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INTRODUCTION  
 
New Broadband Communication Networks are playing a 
pivotal role in providing a variety of multimedia services 
such as voice, video and data etc. The amount of 
information per unit time generated by these services 
vary along the connection duration. There are certain 
periods in which the information rate increases and 
others in which it decreases or becomes null. This sort of 
variation exhibits correlation between different time 
instants, for example, in video, each frame varies little 
with respect to the previous one so the amount of 
information needed to represent it will depend on the 
amount needed for the previous one. With this type of 
traffic, the Poisson arrivals assumption, in which only the 
mean cell arrival rate was needed to describe it, is not 
valid any more. Thus, the arrival process in New 
Broadband Communication Networks is correlated in 
nature by Andrade Parra (1993).        

Further, the arrival of infected cells (viruses) and noise 
bursts etc. may annihilate all the cells in the buffer of the 
server (computer) and leave it momentarily inactivated 
until the new cell arrival occurs. Such infected cells may 
be modeled by catastrophes. The notion of catastrophes 
occurring at random, leading to annihilation of all the 
customers there and the momentary inactivation of 
service facility until a new arrival of a customer is not 
uncommon in many practical problems. Chao (1995) 
studied a queuing network model with catastrophes. 
Crescendo et al. (2003) studied an M/M/1 queue with 
catastrophes and derived its heavy traffic approximation. 
Recently, Jain and Kumar (2005) have obtained the time-
dependent   solution   of   a  catastrophic  queuing  model  

having correlated input. 
The concept of catastrophe has tremendous appli-

cations in a wide variety of areas particularly in computer-
communication, biosciences, population studies and 
industries. Crescenzo et al. (2003) consider that the 
effect of each catastrophe is to make the queue instantly 
empty provided the system is not empty and simulta-
neously the system becomes ready to accept new 
customers. In our case, the catastrophe makes the queue 
instantly empty whenever the system is not empty but the 
system takes its own time to be ready to accept new 
customers; this time is referred to as ‘ the restoration 
time’. Practically any system suffering from catastrophe 
must take some time for its restoration.   

In the present example, with the occurrence of 
catastrophe all the cells in the buffer of the server are 
destroyed immediately. But the server can work properly 
after it is free from the viruses and noise bursts. Thus, 
some sort of recovery / restoration time is needed. Keep-
ing in view this important and practically valid aspect, a 
catastrophic-cum-restorative queuing model with correla-
ted input has been developed for the cell traffic generated 
by new broadband services.  

In this paper, the effects of catastrophe and restoration 
have been incorporated in the correlated input queue 
arising in New Broadband Communication Networks. The 
transient analysis of the model has been carried out. 
Some particular cases of the model have been derived 
and discussed. 

This paper has been organized as follows: In section 2, 
we develop the queuing model. In section 3, the transient 
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analysis of the model has been done by using probability 
generating function technique. The paper is concluded in 
section 4. 
 
 
QUEUING MODEL 
 
The queuing model investigated in this paper is based on 
the following assumptions: - 
 
(1) The customers (cells) arrive at a service facility and 
form a queue. The arrivals can occur only at the transition 
marks t0, t1, t2…where θr = tr – tr-1; r = 1, 2, 3,……….are 
random variables with P [θr ≤ x] = 1 – exp (-λx); λ > 0, r = 
1, 2,………. 
(2) The arrivals of customers (cells) at the two 
consecutive transition marks tr-1, tr;             r = 
1,2,3,……..are governed  by the following  transition 
probability  matrix: 
 

                     To tr 

                         arrival                no arrival 

                arrival                                     p11                p10                  where p11+p10=1 

From tr-1                                                                                                   and 

  no arrival                                          p01                       p00                         p01+p00=1 
            

 
Thus, the arrivals at two consecutive transition marks are 
correlated. 
(3) The capacity of the system is infinite. 
(4) There is a single server and the customers are served 
one by one on FCFS basis. The service time distribution 
is exponential with parameter µ. 
(5) When the system is not empty, the catastrophes 
occur at the service facility according to a Poisson 
process with rate ξ. The catastrophes annihilate all the 
customers (cells) in the system instantaneously and the 
system starts working after the restoration time is over. 
No arrival can occur during the restoration time.  
(6) The restoration times are independently, identically 
and exponentially distributed with parameter �. 
(7) Initially, the system starts with the arrival of a 
customer that makes the queue length (the number of 
customers waiting excluding the one in service) equal to 
zero, so that  
 
P0,1(0) = 1 
 
Define, Pn ,i (t) = the probability that at time t , the queue 
length is equal to n, the service channel is not idle and i 
(= 0, 1)  arrival has occurred at the previous transition 
mark. 
Q0,i (t) =  the probability that at time t , the queue length is 
equal to  0   without  the  occurrence  of  catastrophe,  the 

 
 
 
 
service channel is idle and  i( = 0, 1) arrival has occurred 
at the previous  transition mark . 
 
C 0,i (t) = the probability that at time t, the queue length is 
equal to zero with the occurrence of catastrophe, the 
service channel is idle and i ( = 0, 1) arrival has occurred 
at the previous transition mark.  
 
R n (t) = the probability that at time t, the queue length is 
equal to n. 
 
 
TRANSIENT ANALYSIS OF THE MODEL   
 
The equations governing the model are:- 
 
R n (t) = Pn,0(t) + Pn,1(t) ; n = 1, 2, 
3…………………………..........................................(1) 
 
R0(t) = P0,0(t) + P0,1(t) + Q0,0(t) + 
Q0,1(t)………………................................................(2) 
 

dt
d

Q0,0(t) = - λ Q0,0(t) + µ P0,0(t) + λ[ p00 Q0,0(t) + p10 Q0,1(t) 

]+ )(0,0 tCη ……..…(3) 
 

dt
d

C0,0(t)  = - )(0,0 tCη  + ξ ( )�
�

�
�
�

�
�

∞=

=

n

0n
o,n tP  

………………………….............................................(4) 
 

dt
d

Q0,1(t) = - λ Q0,1(t) + µ P0,1(t) + 

)(1,0 tCη ……………………………………………………(5) 
 

dt
d

C0,1(t) = - )(1,0 tCη  + 

ξ ( )�
�

�
�
�

�
�

∞=

=

n

n
n tP

0
1, …………………………………………….…(6) 

 

dt
d

P0,0(t) = - (λ +µ+ξ) P0,0(t ) + µP1,0(t)+ λ[ p00 P0,0  

(t) +p10 P0,1(t)]…………………………………….(7) 

dt
d

Pn,0(t) = - (λ+µ+ξ)Pn,0(t) + µPn+1,0(t)+ λ[ p00 

Pn,0(t)+p10 Pn,1(t)]; n =1,2,3,……………………(8) 

dt
d

P0,1(t) = - (λ + µ + ξ)P0,1(t) + µP1,1(t) + λ[ p01 Q0,0(t) +  



 

 
 
 
 
p11 Q0,1(t) ]……………………………………………….....(9) 
 

dt
d

Pn,1(t) = - (λ + µ + ξ)Pn,1(t) + µPn+1,1(t) + λ[ p01 Pn-

1,0(t)+p11 Pn-1,1(t)]; n = 1, 2, 
3,……………............................................................(10) 
 
Define, the Laplace Transform of f (t) by 
 

f*(s) = �
∞

0

st- f(t)dt e ………………………………………..(11) 

 
Taking L.T.’s of (1) to (10), we have R*

n(s) = P*
n,0(s) + 

P*
n,1(s); n = 1, 2, 3,…       

………………………………………………………….…(12) 
 
R*

0(s) = P*
0,0(s) +    P*

0,1(s) +  Q*
0,0(s) + 

Q*
0,1(s)………………………………………….………...(13)  

 
(s + λ) Q*

0,0(s) = µ P*
0,0(s) + λ[ p00 Q

*
0,0(s) + p10 Q

*
0,1(s) ]+ 

)(0,0
* sCη                           

…………………………………………………………….(14) 
 

)()( 0,0
* sCs η+  = ξ ( )�

�

�
�
�

�
�

∞=

=

n

0n

*
0,n sP ……………………..(15)  

 
(s + λ)Q*

0,1(s) = µ P*
0,1(s) + 

)(1,0
* sCη ………................................................…(16) 

 

)()( 1,0
* sCs η+  = ξ ( )�

�

�
�
�

�
�

∞=

=

n

0n

*
1,n sP ……………………… (17) 

 
(s + λ + µ + ξ) P*

0,0(s) = µP*
1,0(s) + λ[ p00 P

*
0,0(s ) + p10 

P*
0,1(s)]                                

……………………………………………………….….(18) 
 
(s + λ + µ + ξ)P*n,0(s) = µP*

n+1,0(s) + λ[ p00 P
*n,0(s) + p10 

P*
n,1(s)] ;n = 1, 2, 3,……………………………............(19) 

 
(s + λ + µ + ξ) P*

0,1(s)-1= µP*
1,1(s) + λ[ p01 Q

*
0,0(s) + p11 

Q*
0,1(s) ]                                 

………………………………......................................(20) 
 
(s + λ + µ + ξ) P*

n,1(s)    = µP*
n+1,1(s) + λ[ p01 P

*
n-1,0(s)+p11 

P*
n-1,1(s)] ;n = 1, 2, 3,… 

……………………………….......................................(21) 
 
Define, the following probability generating functions by 

P*
i (s,�) = ( )�

∞=

=

n

0n

*
i,n

n sP� ; i =0,1.                                                                             

… …………………………………………………………(22) 
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R*(s,θ) = ( )�
∞=

=

n

n
n

n sR
0

*α ……………………………………(23) 

 
Multiplying  (18) and (19) by appropriate powers of � and 
adding, we have 

(h-λ p00) P*
0(s,α) = λ p10 P* 

1(s,α)- 
�

�
P*

0,0(s)                                                            

………………………………………………………….…(24) 
 

Where h = (s + λ + µ + ξ) - 
�

�
…………………………(25) 

 
Similarly (20) and (21) give 

(h-λα p11) P*
1(s,α) = λα p01 P*

0(s,α) -
�

�
P*

0,1(s) + λ [p01 

Q*
0,0(s) + p11 Q

*
0,1(s)] +1 ………………………………..(26)                                                   

 
and combine (12) and (13) give  
 
R*(s,α) = P*

0(s,α) +  P*
1(s, α) +  Q*

0,0(s) + Q*
0,1(s) 

............................................................................(27) 
 
Solving (24) and (26) simultaneously, we have 
 

P*
i(s,α)= 

( )
( )�D
�Ni

;  I = 0,1………………………………...(28) 

 
Where 
 

( ) ( ) ( )( ) ( )[ ] [ ] ( ){ }sPp��g�sP��sQpsQp��p��
�

1
�N *

0,011
2*

1,0
*

1,011
*

0,0011020 −−−++=

........................................................................... (29) 
 

( ) ( ) ( ) ( )( ) ( )[ ] [ ] ( ){ }sPp���sP��sQpsQp��p��g
�

1
�N *

0,001
2*

1,0
*

1,011
*

0,0010,021 −−++−=

…………………………………………………………… (30) 
 
Combining (27) - (30) we get 
 

R*(s,α) = Q*
0,0(s) + Q*

0,1(s)+ 
( )
( )�D
�N

……………………(31) 

Where 
 

N(α)=N0(α)+N1(α)= 2�

1
 {[g+λα(p10–p00)][α-

µP*
0,1(s)+λα[p01Q

*
0,0(s)+ p11Q

*
0,1(s)] –µ[g + λ α2 (p01 -p11)] 

P*
0,0(s)} 

…………………………………………………..........(32)   
                                                                                                                              

D(α) = 2�

1
 {(g-λα p00)(g-λ α2 p11) – α3λ2   p10 p01} 

……………………………………………………………………………………(33) 
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Where g = α (s + λ + µ + ξ) - µ, 
Also from (15) and (17), we have  
 

�
�

�
�
�

�
		



�
��



�

+
= �

∞

=0

0,
*

0,0
* )()(

n

n sP
s

sC
η

ξ
…………………(34) 

  
and  
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�

�
�
�

�
		



�
��



�

+
= �

∞

=0

1,
*

1,0
* )()(

n

n sP
s

sC
η

ξ
………………… (35) 

  
Also 
 
�

)()1,(
0

0,0 sPsP
n

n�
∞

=

∗∗ =
        and   

�
)()1,(

0

1,1 sPsP
n

n�
∞

=

∗∗ =
 ………………… …….(36)   

 
 From (28) for α = 1, we have 
  

)1(
)1(

)1,( 0
0

D
N

sP =∗
    and    

)1(
)1(

)1,( 1
1

D
N

sP =∗
……………………………..…………(37) 

 
Therefore, from (29) and (30) we get 
 

)1(
)1(

)( 0

0

0,
D
N

sP
n

n =�
∞

=

∗

 and     )1(
)1(

)( 1

0

1,
D
N

sP
n

n =�
∞

=

∗

 

…………………………........................................(38)     
 
By Rouche’s theorem the denominator D (α) in (27) has 2 

zeros inside the unit circle 1=α . Since, 
),( αsR ∗

is a finite quantity, these zeros must vanish  
the numerator N (α) giving rise to a set of two equations. 
Solving these two equations together with (14) and (16) 
one can determine all the four unknowns P*

0,0(s), P*
0,1(s), 

Q*
0,0(s) and Q*

0,1(s. Hence, ),( αsR∗
can be completely 

determined. 
 
 
PARTICULAR CASES 
 
(i) When � = � (that is, when we do not include the factor 
of restoration), from (34) and (35) we have 
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1,0
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n

n sP
s
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η
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 = 0 respectively.    

 
And hence the system now behaves like a catastrophic 
queue with correlated input studied by Jain and Kumar.   
(ii) When ξ = 0 and � = � (that is, when both the 
catastrophic and restorative effects are excluded), we 
have from (31) - (35)                                                                      
 

R*(s,α) = Q*
0,0 (s) + Q*

0,1 (s)+ 
( )
( )�D
�N

…………………(39)   

 
Where 
 

N(α) = N0(α)+N1(α) = 2�

1
 {[g+λα(p10–p00)][α-

µP*
0,1(s)+λα[p01Q

*
0,0(s)+ p11Q

*
0,1(s)] –µ[g + λ α2 (p01 -p11) 

P*
0,0(s)]} 

……………………………………………......................(40)                                                                                                                              
 

D (α) = 2�

1
 {(g-λα p00)(g-λ α2 p11) – α3λ2   p10 p01} 

……………………………………………………………..(41) 
 
Where g = α (s + λ + µ) - µ, 
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0,
*

0,0
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n

n sP
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= 0 

……………………………………………………….……(42) 
 
and  
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+
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=0

1,
*

1,0
* )()(

n

n sP
s

sC
η
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= 0 

…………………………………………………………….(43)  
 
(39) is the Laplace transform of the p. g. f. of the  system 
size of a single server queue having correlated input and 
exponential service time distribution.        
 
 
Conclusion 
 
Through this study, the transient solution of a 
Catastrophic-cum-Restorative Queuing Model with 
correlated input has been derived. The study carried out 
in this paper is very useful for the analysis of cell traffic 
generated by new broadband services.  
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