is not convex we can expect local minimum
points depending on the choice of the initial point.

228 Afr. J. Math. Comput. Sci. Res.

Optimal

point

Figure 5. The sequence of unfeasible results from outside the feasible region.

Table 4. The iteration step using MATLAB.

µ xmin fmin augmin

1.0 (2 .000000000000, 3.000000000000) -8.0471895622 0.9528104378

10.0 (0.584383413070, 4.869701406514) -11.851026032 2.8191586927

100.0 (0.491210873054, 3.912290440909) -8.9702340739 -6.6115965813

1000.0 (0.478587312848, 3.786849015552) -8.5400072779 -8.2873616072

10000.0 (0.477272005299, 3.773806675110) -8.4944671131 -8.4690191379

100000.0 (0.477139883021, 3.772497114149) -8.4898858321 -8.4873391868

1000000.0 (0.477126692178, 3.772366078499) -8.4894274297 -8.4891727436

10000000.0 (0.477125354746, 3.772352991728) -8.4893815863 -8.4893561184

Optimum solution point using Mathematica is x =
(0.472776, 3.80538) and

Optimum solution is at = -8.52761
Optimum solution point using MATLAB is x =
(0.477125354746, 3.772352991728) and

Optimum solution is at = -8.4893815863

The graph of the feasible region and steps of a computer
program (Deumlich 1996) with the contours of the
objective function are shown in Figure 5. And the iteration
step using MATLAB for penalty method and the
necessary data are given as follows:

Initial:
x1 = [2; 3];
µ = 1; beta = 10;
tol = 1.0e-4; tol1 = 1.0e-6; h = 0.1;N = 10 (Table 4).

Example 5

A new facility is to be located such that the sum of its
distance from the four existing facilities is minimized. The
four facilities are located at the points (1, 2), (-2, 4), (2, 6),
and (-6,-3). If the coordinates of the new facility are x1
and x2, suppose that x1 and x2 must satisfy the
restrictions x1 + x2 = 2, x1 ≥ 0, and x2 ≥ 0.

Formulate the problem
Solve the problem by a penalty function method using a
suitable unconstrained optimization technique.

Minimize f(x) = + + +

subject to x1 + x2 = 2

Berhe 229

Optimal point

Figure 6. The sequence of unfeasible results from outside the feasible region.

Table 5. The iteration step using MATLAB.

 µ xmin fmin augmin

0.1 (-100000.0000000,-100000.0000000) 565688.2534900 6000645688.6535

1.0 (-0.504816443491, 2.941129889320) 5.6534514664 16.0986605310

10.0 (-0.235317980540, 2.465609185550) 15.7843894418 16.8684753525

100.0 (-0.043496067432, 2.086197027712) 16.0316892765 16.4032172656

1000.0 (-0.004877163871, 2.009622311363) 16.1014887806 16.1477919328

10000.0 (0.000981076620, 2.000347630256) 16.1105064270 16.1281610467

100000.0 (0.003030519805, 1.997102981748) 16.1136901197 16.1154723862

1000000.0 (0.003236508228, 1.996776847061) 16.1140109620 16.1141893257

x1 ≥ 0

x2 ≥ 0

The corresponding unconstrained optimization problem

is:

 = f(x) + µ[].
Optimum solution point using Mathematica is x

=

Optimum solution is at = 16.0996.
Optimum solution point using MATLAB is x =
(0.003236508228, 1.996776847061) and

Optimum solution is at = 16.1140109620.
The graph of the feasible region and steps of a computer
program (Deumlich 1996) with the contours of the
objective function are shown in Figure 6.
And the iteration step using MATLAB for penalty method
and the necessary data are given as follows:

Initial:
x = [-100000; -100000]; µ = 0.1; beta = 10;
tol = 1.0e-6; tol1 = 1.0e-3; h = 0.1;N = 10 (Table 5).

Example 6

A new facility is to be located such that the sum of its
distance from the four existing facilities is minimized. The
four facilities are located at the points (1, 2), (-2, 4), (2, 6),
and (-6,-3). If the coordinates of the new facility are x1
and x2, suppose that x1 and x2 must satisfy the
restrictions x1 + x2 = 2, + ≤2, - - ≤-3, x1 ≥ 0,
and x2 ≥ 0.

Formulate the problem
Solve the problem by a penalty function method using a
suitable unconstrained optimization technique.

Minimize f(x) = + +

 +

subject to x1 + x2 = 2

 + ≤ 2

 - - ≤ -3

 -x1 0

 -x2 ≤ 0

The corresponding unconstrained optimization

230 Afr. J. Math. Comput. Sci. Res.

Optimal point

𝑥1
2+𝑥2

2 = 2

−𝑥1
2 −2𝑥2

2 = -3

Figure 7. The sequence of unfeasible results from outside the feasible region.

Table 6. The iteration step using MMATLAB.

µ xmin fmin augmin

0.01 (-100.00000000000,-100.0000000000) 568.62244178640 4000376.7024418

0.10 (-0.204074540511, 2.488615905901) 15.7748455724 17.5805067419

1.00 (-0.005676255570, 1.87710924673) 16.2384983466 18.5763296826

10.0 (0.208853398412, 1.519794991416) 16.7514115057 18.7366197410

100.0 (0.541258580758, 1.337453329403) 17.2205864696 19.3598462433

1000.0 (0.774045018932, 1.191529581681) 17.7152204663 19.2571015793

10000.0 (0.894859224075, 1.097008320463) 18.0550540479 18.8928463977

100000.0 (0.951465363246, 1.046723818830) 18.2363926667 18.6484042954

1000000.0 (0.977561265017, 1.022043406130) 18.3250429734 18.5208297859

10000000.0 (0.989607061234, 1.01030727942) 18.3670763153 18.4588852580

problem is:

=f(x)+ [+

.
Optimum solution point using Mathematica is x =
{0.624988, 1.28927} and
Optimum solution is at = 17.579.
Optimum solution point using MATLAB is x =
(0.989607061234, 1.010307279416) and

Optimum solution is at = 18.3670763153.
The graph of the feasible region and steps of a computer
program (Deumlich 1996) with the contours of the
objective function are shown in Figure 7.

And the iteration step using MATLAB for penalty method
and the necessary data are given as follows:

Initial:

x1 = [-100; -100];

µ = 0.01; beta = 10;
tol = 1.0e-6; tol1 = 1.0e-3; h = 0.1; N = 10; Table 6

Example 7

The detail of this location problem is given in example 1
of the barrier method.

Minimize

3600 + 2500 +

+ 2200 +

+

+ +

+ +

subject to + ≤ 25

Berhe 231

Table 7. The iteration step using MMATLAB.

 µ xmin fmin augmin

 10.0 (-100.000000,-100.0000000) 4201299.48370 3994823869.4837

100.0 (5.18664531200, 5.613234562710) 217725.1471 335935.8823

1000.0 (3.874734526, 3.94912345612000) 243622.3686 306218.6111

10000.0 (4.28341223, 2.646232345145123) 256672.3825 399517.2275

100000.0 (4.175642351, 0.46232345145100) 293524.5216 342434.4427

1000000.0 (4.01825125, 0.047812341001001) 302445.1718 307672.3810

10000000.0 (4.001831234, 0.00479123410010) 303387.2635 303913.3990

100000000.0 (4.000181234, 0.00047912341001) 303481.9797 303534.6277

1000000000.0 (4.000018123, 0.00004791234100) 303491.4564 303496.7216

10000000000.0 (4.0000018123, 0.0000047912340) 303492.4042 303492.9307

100000000000.0 (4.0000001812, 0.0000004790123) 303492.4989 303492.5516

100000000000.0 (4.000000018, 0.00000004812331) 303492.5084 303492.5137

10000000000000.0 (4.0000000018, 0.0000000048123) 303492.5100 303492.5099

100000000000000.0 (4.000000000185, 0.00000000048) 303492.5095 303492.5095

1000000000000000.0 (4.00000000002, 0.00000000005) 303492.5095 303492.5095

x1 + x2 = 4
x1 – x2 = 4
-x1 ≤ 0
-x2 ≤ 0

The corresponding unconstrained optimization problem
is:

 = f(x) + +

 +].
Optimum solution point using Mathematica is x =

(4,)

Optimum solution is at = 303493.0.
Optimum solution point using MATLAB is x =
(4.000000000018, 0.000000000048) and

Optimum solution is at = 303492.50947.
And the iteration step using MATLAB for penalty method
and the necessary data are given as follows:

Initial:

x = [-100; -100];
µ = 10; beta = 10;
tol = 1.0e-6; tol1 = 1.0e-6; h = 0.1; N = 20 (Table 7).

Example 8

Here, we test the well studied welded beam design
problem, which has been solved by using a number of
classical optimization methods and by using Genetic
Algorithms [Deb, 128 to 129]. The welded beam is
designed for minimum cost subject to constraints on
shear stress in weld (η), bending stress in the beam (ζ),
buckling load on the bar (Pc), end deflection of the beam

(δ), and side constraints. It has four design variables

Design vector: =

Objective function: f (x) = 1.10471x1x2 + 0.04811x3x4
(14.0 + x2)

Constraints:
g1(x) = η(x) − ηmax ≤ 0
g2(x) = ζ(x) − ζmax ≤ 0
g3(x) = x1 − x4 ≤ 0
g4(x) = 0.10471x1 + 0.04811x3x4 (14.0 + x2) − 5.0 ≤ 0
g5 (x) = 0.125 − x1 ≤ 0
g6 (x) = δ(x) − δmax ≤ 0
g7 (x) = P − Pc (x) ≤ 0
g8 (X) to g11 (x): 0.1 ≤ xi ≤ 2.0, i = 1, 4
g12 (x) to g15 (x): 0.1 ≤ xi ≤ 10.0, i = 2, 3
where

,

 ,

 ,

 ,

232 Afr. J. Math. Comput. Sci. Res.

Table 8. The iteration step using MMATLAB.

µ xmin fmin augmin

0.01 (2.00000, 3.00000, 0.100000, 0.050000) 13.2606093500 10160035228635306

0.02 (0.3634872, 2.7826082, 10.558957, 0.232105300) 2.3849380 2.39159576770

0.04 (0.3634872, 2.7826082, 10.55895716, 0.2321053) 2.3849380 2.39825371460

0.08 (0.3738517, 2.8145296, 10.10980684, 0.2340900) 2.3490380 2.35157651770

0.16 (0.375852754, 2.8212375, 10.0249324, 0.234488) 2.3426482 2.34679527470

P = 6000 lb, ηmax =13,600 psi, ζmax = 30,000 psi, and δmax
= 0.25 in.

Starting and optimum solutions:

xstart =

 =

 , fstart = 5.398 and X* =

 and

 = $2.3810

Optimum solution point given by Rao (2009) is x =
(0.2444, 6.2177, 8.2915, 0.2444) and Optimum solution

is at

 = 2.3810. Optimum solution point using MATLAB
is x = (0.375852754, 2.8212375, 10.0249324, 0.234488)

and Optimum solution is at

 = 2.3467952747.

And the iteration step using MATLAB for penalty method
and the necessary data are given as follows:

Initial:

x1 = [2; 3; 0.1; 0.05];
µ = 0.01; beta = 2;
tol = 1.0e-2; tol1 = 1.0e-6; h = 0.1; N = 5 (Table 8).

Using other starting point we have different solution but
the difference is not significant as given below.

Initial:

x1 = [0.4; 6; 0 .01; 0.05];
µ = 0.1; beta = 2;
tol = 1.0e-2; tol1 = 1.0e-6; h = 0.1;N = 30 (Table 9).

EXACT PENALTY FUNCTION METHODS

In this chapter, we analyze two important extensions of
the transformation methods, which are called exact
penalty functions and have been most frequently used. In
these methods a single unconstrained minimization
problem, with a reasonable sized penalty parameter can
yield an optimum solution to the original problem. This
suggests an algorithm which attempts to locate the
optimum value of whilst keeping µ finite and so avoids
the ill-conditioning in the limit µ goes to infinity that we
face in penalty function methods.

For the types of penalty functions considered thus far,
we have seen that we need to make the penalty
parameter infinitely large in a limiting sense to recover an
optimal solution. This can cause numerical difficulties and
ill-conditioning effects. To alleviate the computational
difficulties associated with having to take the penalty
parameter to infinity in order to recover an optimal
solution to the original problem, we present below two
penalty functions that possess this property and are
known as exact penalty functions. These are exact
absolute value (l1 penalty function) and augmented
Lagrangian penalty function method.

The exact absolute value or l1 penalty function

An attractive approach to nonlinear programming is to
attempt to determine an exact penalty function by which
is meant a function defined in terms of the objective
function and constraints. This holds out the possibility
that the solution can be found by a single application of

an unconstrained minimization technique to , as against
the sequential processes described above cannot be
used. Consider problem (P) to minimize f(x) subject to

 ≤ 0, i = 1, . . . , m, and = 0, i = 1, . . . , l, and a
penalty parameter μ > 0.

Roughly speaking, an exact penalty function for

problem (P) is a function , where μ > 0 is the
penalty parameter, with the property that there exists a

lower bound > 0 such that for μ ≥ any local minimizer
of (P) is also a local minimizer of the penalty problem.
Exact penalty functions can be divided into two classes:
continuously differentiable and non-differentiable exact
penalty functions. Continuously differentiable exact
penalty functions were introduced by Fletcher (1987) for
equality constrained problems and by Gland and Polak
(1979) for problems with inequality constraints; further
contributions have been assumed in Di Pillo. Non-
differentiable exact penalty functions were introduced by
Zangwill (1967); Pietrgykowski (1969). The most
frequently used type of exact penalty function is the l1
exact penalty function. This function has been
researched widely, for example by Pietrgykowski (1969);
Coleman and Conn (1982); in nonlinear programming
applications amongst others. Unfortunately the many
effective techniques for smooth minimization cannot
adequately be used because of its non-differentiability

and the best way of using this penalty function is
currently being researched. A more realistic approach is
to use this function as a criterion function to be used in
conjunction with other iterative methods for nonlinear
programming. The most satisfactory approach of all is to
apply methods of non-smooth optimization.

A class of non-differentiable exact penalty functions
associated to (P) for X = R

n
was analyzed by

Charalambous in 1978. It is assumed by

(x,) = f(x) q ,

where q ≥ 1, , > 0, i = 1, . . . , m and i = 1, . . . , l. For
q = 1 and considering all the penalty parameters equal to
µ; we have the l1 penalty function, introduced by
Pietrgykowski (1969),

 = f(x) μ , (4.1)

Where:

p(x) =

 = , is the penalty

function.

Pietrgykowski (1969), has shown that function (4.1) is
exact in the sense that there is a finite µ > 0 such that
any regular local minimizer of (P) is also a local minimizer
of the penalized unconstrained problem. In 1970,
Luenberger showed that, under convex assumptions,
there is a lower bound for µ, equal to the largest
Lagrange multiplier in absolute value, associated to the
nonlinear problem. In 1978, Charalambous generalized
the result of Luenberger for the l1 penalty function (4.1),
assuming the second-order sufficient conditions for (P).
The following result shows that, under suitable convexity
assumptions, there does exist a finite value of μ that will
recover an optimum solution to (P) via the minimization
of . Alternatively, it can be shown that if satisfies the
second-order sufficiency conditions for a local minimum
of (P) (the Hessian is positive definite). Then, for μ at

least as large as the theorem below, will also be a local

minimum of .

Theorem 4

Consider the following primal problem:

Minimize f(x)
subject to g(x) 0
h(x) = 0. (P)

Let be a KKT point with Lagrangian multipliers , i ∈ I ,

and , i = 1, . . . , l associated with the inequality and
equality constraints, respectively, where I = {i ∈ {1, . . . ,

m} : () = 0} is the index set of active constraints.

Furthermore, suppose that f and , i I are convex

Berhe 233

functions and that , i = 1, . . . , l are affine functions.

Then, for μ ≥ maximum { , i I, | |, i = 1, . . . , l}, also

minimizes the exact l1 penalized objective function
defined by (4.1).

Proof

Since is a KKT point to (P), it is feasible to (P) and
satisfies

f() + + = 0, ≥0 for i ∈ I

(.4.2) (Moreover solves (P).)

Now, consider the problem of minimizing over x
∈ R

n
. This can equivalently be restated as follows, for

any μ ≥ 0:

Minimize f(x) + μ (4.3a)

subject to ≥ (x) and ≥ 0 for i = 1, . . . , m (4.3b)

 ≥ (x) and ≥ (x) for i = 1, . . . , l. (4.3c)

The equivalence follows easily by observing that for any x
∈ R

n
, the maximum value of the objective function in

(4.3a), subject to (4.3b) and (4.3c), is realized by taking

= maximum {0, } for i = 1, . . . , m and = | |

for i = 1, . . . , l. In particular, given , define =

maximum {0, } for i = 1, …, m and = | | 0 for i
= 1, …, l.

Note that, of the inequalities ≥ (x), i = 1, . . . , m, only
those corresponding to i ∈ I are binding, while all the
other inequalities in (4.3) are binding at (). Hence,

for () to be a KKT point for (4.3), we must find
Lagrangian multipliers , , i = 1, . . . , m, and , , i

= 1, . . . , l, associated with the respective pairs of
constraints in (4.3b) and (4.3c) such that

f() + + = 0,

μ = 0 for i = 1, . . . , m,

μ = 0 for i = 1, . . . , l,

, ≥ 0 for i = 1, . . . , m,

,) ≥ 0 for i = 1, . . . , l, = 0 for i I.

Assumed that μ ≥ , i ∈ I, | |, i = 1, . . . , l},
we then have, using (4.2), that = for all i ∈ I, = 0

for i ≠ I, = μ - for all i = 1, . . . , m, and =

and = for i = 1, . . . , l satisfy the forgoing KKT

conditions. By stated convexity assumptions, it follows

that () solves (4.3), and, so, minimizes . This
completes the proof. We proof it as follows in detail:

234 Afr. J. Math. Comput. Sci. Res.

Lemma 5

Suppose (P) is a convex program for which the Karush-
Kuhn-Tucker conditions are necessary. Suppose that

p(x) =

+ .

Then as long as µ is chosen sufficiently large, the sets of

optimal solutions of and (P) coincide. In fact, it

suffices to choose µ > maximum , i = 1, . . . ,

l}, where (,) is a vector of Karush-Kuhn-Tucker
multipliers.

Proof

Suppose solves (P). For any x R

n
 we have:

(x, µ) = f(x) + µ

 ≥ f(x) +

+

 ≥ f(x) +

+

≥f(x)+ +

)

 = f(x) + ()

 = f(x) - () ≥ f()
 = f() + µ =

(, µ).

Thus (, µ) ≤ (x, µ) for all x, and therefore solves

(x, µ).

Next suppose that solves . Then if solves (P),
we have:

f()+µ ≤f()+

 = f()

and so
f() ≤ f() - µ . ()

However, if is not feasible for (P), then

 f() f() ()

= f() -)

-)

 ≥ f() + -)

+

= f() +

-

 > f() - ,

which contradicts (). Thus is feasible for (P). That
being the case,

f() ≤ f() - µ = f()

from (4.3.1.) and so solves (P). Therefore they have the
same optimal value.

Example 1

Minimize +

subject to + -1 = 0

 = is the KKT point with the Lagrangian multiplier

associated with this point is found as:

 + = 0, which follows that 2 + = 0 and 2

+ = 0.

Equating the two we have = -2 = -2() = -1.

The function defined by (4.1) for μ ≥ 0 is:

 + + μ| + -1|.

If μ = 0, is minimized at (0, 0). For μ > 0,

minimizing is equivalent to:

Minimizing + + μz

subject to -z + + - 1 ≤ 0 ()

 -z – – + 1 ≤ 0

For (,) to be a KKT point for () above, we must

find Lagrange multipliers , associated with the
respective constraints such that:

 = ()

µ = 0

(-z + + -1) = 0

(-z – – + 1) = 0

and, moreover, optimality dictates that z = | + -1|.

Now let us consider the cases,

Case 1: if (+) < 1, then

 (-z + + -1) = 0, from this since -z + +
-1 < 0.

And, hence () is:

 =

 μ = =

 2 – and

 2 - = 0

It follows that = = .

This is a KKT point, provided that 0 ≤ μ < 1.

Case 2: if + = 1, then z = | + -1| = 0.

By ()

 =

 μ = 0, then

2 = = 2 = = = .

From this we have;

= μ – [] with and = .

This is a KKT point, provided that μ 1.

Case 3: if (+) > 1, so that () is:

 + = = 0,

which implies that = = , and

that + = -μ > 1, a
contradiction to μ > 0. Consequently, as μ increases from

0, the minimum of occurs at () until μ reaches the

value 1, after which it remains at (,), which is the

optimum to the original problem.

Augmented lagrangian penalty function (ALAG)

As we have seen in the above discussion, most “smooth”
penalty functions (such as quadratic penalty function)
never generate exact solutions to the constrained
minimization problem. Therefore, we would need to solve
the (penalized) unconstrained problems with very large
values of the constant µ in order to obtain solutions that
are close to being feasible and optimal. (In theory, we
need to let µ → ∞ to obtain a solution.) This is
unfortunate, since the unconstrained optimization
problems one encounters in implementing penalty
methods tend to become ill-conditioned when µ
increases, and therefore, it will be hard to solve each of
the unconstrained problems required by the algorithm.
Alternatively, one could employ an exact penalty method,
that is, a method that guarantees termination at an
optimal solution provided that the value of µ is sufficiently
large (but finite). As we have established, linear penalty
function is an exact penalty function; unfortunately, it is
not differentiable at points at the boundary of the feasible
region, and therefore poses difficulties in solving
corresponding unconstrained problems.

Motivated by our discussion of exact penalty functions,
it is natural to raise the question whether we can design a
penalty function that not only recovers an exact optimum
for finite penalty parameter values but also enjoys the
property of being differentiable. The Augmented
Lagrangian Penalty Function (ALAG), also known as the
multiplier penalty function, is one such exact penalty
function. This approach uses both a Lagrangian multiplier
term and a penalty term in the auxiliary function. This
approach was independently proposed by Hestenes
(1969); Powell (1997). The original proposal of this
method may be viewed as a significant milestone in the
recent history of the constrained optimization area. As
described by Hestenes, augmented Lagrangian methods

Berhe 235

are not only practically important in their own right, but
have also served as the starting point for a chain of
research developments centering around the use of
penalty functions, Lagrange multiplier iterations, and
Newton's method for solving the system of necessary
optimality conditions. Again, the motivation here is to
avoid the ill-conditioning difficulties encountered by the
classical approach as the penalty parameter approaches
to infinity.

For simplicity, let us begin by discussing the case with
only equality constraints, for which augmented
Lagrangians are first introduced, and then readily extend
the discussion to include inequality constraints as well.

ALAG penalty function for equality constrained
problems

Consider Problem (P) of minimizing f(x) subject to hi(x) =
0 for i = 1, . . . , l. we have seen if we employ the
quadratic penalty function problem to minimize f(x) +

, then we typically need to µ to obtain a

constrained minimum for (P). We might then be curious
whether, if we were to shift the origin of the penalty term

to = (, i = l, . . . , l) and consider the penalized

objective function f(x) + with respect to

the problem in which the constraint right-hand sides are

perturbed to from 0, it can be shown (Theorem 4.1
below) that if the Lagrange multipliers are fixed at their

optimum values , the minimization of (x, v, µ)
gives the solution of the original problem (P) in one step
for any value of µ. In such a case there is no need to

minimize the function for an increasing sequence of
values of µ. In expanded form, this latter objective
function is

f(x) – + + .

Denoting = - for i = 1, . . . , l and dropping the
final constant term (independent of x), this can be written
as

(x, v) = f(x) + + , (4.4)

where v R
l
 is some vector of multipliers, that can be

either kept constant or updated as we proceed with the
penalty algorithm. (Compare this to the usual Lagrangian
function L(x, v) = f(x) + .) The usage of this

function as a penalty function can be partially motivated

by the following observation: suppose that is the

optimal solution of (P), and is the vector of
corresponding multipliers. Taking the (partial) gradient of

the function , we obtain

 = 2µ = 0 (4.5)

For all values of ; whereas this was not necessary the

case with the quadratic penalty function, unless was

236 Afr. J. Math. Comput. Sci. Res.

itself zero. Hence, whereas we need to take µ to

recover in a limiting sense using the quadratic penalty
function, it is possible that we only need to make µ large
enough (under suitable regularity conditions as
enunciated below) for the critical point of (.,) to
turn out to be its (local) minimizer. In this respect, the last
term in (4.5) turns out to be a local convexifier of the
overall function.

Observe that the function (4.5) is the ordinary
Lagrangian function augmented by the quadratic penalty
term; hence the name augmented Lagrangian penalty
function. Accordingly, (4.5) can be viewed as the usual
quadratic penalty function with respect to the following
problem that is equivalent to (P):

Minimize {f(x) + : 1, l}. (4.6)

Alternatively, (4.4) can be vied as a Lagrangian function
for the following problem which is equivalent to (P):

Minimize {f(x) + : 1, l}. (4.7)

inclusion of a “multiplier based term” in the quadratic
penalty objective function; it is also sometimes called a
multiplier penalty function. These view points lead to a
reach theory and algorithmic felicity that is not present in
the pure quadratic penalty function.

The following result provides the basis by virtue of
which the ALAG penalty function can be classified as an
exact penalty function. Namely, if the vector of multipliers

 is known, one can hope that under some regularity

assumptions, the point is the local minimizer of FALAG(x,

) for large (but finite) values of µ.

Theorem 6 (ALAG Theorem)

Consider problem (P) to minimize f(x) subject to hi(x) = 0

for i = 1, . . . , l, and let the KKT solution () satisfy the
second‐ order sufficiency conditions for a local minimum

(the Hessian is positive definite.) Then, there exists a

such that for μ ≥ , FALAG(.,) also achieves a strict local

minimum at . In particular, if f is convex and hi are affine,

then any minimizing solution for (P) also minimizes

FALAG(.,) for all μ ≥ 0.

Proof

Since () is a KKT solution, we have, from (4.5), that

 = 0.

Furthermore, letting G() denote the Hessian of FALAG(. ,

) at x = , we have

G() = + + 2µ +

]

= + 2 (4.8)

where is the Hessian of the Lagrangian function

for (P) with a multiplier vector at x = . From the

second-order sufficiency conditions, we know that
is positive definite on the cone

C = {d ≠ 0 : d = 0 for i = 1, . . . , l}.

Now, on the contrary, if there does not exist a such that

G() is positive definite for μ ≥ , then it must be the case

that, given any = k, k = 1, . . . , l, there exists a with

|| || = 1 such that

G() = + 2k ≤ 0. (4.9)

Since, || || = 1 for all k, there exists a convergent

subsequence for { } with limit point , where || || = 1.
Over this subsequence, since the first term in (4.9)

approaches L() , a constant, we must have

 = 0 for all i = 1, . . . , l for (4.9) to hold for all k.
Hence, C. Moreover, since ≤ 0 for all k by

(4.9), we have ≤ 0. This contradicts the

second-order sufficiency conditions. Consequently, G()

is positive definite for µ exceeding some value , and so,

 is a strict local minimum for FALAG(.,).

Finally, suppose that f is convex and hi are affine, and
is optimal to (P). There exists a set of Lagrange

multipliers such that () is a KKT solution. As before,

we have = 0, and since for FALAG(. ,) is
convex for any µ ≥ 0, this completes the proof.

We remark here that without the second-order
sufficiency conditions of Theorem 4.3, there might not

exist any finite value µ that will recover an optimum for

problem (P), and it might be that we need to take µ
for this to occur. The following example from (1987)
illustrates this point.

Example 2

Consider the following optimization problem:

Minimize f(x) =
4
 +

subject to = 0

 = is the optimal solution. From the KKT

conditions, + = 0 and we get = 0 as the
unique Lagrange multiplier. Note that:

 L() = f() + = f(). Then,

 = and

 =

 = = H

The eigenvalues of H are found by solving: |H- | = 0,

With Or . Therefore is indefinite.
This shows the second-order sufficiency condition does

not hold at (). Now, consider

() = () = f() + +

=
4
 + + 0 + µ

2
.

Note that for any µ > 0
 ,

vanishes at = and = . Furthermore,

 = and = ,

is indefinite and, hence, is not a local minimizer for any
µ > 0. Hence worth it is assumed that second order
sufficient conditions hold and µ is sufficiently large.

However,

 = ,

The eigenvalues of are all positive for µ > 0

which shows that is positive definite, and is

in fact the minimizer of for all µ > 0. Moreover, as µ

→ ∞, approaches the constrained minimum for problem
(P).

It is demonstrated in the following examples that if the
optimum Lagrange multipliers are known, then the
solution of this unconstrained problem corresponds to the
solution of the original problem regardless of the value of
the penalty parameter.

Example 3

Consider the optimization problem (P) in example 4.1.

 = , with = -1 is the unique KKT point and

optimum for this problem. Furthermore, = is
positive definite, and thus second-order sufficiency

condition holds at (,). Moreover from equation (4.4),

 () =
2
+

2
 – (+ -1) +

 = + + + ,

which is clearly uniquely minimized at = for all µ

≥ 0. Hence, both assertions of Theorem 4.3 are verified.

Example 4

Consider the following optimization problem:

Minimize f(x) = + x

Berhe 237

subject to x + = 10

using KKT conditions, it is easy to compute the optimal
solutions as follows (This is computed using
Mathematica):

KTSolution[+ x ,{ x + -10= 0},{x,y}];

 Lagrangian→ + x + [-10+ x +]

 Valid KT point(s)
f → 50
x → 10

y → 0 → -10
Optimum: x = 10, y = 0 Lagrange multiplier, v = -10

In the augmented Lagrangian approach, the
unconstrained function is defined by adding exterior
penalty term to the Lagrangian of the original problem.
Thus we have the following unconstrained function.

 + x + v(x + -10) + µ

The necessary conditions for the minimum of this function
give the following equations:

If v is set to the optimum value of the Lagrange multiplier,
we get the following equations:

The second equation can be written as follows:

y() = 0.

Thus, y = 0 satisfies this equation for any value µ.
Substituting y = 0 in the first equation, we get

or

()(1 + 2µ) = 0.

Thus, x = 10 satisfies this equation. Thus, the Lagrangian
penalty function has the property that the optimum
solution of the original problem is recovered, if we know
the optimum values of the Lagrange multipliers.
Therefore, in this sense it is an exact penalty function.

Obviously, when we are solving a problem we don’t
know the optimum Lagrange multipliers. (If they were
known we wouldn’t need to spend time in developing new
algorithms. We could simply use them with the KKT
conditions to get a solution). However, the presence of
Lagrange multipliers makes the choice of penalty
parameter less critical. In a computational procedure
based on the augmented Lagrangian penalty function

238 Afr. J. Math. Comput. Sci. Res.

method, we start with arbitrary values of Lagrange
multipliers and develop a procedure that moves the
Lagrange multipliers closer to their optimum values.
Thus, near the optimum, the function is not as sensitive

to the value of and the procedure converges to the true
optimum.

Therefore, to make use of the above result, one
attempts to estimate the multipliers by updating the
vector v after solving each (or some) unconstrained
minimizations of FALAG. The outline of such an algorithm
is given in the following section.

Schema of an algorithm using augmented Lagrangian
penalty functions

Method of multipliers

The method of multipliers is an approach for solving
nonlinear programming problems by using the
augmented Lagrangian penalty function in a manner that
combines the algorithmic aspects of both Lagrangian
duality methods and penalty function methods. However,
this is accomplished while gaining from both these
concepts without being impaired by their respective
shortcomings. The method adopts a dual ascent step
similar to the sub-gradient optimization scheme for
optimizing the Lagrangian dual; but, unlike the latter
approach, the overall procedure produces both primal
and dual solutions. The primal solution is produced via a
penalty function minimization; but because of the
properties of the ALAG penalty function, this can usually
be accomplished without having to make the penalty
parameter infinitely large and, hence, having to contend
with the accompanying ill-conditioning effects. Moreover,
we can employ efficient derivative based methods in
minimizing the penalized objective function. The
fundamental scheme of this algorithm is as follows.

Schema of the algorithm for equality constraints

Consider the problem of minimizing f(x) subject to the
equality constraints hi(x) = 0 for i = 1, . . . , l. (The
extension to include inequality constraints is relatively
straight forward and is addressed in the following
subsection). Below, we outline the procedure first, and
then provide some interpretations, motivations, and
implementation comments. As is typically the case, the
augmented Lagrangian function employed is of the form
(4.4), except that each constraint is assigned its own

specific penalty parameter , instead of a common
parameter µ. Hence, constraint violations, and
consequent penalizations, can be individually monitored.
Accordingly, we replace (4.4) by

(x, v) = f(x) + +

Although, there are different algorithms to solve this kind
of problems the algorithm due to Powell (1997) is given
below and ensures global convergence. The outline of
such an algorithm is as follows.

Algorithm 1: Algorithm for ALAG with equality

constraints

Initialization: Select some initial Lagrangian multipliers v

= usually 0 and positive values μ1, . . . , μl for the
penalty parameters. Let xo be a null vector, and denote
VIOL(xo) = ∞, where for any x ∈ R

n
, VIOL(x) =

maximum{|hi(x)| : i = 1, . . . , l} is a measure of constraint
violations. Put k = 1 and proceed to the "inner loop" of the
algorithm.

Inner loop (Penalty function minimization): Solve

minimize FALAG(x,) subject to x ∈ R
n
 and let xk denote

the optimal solution obtained. If VIOL (xk) = 0, stop with xk
as a KKT point. (Practically, one would terminate if VIOL

(xk) is less than some tolerance > 0). Otherwise, if VIOL
(xk) ≤ 0.25VIOL (xk‐ 1), proceed to the outer loop. On the
other hand, if VIOL (xk) > 0.25VIOL (xk‐ 1) then, for each
constraint i = 1, . . . , l for which |hi(xk)| >0.25VIOL(xk‐ 1),
replace the corresponding penalty parameter μi by 10μi
and repeat this inner loop step.

Outer loop (Lagrange multiplier update): Replace

by ,
Where,

 = + 2 for i = 1, . . . , l. (4.10)

Increment k by 1, and return to the inner loop.

The inner loop of the forgoing method is concerned with
the minimization of the augmented Lagrangian penalty
function. For this purpose, we can use xk‐ 1 (for k ≥ 2) as a
starting solution and employ Newton’s method (with line
searches) in case the Hessian is available, or else use a
quasi-Newton method if only gradients are available, or
use some conjugate gradient method for relatively large-
scale problems. If VIOL (xk) = 0, then xk is feasible, and,
moreover,

 = + + 2 = 0

 (4.11)

implies that a KKT point. Whenever the revised

iterate of the inner loop does not improve the measure
for constraint violations by selected factor 0.25, the
penalty parameter is increased by a factor of 10. Hence,
the outer loop will be visited after a finite number of

iterations when the tolerance is used in the inner

loop, since, as in Theorem 2.2 we have → 0 as
→ ∞ for i = 1, . . . , l.

Observe that the forgoing argument holds regardless of
the dual multiplier update scheme used in the outer loop,
and that it is essentially related to using the standard
quadratic penalty function approach on the equivalent
problem (4.6). In fact, if we adopt this view point, then the
Lagrange multiplier estimate associated with the

constraints in (4.6) is assumed by 2 for i = 1, . . . ,
l, as (2.8). Since the relationship between the Lagrange
multipliers of the original problem (P) and its primal

equivalent from (4.6) with v = is that the Lagrange

multiplier vector for (P) equals plus the Lagrange
multiplier vector for (4.6), equation (4.10) then gives the
corresponding estimate for the Lagrange multiplier
associated with the constraints for (P).

This observation can be reinforced more directly by the
following interpretation. Note that having
minimized , we have (4.11) holding true.

However, for and to be a KKT solution, we want

 = 0, where L(x, v) = f(x) + is the

Lagrangian function for (P). Hence, we can choose to
revise to in a manner such that

 + = 0.

Super imposing this identity on (4.11), we get

 = ,

which follows that

 + + 2 = +

by eliminating like terms, we get

 =

From this,

 = + 2 which is the update scheme in

(4.10).

Hence, from the view point of problem (4.6), convergence
is obtained above in one of the two ways. First, we might
finitely determine a KKT point as is frequently the case.
Alternatively, viewing the forgoing algorithm as a one of
applying the standard quadratic penalty function
approach, in sprit, to the equivalent sequence of
problems of the type (4.6), each having particular
estimates of the Lagrangian multipliers in the objective
function, convergence is achieved by letting the penalty
parameters approach infinity. In the latter case, the inner
loop problems become increasingly ill-conditioned and
second-order methods become imperative.

Berhe 239

Example 4.5

Consider the optimization problem of Example 4.1. Given
any v, the inner loop of the method of multipliers

evaluates = ,

Where =
2
 +

2
 + v(+ -1) +

.

Solving = 0 yields

x(v) = . (The KKT point)

The outer loop then updates the Lagrangian multiplier
according to

 = + 2

which gives = v + 2µ[(v) + (v) -1] = . Note

that, as µ → ∞, → -1, the optimal Lagrange
multiplier value.

Hence, if we start the algorithm with = 0, and µ = 1, the
inner loop will determine

x(0) = = with VIOL[x(0)] = + – 1 = - 1

= ,

and the outer loop will find = 0 + 2(1)() = . Next,

at the second iteration, the inner loop solution will be
obtained as

x(v) = = =

x() = with VIOL(x()) = h[x()] = >

()() with VIOL(x(1)) > VIOL(x(0)).

Hence we will increase µ to 10, and recompute the
revised

x() = = = with VIOL(x()) = .

The outer loop will then revise the Lagrange multiplier =

 to = + 2(10) () = .

The iteration will progress in this fashion, using the
forgoing formulas, until the constraint violation at the
inner loop solution is acceptably small.

ALAG penalty function for problems with mixed
constraints

Consider problem (P) to minimize f(x) subject to the
constraints gi(x) ≤ 0 for i = 1, . . . , m and hi(x) = 0 for i =
1, . . . , l (Bhatti (2000). The extension of the forgoing
theory of augmented Lagrangians and the method of
multipliers to this case, which also includes inequality
constraints, is readily accomplished by equivalently
writing the inequalities as the equations gi(x) + = 0 for i

= 1, . . . , m. Now suppose that is a KKT point for
problem (P)

240 Afr. J. Math. Comput. Sci. Res.

with optimal Lagrange multipliers , i = 1, . . . , m, and ,
i = 1, . . . , l, associated with the inequality and equality
constraints, respectively, and such that the strict
complementary slackness condition holds, namely, that

gi() = 0 for all i = 1, . . . , m, with > 0 for each i ()

= {i : gi() = 0}. Furthermore, suppose that the second-

order sufficiency condition holds at (), namely, that

 is positive definite over the cone

 C = {d ≠ 0 : = 0 for i
= 1, . . . , l}.

Then it can be verified that the conditions of Theorem 4.3

are satisfied for problem to minimize f(x) subject to
gi(x) + = 0 for i = 1, . . . , m, and hi(x) = 0 for i = 1, . . . ,

l, at the solution (,), where = - gi(x) for i = 1, . . .

, m. Hence, for µ large enough, the solution (,) will turn
out to be a strict local minimizer for the following ALAG

penalty function at (u, v) = (,):

 f(x) + +

µ . (4.12)

The augmented Lagrangian function defined in (4.12)
includes slack variables for inequality constraints. Their
presence increases the number of variables in the
problem. It is possible to remove these variables by
writing the necessary conditions for the minimum with
respect to s. Before proceeding it is convenient to
combine the two terms involving the slack variables by
noting that;

µ = µ .

Rearranging the terms gives,

µ + () = µ - .

For a given penalty parameter µ > 0, let represent
the minimum of (4.12) over (x, s) for any given set of
Lagrange multipliers (u, v). Now let us rewrite (4.12) more
conveniently as follows:

f(x) + µ - + +

]. (4.13)

Hence, in computing , we can minimize (4.13) over

(x, s) by first minimizing [] over in terms

of x for each i = 1, . . . , m and then minimizing the

resulting expression over the x R
n
. The former task is

accomplished by writing the necessary conditions for the

minimum of with respect to the slack variables, we get

 = 0 implies that

 2()(2) =) = 0, i = 1, . .

. , m.

These conditions state that either

 = 0 Or = 0 which follows

 = 0 Or = - () ≥ 0.

Using this can be written as:

 =

 = , say. (4.14)

Similar to (4.14), the function is sometimes
referred to as the ALAG penalty function itself in the
presence of both equality and inequality constraints. In
particular, in the context of the method of multipliers, the

inner loop evaluates , measures the constraint
violations, and revises the penalty parameter(s) in an
identical fashion as before.

In order the augmented Lagrangian penalty function to
solve constrained optimization problems, we need to
determine a procedure that, starting from arbitrary values,
leads to near optimum values of Lagrange multipliers. A
simple procedure is based on comparing the necessary
conditions for the minimum of the Lagrangian function
and the augmented Lagrangian penalty function for
problem only with equality constraint. In the presence of
inequality constraints, the above analysis does not work
out as clearly as for the equality case. In practice, the
following rule based on similarity with the equality is
adopted:

 = + maximum .

If minimizes (4.14), then the sub-gradient component

to at (u, v) = (,) is found at

 = 2µ – 2

and is

 - .

Adopting the fixed step length of 2µ along this sub-
gradient direction as for the equality constraint case

revises to

 = + 2µ[-]

 = 0 + maximum

 = + maximum for i = 1, . . . , m. (4.15)

To start the process, arbitrary values, usually zero, are
assigned to all multipliers. Also, the multiplier updating is
done only after a substantial decrease in constraint
violation is achieved. The following algorithm from [6] is
used in most literatures.

Algorithm 2: Algorithm for ALAG with mixed

constraints

Set iteration counter k = 0. Set multipliers = 0, i = 1, …,

m and = 0, i = 1,…,l. Set multiplier update counter l = 0.

Choose a penalty parameter µ and a factor > 1 to
increase the penalty parameter value during iterations.

Typically µ = 10 and = 2.
Set up the unconstrained minimization problem.

 =

use a suitable unconstrained minimization problem to find

 the minimum. The derivative of with respect to are

evaluated according to the following:

 = + 2µ + 2µ + +

2µ , j = 1, . . . , n.

Check for convergence: A simple convergence criterion is
to stop if all constraints are satisfied and the objective
function is not changing much between successive
iterations. Thus, stop if the following two criteria are
satisfied. Otherwise continue to step (iv).

If Abs[()] <

 VIOL(xk) <
VIOL(xk) = maximum{Abs(hi(x), i = 1, . . . , l),

} is the maximum constraint violation.
 Update the multiplier and the penalty parameter:

If VIOL(xk) ≤ 0.25VIOL(xk‐ 1) then update the multipliers

 = + maximum i = 1, …, m

 = + 2
 Set l = l + 1.
Else update the penalty parameter

 = 10μk .

(v) Update the iteration counter k = k +1 and go back to
step (ii).

The ALAG has several advantages. As stated earlier, the
penalty parameter need not be increased to infinity for
convergence. The starting design vector, x0, need not be
feasible. Finally, it is possible to achieve = 0 and

 = 0 precisely and the nonzero values of the

Lagrange multipliers ≠ 0) identify the active
constraints automatically. It is to be noted the function

, assumed by (4.14), is continuous and has
continuous first derivatives but has discontinuous second

derivatives with respect to x at = - . Hence, a

second-order methods cannot be used to minimize the

function (Rao, 2009).

Berhe 241

SUMMARY AND CONCLUSION

The intent of this section is to point out some of the key
points discussed in the previous chapters; and based on
that it aims to draw some conclusions.

As discussed in the previous sections all algorithms for
constrained optimization are unreliable to a degree. This
fact also holds true in the penalty and function methods.

Penalty methods are among the most powerful class of
algorithms available for attacking general nonlinear
optimization problems. This statement is supported by
the fact that these techniques will converge to at least a
local minimum in most cases, regardless of the convexity
characteristics of the objective function and constraints.
They work well even in the presence of cusps and similar
anomalies that can stymie other approaches. Penalty
methods approximate a constrained problem that assigns
high cost to points that are far from the feasible region.
As the approximation is made more exact (by letting) the
penalty parameter μ tend to infinity) the solution of the
unconstrained penalty problem approaches the solution
to the original constrained problem from outside of the
active constraints. This method is not used in cases
where feasibility must be maintained, for example, if the
objective function is undefined or ill-conditioned outside
the feasible region.

Penalty methods are quite different than other
algorithms that they are not iterative in nature. The

definition of in no way depends on that of . From
this point of view, if one decides to terminate the
sequence at the Nth term corresponding to μN, obtaining
xN, the calculation of the previous vectors x1, x2, …, xN-1 is
irrelevant, since xN could have been calculated directly by
solving a single unconstrained problem. Indeed, this is
the generally the manner that penalty functions are
employed; one selects a large value of μ, solves the
unconstrained problem, and takes the resulting solution
as the final approximate answer to the original problem. It
is sometimes recognized, however, that selecting a single
large value of μ can lead to difficulty. First, exactly what is
a large value relative to a given problem may not be
known in advance and consequently an initial trial may
produce a solution point that is not close enough to the
feasible region in which case μ must be increased.
Second, large values of μ yield, as shown in the above
sections, ill-conditioned Hessians which in turn imply slow
convergence for many algorithms.

A partial remedy to these difficulties is obtained by

noting that the search for can be initiated from , a

starting point that may be fairly close to . Solution of
the k +1th problem will then probably require less time
than if the search were initiated from an arbitrary point x0.
For this reason the penalty methods are often regarded
as truly iterative algorithms. It has never been
determined, however, that solving a sequence of
unconstrained problems for increasing value of μ leads to
a computational saving over just solving the
corresponding to the largest value of μ directly. Indeed,

242 Afr. J. Math. Comput. Sci. Res.

indications are that it does not. The Hessian matrix of (x,

) becomes increasingly ill-conditioned as µ → ∞ and the
minimization becomes more difficult. That's why the
parameter µ should not be increased too quickly and the
previous iterate should be used as a starting point. As μ
→ ∞ the Hessian (at the solution) is equal to the sum of
L, the Hessian of the Lagrangian associated with the
original constrained problem, and a matrix of rank r that
tends to infinity (where r is the number of active
constraints). This is the fundamental property of these
methods.

Though penalty functions are old methods for solving
constrained optimization problems, it is, nevertheless,
worthy of noticing to recognize the wrong assumption and
generalization that everything which is old method is
nonsense. We have to be very careful not to trivialize old
methods for solving constrained optimization problems
and erroneously assume it to be as synonymous to
backwardness, as some might misconceive it. In fact, this
sequential methods needs to be modified in one way or
another so that they would serve for the ever-changing
and growing demands of algorithms for certain
optimization problems. Though these methods suffer
from some computational disadvantages, in the absence
of alternative software especially for no-derivative
problems they are still recommended. They work well for
zero order methods like Powell’s method with some
modifications and taking different initial points and
monotonically increasing parameters.

Finally, In spite of their great initial success, their slow
rates of convergence due to ill-conditioning of the
associated Hessian led researchers to pursue other
approaches. With the advent of interior point methods for
linear programming, algorithm designers have taken a
fresh look at penalty methods and have been able to
achieve much greater efficiency than previously thought
possible (Nash and Sofer, 1993).

Exact transformation methods are newer and less well-
established as sequential transformation methods and
are called the newly established modern penalty
methods. Exact transformation methods avoid this long
sequence by constructing penalty functions that are exact
in the sense that the solution of the penalty problem
yields the exact solution to the original problem for a finite
value of the penalty parameter. However, it can be shown
that such exact functions are not differentiable in most
cases. Great consideration should be assumed to the
convexity assumption and second-order conditions in
using these methods.

ACKNOWLEDGEMENTS

First, the author wishes to acknowledge his family,
especially his parents for their unconditional love and
faith in him since his birth, without whose support and
encouragement, this would not have been a reality.

Also, his warmest and honorable thanks also go to his
best friend, Abreha Hailezgi who motivated and told him
about his potential, and contributed a lot for the success
of this research paper.

Finally, he thanks all his friends who have helped him
directly or indirectly in this endeavor, especially those
who love him more.

Some notations

The following notations are frequently appearing in this
research:

µ = Penalty parameter.
x = (x1, x2, x3, …, xn) is n-dimensional vector.
θ(x, µ) = Unconstrained representation of the primal
problem (P).
θ(µ) = is the infimum of θ(x, µ) with respect to x.
xµ = A minimum point of θ(µ).
X = A nonempty set in R

n
.

M(f, S) = Set of minimum points of the constrained
optimization problem (P).
M(f, X) = Set of minimum points of the unconstrained
optimization problem θ(x, µ).
FALAG = Augmented Lagrangian Penalty Function.
p(x) = Penalty function.

LM() = L restricted to the subspace M that is tangent to
the constraint surface.

REFERENCES

Bazaraa MS, Sherali HD, Shetty CM (2006). Nonlinear Programming:

Theory and Algorithms, Second Edition, John Wiley & Sons, New

York. pp. 469-500.
Belegundu AD, Chandrupatla TR (1999). Optimization concepts and

Applications in Engineering 2nd edition, Pensylvania State University,

pp. 278-290.
Bhatti MA (2000). Practical Optimization Methods with Mathematica

Applications, Department of Civil and Environmental Engineering

University of Iowa, Springer-Verlag New York, Inc. pp. 512-680.
Charalambous CA (1978). Lower Bound for the controling parametres

of exact panalty functions, Mathematical Programming, 15:278-290.

Coleman TF, Conn AR (1982). Nonlinear Programming Via an exact
penalty function: Asymptotic analysis, Mathematical programming,
pp.123-136

Deumlich R (1996). A course in Mathematica, Addis Ababa University,
Faculty of science, Department of Mathematics. pp.1-140

Fiacco AV, McCormick GP (1968). Extensions of SUMT for nonlinear

programming: Equality constraints and extrapolation. Manage. Sci.
12(11):816-828.

Fletcher R (1987). Practical Methods of Optimization, Second Edition,

John Wiley & Sons, New York. pp. 277-318.
Gland ST, Polak E (1979). A multiplier method with Authomatic

Limitation of penalty growth. Math. Programming,17:140-155

Hestenes MR (1969). Multiplier and gradient methods. J. Optim. Theory
Appl. 4(5):123-136.

Himmelblau DH (1972). Applied Nonlinear Programming, New York,

McGraw-Hill, pp. 342-355.
Kiusalaas J (2005). Numerical Methods in Engineering with MATLAB,

the Pennsylvania State University, and Cambridge University Press

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,
São Paulo. pp. 391-404.

Luenberger

DG (1974). A combined penalty function and Gradient

projection method for nonlinear programming. J. Opt. Appl. 14:5.
Luenberger DG (1984). Linear and Nonlinear Programming, 2nd ed.,

Addison-Wesley Publishing Company, Reading, MA. pp. 401-430.
Nash SG, Sofer A (1993). Linear and Nonlinear Programming, McGraw

Hill, New York. pp. 469-765.

Pietrgykowski T (1969). An exact potential method for constrained
maxima, SIAM J. Num. Anal. 6:217-238.

Powell MJD (1997). A fast algorithm for nonlinearity constrained

optimization calculations, in Lecture Notes in Mathematics, Watson
GA et al., Eds., Springer-Verlag, Berlin. pp. 343-357.

Rao SS (2009). Engineering Optimization: Theory and Practice, Fourth

Edition, John Wiley & Sons, Inc. pp. 248-318.

Berhe 243

Zangwill WI (1967). Nonlinear programming via Penalty Functions.

Manage. Sci. 13(5):344-358.

244 Afr. J. Math. Comput. Sci. Res.

Appendix

General description of the penalty function algorithm

The SUMT iteration involves updating the penalty
parameters and initial design vector and calling the
unconstrained problem again. In the algorithm Powell’s
method (which is the zero order method) together with
golden-bracket and golden-section method for line
minimization is used. The program expects the following
files to be available in the path

i. Objective function,
ii. Equality and inequality constraints together,
iii. Unconstrained function,
iv. The flines function (for a line search).

For each an iteration of the penalty method there is an
inner iteration of the Powell’s method.

The program uses global statements to communicate
penalty parameters, initial point, search direction (V),
whereas the initial penalty parameters, initial design
variable, the number of iterations for penalty method,
tolerances for the penalty and Powell’s method are given
by user automatically.

Several parameters are coded into the program,
especially those needed for golden bracket and golden
section methods.

Step 0: (Initialization) Choose x0, number of SUMT
iterations (N), penalty parameter (µ), and penalty

multiplier (), tolerance for the penalty method (tol1) and
for the Powell’s method (tol).
k = 1 (SUMT iteration counter)
Step 1: Start the Powell’s method to minimize f(x, µ)
Output xk.

Step 3: Convergence of exterior penalty method.
Stopping criteria:

 = - , = - .

If ≤ : stop (they have approximately the same
solution)

else if ≤ : stop (design not changing)

else if k = : stop (max SUMT iteration reached)
continue
k k + 1

 =

go to step 2

Input for the welded beam example given in example 8 of
penalty function method.

function f = obweldedbeam(x) % objective function
f=1.10471*x(1).^2*x(2)+0.04811*x(3)*x(4)*(14+x(2));

function [c,ceq] = conwelededbeam(x) % constraints

l=(504000./((x(3)).^2*x(4)));

k=64746.022*(1-0.0282346*x(3))*x(3)*x(4).^3;
m =(2.1952./(x(3).^3*x(4)));
t1=(6000./(sqrt(2)*x(1)*x(2)));
t2=6000*(14+0.5*x(2))*sqrt(0.25*(x(2).^2+(x(1)+x(3)).^2));
t3=2*(0.707*x(1)*x(2)*((x(2).^2/12)+0.25*(x(1)+x(3)).^2));
t=t2./t3;
T=sqrt((t1).^2+(t).^2+((x(2)*t1*t)./sqrt(0.25*(x(2).^2+(x(1)+
x(3)).^2))));
c=[T-13600;l-30000;x(1)-x(4);6000-k;m-0.25;-
x(1)+0.125;x(1)-10;-x(2)+0.1;x(2)-10;...
-x(3)+0.1;x(3)-10;-x(4)+0.1;x(4)-10];
ceq =[]; % no equality constraints.

function z = unconweldedbeam(x,miw) %
The corresponding unconstrained problem
l=(504000./((x(3)).^2*x(4)));
k=64746.022*(1-0.0282346*x(3))*x(3)*x(4).^3;
m =(2.1952./(x(3).^3*x(4)));
t1=(6000./(sqrt(2)*x(1)*x(2)));
t2=6000*(14+0.5*x(2))*sqrt(0.25*(x(2).^2+(x(1)+x(3)).^2));
t3=2*(0.707*x(1)*x(2)*((x(2).^2/12)+0.25*(x(1)+x(3)).^2));
t=t2./t3;
T=sqrt((t1).^2+(t).^2+((x(2)*t1*t)./sqrt(0.25*(x(2).^2+(x(1)+
x(3)).^2))));
z=obweldedbeam(x)+miw*(max(0,T-13600)).^2
+miw*(max(0,l-30000)).^2+...
miw*(max(0,x(1)-x(4))).^2 +miw*(max(0,6000-
k)).^2+miw*(max(0,m-0.25)).^2 +miw*(max(0,-
x(1)+0.125)).^2+...
miw*(max(0,x(1)-10)).^2 +miw*(max(0,-
x(2)+0.1)).^2+miw*(max(0,x(2)-10)).^2 +miw*(max(0,-
x(3)+0.1)).^2+...
miw*(max(0,x(3)-10)).^2 +miw*(max(0,-
x(4)+0.1)).^2+miw*(max(0,x(4)-10)).^2;

The MATLAB Code for Penalty Function Method:

Function penaltyfunction
% Penalty function method for minimizing f(x1,x2, ..., xn).
% Example for Logarithmic function on Example 8.

% input:
% tol and tol1 are error tolerances for Powell’s method
and penalty method respectively.
% x = starting point (vector).
% µ = the penalty parameter.
% beta = the penalty multiplier.
% N = number of iterations for the penalty method, we
choose it depending on the problem.
% h = initial step size used in search for golden bracket.
% output:
% xmin = minimum point.
% objmin = miminum value of objective function.
% augmin = minimum of the corresponding unconstrained
problem

% globals (must be declared global in calling program).

% V = search direction, the same as the unit vectors in
the coordinate directions.

% Starting of the program.
clc; % clears the screen.
clear all; % clears all values of variables for memory
advantage.
global x µ V
x = [0.4; 6; 0.01; 0.05];
µ = 0.1; beta = 2;
tol = 1.0e-2; tol1 = 1.0e-6; h = 0.1;N = 30;
if size(x,2) > 1; x = x'; end % x must be column vector
n = length(x); % Number of design variables
df = zeros(n,1); % Decreases of f stored here
u = eye (n); % Columns of u store search directions V
disp(sprintf(' µ xmin objmin augmin '))
disp(sprintf(' ------ ------------------ ------------ --------------- '))
for k=1:N % loop for the penalty function method
[c,ceq]= conwelededbeam(x);
obj= obweldedbeam(x);
f= unconweldedbeam(x,µ);
disp(sprintf('%1.5f (%3.12f,%3.12f) %2.10f %2.10f ',µ,x,
obj,f))
for j = 1:30 % Allow up to 30 cycles for Powell’s method
xold = x;
fold = feval(@unconweldedbeam,xold,µ);
% First n line searches record the decrease of f
for i = 1:n
V = u(1:n,i);
[a,b] = goldbracket(@fline,0.0,h);
[s,fmin] = goldsearch(@fline,a,b);
df(i) = fold - fmin;
fold = fmin;
x = x + s*V;
end
% Last line search in the cycle
V = x - xold;
[a,b] = goldbracket(@fline,0.0,h);
[s,fmin] = goldsearch(@fline,a,b);
x = x + s*V;
if sqrt(dot(x-xold,x-xold)/n) < tol
y = x; % assign the solution to y
end
% Identify biggest decrease of f & update search
directions
imax = 1; dfmax = df(1);
for i = 2:n
if df(i) > dfmax
imax= i; dfmax = df(i);
end
end
for i = imax:n-1
u(1:n,i) = u(1:n,i+1);
end
u(1:n,n) = V;
end % end of Powell’s method
x=y; % y is the minimum point found using Powell’s

Berhe 245

method in the K

th
 iteration

µ=beta*µ;
sqrt(dot(f - obj,(f- obj));

if sqrt(dot(f - obj, - obj)) < tol1
return
end
end % end of SUMT iteration.

% f in the direction of coordinate axes.

function z = flines(s) % f in the search direction V
global x µ V
z = feval(@unconweldedbeam,x+s*V,µ);

% Start of golden bracketing for the minimum.

function [a,b] = goldbracket(func,x1,h)
% Brackets the minimum point of f(x).
% Usage: [a,b] = goldbracket(func,xstart,h)

% input:
% func = handle of function that returns f(x).
% x1 = starting value of x.
% h = initial step size used in search.
% c = a constant factor used to increase the step size h

% output:
% a, b = limits on x at the minimum point.
c = 1.618033989;
f1 = feval(func,x1);
x2 = x1 + h; f2 = feval(func,x2);
% Determine downhill direction and change sign of h if
needed.
if f2 > f1
h = -h;
x2 = x1 + h; f2 = feval(func,x2);
% Check if minimum is between x1 - h and x1 + h
if f2 > f1
a = x2; b = x1 - h; return
end
end
% Search loop for the minimum
for i = 1:100
h = c*h;
x3 = x2 + h; f3 = feval(func,x3);
if f3 > f2
a = x1; b = x3; return
end
x1 = x2; x2 = x3; f2 = f3;
end
error('goldbracket did not find a minimum please try
another starting point')

% Start of golden search for the minimum.
function [xmin,fmin] = goldsearch(func,a,b,tol2)
% Golden section search for the minimum of f(x).
% The minimum point must be bracketed in a <= x <= b.
% usage: [fmin,xmin] = goldsearch(func,xstart,h).

246 Afr. J. Math. Comput. Sci. Res.

% input:
% func = handle of function that returns f(x).
% a, b = limits of the interval containing the minimum.
% tol2 = error tolerance used in golden section.

% output:
% fmin = minimum value of f(x).
% xmin = value of x at the minimum point.
if nargin < 4; tol2 = 1.0e-6; end
nIter = ceil(-2.078087*log(tol2/abs(b-a)));
R = 0.618033989; % R is called golden ratio.
C = 1.0 - R;
% First telescoping
x1 = R*a + C*b;
x2 = C*a + R*b;
f1 = feval(func,x1);
f2 = feval(func,x2);
% Main loop
for i =1:nIter
if f1 > f2
a = x1; x1 = x2; f1 = f2;
x2 = C*a + R*b;
f2 = feval(func,x2);

else
b = x2; x2 = x1; f2 = f1;
x1 = R*a + C*b;
f1 = feval(func,x1);
end
end
if f1 < f2; fmin = f1; xmin = x1;
else
fmin = f2; xmin = x2;
end

