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In this paper we study the dynamics of two competing species model, one of the competing species is 
stage structured and the disease spreads only in the other competing specie. In order to keep the 
model simple, we present it under the strong assumption that the disease cannot cross the species 
barrier. Dynamical behaviors such as positivity, roundedness, stability, bifurcation and persistence of 
the model, are studied analytically using theories of differential equations. Computer simulations are 

carried out to substantiate the analytical findings. It is noted that the parameters,  c  the loss rate of 

population,    the maturation time and 
 f

the intraspecific coefficient are the key parameters which we 
need to control to keep away the mature healthy population from extinction and the infected individuals 
of the latter species from extinction respectively.  
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INTRODUCTION 
 
Populations that compete for common resources are 
known among ecologists. They are classically modeled 
by observing their interactions that hinder the growth of 
both populations and are thus described by negative 
bilinear terms in all the relevant differential equations. In 
the natural world, there are many species whose 
individual members have a life history that takes them 
through two stages - immature and mature. In Freedman 
and Gopalsamy (1986), a stage structured model of 
population growth consisting of immature and mature 
individuals was analyzed, where the stage-structure was 
modeled by introduction of a constant time delay. Other 
population growth and infectious disease models with 
time delays were considered in Freedman and 
Gopalsamy (1986), d’Onofrio (2002), Hethcote (2000) 
and Roberts and Kao (2002). 

Another major problem in today’s modern society is the 
spread of infectious diseases. In general, the spread of 

infectious diseases in a population depends upon various 
factors such as the number of infectives and 
susceptibles, modes of transmission as well as socio-
economic factors, environmental factors and ecological 
and geographic conditions (Dutour, 1982). A detailed 
account of modeling and the study of epidemic diseases 
can be found in literature, in the form of lecture notes, 
monographs, etc. (Bailey, 1975; Hethcote, 1976; 
Waltman, 1974; Bailey, 1982; Hethcote et al., 1982). The 
population biology of infectious diseases has also been 
presented in Anderson and May (1979). A recent trend 
on modeling population dynamics is to emphasize 
infectious diseases as regulators of population size 
(Mena-Lorca and Hethcote, 1992). A system where one 
disease-free species competes with another host which is 
infected by the epidemics is also considered in Begon 
and Bowers (1995). These are most closely related to the 
present investigation. The classical paper (Anderson and 
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May, 1986) considered two competitor one of which is 
affected by a disease, which is assumed to annihilate the 
reproductive rate of the infected individuals. The 
possibility that an infection of a superior competitor favors 
coexistence with another one, which would otherwise be 
wiped out, is inferred from the study.  
 
 
MATHEMATICAL MODEL 
 
Here, we consider a competition model with infection as 
studied in Venturino (2001), where two logistically 

growing populations  )(tP  and  )(tQ which are competing 
for the same recourse are analyzed. It is assumed that 

one of the competing specie  )(tP is stage-structured and 
the disease spreads only in the other competing specie, 

say  ).(tQ  We specify the healthy individuals, immature 

and mature  )(tPi  and  ),(tPm  the healthy individuals 

 ),(tQ  and the infected individuals of the latter species  

denoted by  ).(tV   
To study the effect of the disease in the competing 

species system we have proposed the following models: 
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With the help of Equation (2) the solution of the first 
equation of system (1) can be written in terms of solution 

for 
 )(tPm  as,   
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Equations (2) and (3) suggest that, mathematically no 

information on the past history of 
 )(tPi is needed for the 

system (1) because the properties of 
 )(tPi can be 

obtained from Equations (2) and (3) if we know the  

properties of
 )(tPm . Therefore, in the rest of this paper 

we need only to consider the following model: 
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where ,0)()(  ttP mm   0 t
 and  ,0)0( Q  .0)0( V  

  

At any time 
 ,0t

 birth into the immature healthy 
population is proportional to the existing mature healthy 

population with proportionality constant  .0 The 
immature healthy population will transfer to mature 

healthy class after its birth with a maturity period  .  The 
immature healthy population has the natural death rate 

 .0  The death rate of mature healthy population is 
proportional to the square of existing mature healthy 

population with proportionality constant  .0  The term 

 )(    tPe m that  appears in the first and second 
equations of system (1), represents the immature healthy 

population born at time  )( t  and surviving at the time 

 ,t
 and therefore represents the transformation from 

immature healthy to mature healthy population.  c is the 

loss rate in population  )(tPm due to the competitor 

 )(tQ and  e  is the loss rate in population  )(tQ due to the 

competitor  ).(tPm     is the loss rate in population  )(tPm  

due to competitor  )(tV  and  g  is loss rate in population 

 )(tV  due to the competitor  ).(tPm
 ,  f

 are intraspecific 

coefficients of competition of 
 ),(tPm  )(tQ and  )(tV .   is 

the transmission rate of the infection. 
 
 
Positivity of solutions 
 
Theorem 1  
 
All solutions of the system in Equation (4) are positive for 

all  .0t  
 
 
Proof 
 

Clearly  0)( tQ and 0)( tV  0. t,0)0( ,0)0(  VQ  

Now 0)0( mP hence if there exist to such that 

 ,0)( 0 tPm then  .00 t
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So that 
 .0)( 0 tPm


 Hence for sufficiently small 
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But by definition of 
 ,0t
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 a 

contradiction. Hence  0)( tPm  for all  .00 t
 

 
 
Boundedness of solutions 
 
To prove the bondedness of solutions, we shall need the 
following result, which is direct application of Theorem (1) 
in Kuang (1993). 
 
Lemma 1 
 
Consider the equation, 
 

 
 

 

 )()()()( 2 tcPtPtPetP mmmm    

  , 0 ,0)( ,0,,,  tfortPc m 
 

 
we have: 
 

(1) If 
 ,ce  then 

 
,

)(
)( lim



  ce
tP

t
m






  

(2) If 
 ,ce 

then 
 .0)( lim 


tPm

t  
 
 
Theorem 2 
 
 All solutions of model (4) will lie in the region,  
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Proof 
 
From the first equation model (4) we get: 
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According to Lemma 1 and the comparison theorem 

(d’Onofrio, 2002), there is a  0T and  0 such that  
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Similarly, from the second and third equation in model (4) 

we get as :t   
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This completes the proof of the theorem. 
 
 
Boundary equilibria and these stabilities 
 

Setting 0)()()(  tVtQtPm


 in model (4) and solving 
the resulting equations, 
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The model (4) has six non negative equilibria. 
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Equilibria 
 Ê  exists if the system of the following 

equations: 
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has a positive solution 
 ).ˆ,ˆ,ˆ( VQPm From Equations 2 and 

3 of system (5) we get, 
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From Equations (6) and (7) we get, 
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Now solving the above equation we get, 
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Using Equation (7) in Equation (8) we get, 
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Now putting values of 
 Q̂ and 

 V̂ in first equation of system 
(5) we get, 
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The interior equilibrium 
 Ê  is feasible when 
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The characteristic equation of equilibria 
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To show the positive equilibria 
 )ˆ,ˆ,ˆ(ˆ VQPE m  is locally 

asymptotically stable for all  ,0 we use the following 
Theorem 3 (Begon and Bowers, 1995). 
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Then the positive equilibrium of system (4) is 
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Proof 
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Secondly, suppose 
 ,00 

 
 .)(),( 0

605

2

04302

2

01

3

00

 i
eAiAAAiAAii 

     (15)    

                                        
 

Equating real and imaginary parts of Equation (15), we 
get 
 

                    ,sincos)( 00506

2

043

2

01  AAAAA 
            

(16)    
                                                               

  00506

2

0402

3

0 cossin)( AAAA 
             (17)     

                                                                      
 

Squaring and adding Equations (16) and (17), we get 
 

 .0)()22()2( 2
6

2
3

2
0

2
56431

2
2

4
0

2
42

2
1

6
0  AAAAAAAAAAA 

       (18) 
 

where   ,0)2( 2

42

2

1  AAA  0)22( 2

56431

2

2  AAAAAA
 

and  .0)( 2

6

2

3  AA
 

 
It follows that  
 

 .0)()22()2( 2

6

2

3

2

0

2

56431

2

2

4

0

2

42

2

1

6

0  AAAAAAAAAAA 
 

 
This contradicts with Equation (18). Hence 

 .0),( 0  i
For any real 

 ,0  it satisfies condition (2) 
of Theorem 3. Therefore the unique positive equilibrium 

 )ˆ,ˆ,ˆ(ˆ VQPE m is locally asymptotically stable for all 

 0 and the delay is harmless in this case. 
 
 
Bifurcation analysis 
 

Substituting 
 )()(  iba 

 in Equation (13) and 
separating real and imaginary parts, we obtain the 
following transcendental equations, 
 

                              

  
,0sin)2(

cos)()(3

54

65

22

432

22

1

23

















bbAabAe

bAaAbaAeAbAbaAaba

a

a

  (19) 
 

 
  ,0sin)(   

cos)2(23   

65

22

4

5421

23

















bAaAbaAe

bbAabAebAabAbab

a

a

     (20)                

  

where a and b are functions of   . We are interested in 

the change of stability of 
 Ê  which will occur at the values 

of    for which  0a and  .0b

 Let  ̂  be such that for which  0)ˆ( a and 

 .0ˆ)ˆ(  bb  then Equations (19) and (20) becomes 
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 ,0ˆˆsinˆˆˆcos)ˆ(ˆ
56

2

43

2

1   bbAbAbAAbA
                 

(21)
              

 
  

  
 .0ˆˆsin)ˆ(ˆˆcosˆˆˆ

6

2

452

3   bAbAbbAbAb           (22)          
                                                                  

Now eliminating  ̂  from Equations (21) and (22), we get 
 

 .0)(ˆ)22(ˆ)2(ˆ 2

6

2

3

22

56431

2

2

42

42

2

1

6  AAbAAAAAAbAAAb

   (23)            
 

To analyze the change in the behavior of stability of 
 Ê  

with respect to  ,
we examine the sign of 

 
d

da

 as a 
crosses zero. If this derivative is positive (negative), then 
clearly a stabilization (destabilization) cannot take place 

at that value of  ̂ . Differentiating Equations (19) and (20) 

with respect to  ̂  then setting  ,̂    0a and  ,b̂b   
we get: 
  

 ,)ˆ()ˆ( 21 k
d

db

d

da
 







              (24)                    
 

 ,)ˆ()ˆ( 12 l
d

db

d

da
 







       (25)               
 
 where, 

 ,ˆˆsinˆ2ˆˆsinˆˆˆˆcosˆˆcosˆ)ˆ(ˆ3 4556

2

42

2

1  bbAbbAbAbAbAAb 

 ,̂ˆcosˆ2ˆˆcosˆˆˆˆsinˆˆsinˆ)ˆ(ˆ2 4556

2

412  bbAbbAbAbAbAbA   
 

 ,ˆˆsinˆ)ˆ(ˆˆcosˆ
6

2

4

2

5  bbAbAbbAk 
   (26)                                                                                         

 ,ˆˆcosˆ)ˆ(ˆˆsinˆ
6

2

4

2

5  bbAbAbbAl 
 

 
Solving Equations (24) and (25), we get : 
  

 .)ˆ(
2

2

2

1

21






 




lk

d

da

                                      (27)       
                                                          

From Equation (27), it is clear that 

 )ˆ(
d

da

 has the same 

sign as  .21  lk 
 

From Equation (26) after simplification and solving 
Equations (21) and (22), we get: 
 

  .)22(ˆ)2(2ˆ3ˆ 2

56431

2

2

22

42

2

1

42

21 AAAAAAbAAAbblk     
 (28)                             

 

Let 
 ,)( 32

2

1

3 SuSuSuuG 
             

 
                    (29)                      

 
 
 
 

where,  ,2 2

42

2

11 AAAS   ,22 2

56431

2

22 AAAAAAS 
 

 .2

6

2

33 AAS 
 

From Equation (29), we note that 
 )(uG

is the left hand 

side of Equation (23) with  .ˆ2 ub   
Therefore, Equation (30) 
 
Now      

 
2

2

1

4
2

ˆ2ˆ3
)ˆ(

SbSb
du

bdG


 )22(ˆ)2(2ˆ3 2

56431

2

2

22

42

2

1

4 AAAAAAbAAAb   
 

).ˆ(
ˆˆ 2

2

2

2

1

2

21 




d

da

bb

lk 





                              (30) 
 
This implies that,  
 

 .
)ˆ(ˆ

)ˆ(
2

2

2

2

1

2

du

bdGb

d

da




 


                         (31)    
 

Hence the criterion for instability (stability) of 
 Ê  are:  

 

(1) If the polynomial 
 )(uG

has no positive root, there can 
be no change of stability. 

(2) If 
 )(uG

is increasing (decreasing) at all of its positive 
roots, instability (stability) is preserved.  

Now in this case, if (a) 
 ,03 S

 
 )(uG

has unique positive 

real root then it must increase at that point (since 
 )(uG

 

is a cubic in  
,u  ).)(lim 


uG

u  

(b) 
 ,03 S

then (1) is satisfied, that is, there can be no 
change of stability. 
Therefore, we have the following theorems: 

 
 
Theorem 5 
 

If 
 03 S

 and 
 Ê  is unstable for 

 ,0
it will remain 

unstable for  .0  

 
 
Theorem 6 
 

If 
 03 S

 and 
 Ê  is asymptotically stable for 

 ,0
 it is 

impossible that it remain stable for  .0 Hence there 

exist a 
 ,0ˆ 

such that for 
 ,̂   Ê  is asymptotically 

stable for 
 ,̂   Ê  is unstable and as    increases 

together  with     ,
 Ê    bifurcates    into   small   amplitude   



 
 
 
 
periodic solutions of Hopf  type (Begon and Bowers, 

1995). The value of    is given by the following equation  
 
 

.
ˆ)ˆ(

ˆ)ˆ()ˆ)(ˆˆ(
sin

ˆ

1
ˆ

22

5

2

6

2

4

53

2

16

2

42

3

1
















 

bAAbA

bAAbAAbAbAb

b


 
 
                                               
PERSISTENCE  
 
Theorem 7  
 
Assume that 
 

 

 
,

















f

d

f
ce


   

2

)(

f

dfee
d





  




 

 and  *q

 
.

2
d

f

deg








 



 

 
 
Then system (4) is permanent.  

Where  *q

 

















 




f

f

dfee
d

2

)( 



 

. 
 
 
Proof 
 
From the first equation of system (4), we have 

   ).()()()( maxmax

2 tPVcQtPtPetP mmmm    
 

According to Lemma 1 and comparing principal, it follows 
that  
 

 











































 


 

f

d

f
ce

tP
t

m )(inflim

                                )0(  
 
From the second equation of system (4), we have 
 

 
.)()()()(

2 











tfQ
f

d
f

ee
dtQtQ






  



 
 

this yields that for, 

 
,

)(
2f

dfee
d





  




 
 

 

  ).( .0

)(

)(inflim *
2

sayq
f

f

dfee
d

tQ
t



















 












 

 
 
From third equation of system (4), we have 
 

 
.)( )()(

2

*





























f

d
ftfV

f

deg
qtVtV











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this yields that for, 

 
,

2

* d
f

deg
q 










 








 
       

 

 .0 )(inflim

2

*





































 f

d
f

deg
q

tV
t










 
 
According to the above arguments and Theorem 2, we 
have 
 

 
,)(lim)(in flim



























































e
tSupPtP

f

d

f
ce

m
t

m
t

 
 

,)(lim)(inflim

)(
2

f

d
tSupQtQ

f

f

dfee
d

tt


















 




 


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.)(lim)(inflim
2

2

*

f

d
tSupVtV

f

d
f

deg
q

tt
















































 
 
This completes the proof of theorem 7. 
 
 
NUMERICAL SIMULATION 
 
In this section, we present numerical simulation to explain 
the applicability of the result discussed above. We 
choose the following parameters in model (1):  
 

 ,1   ,1   ,1.0c   ,2d   ,1.0e   ,1f   
 ,2.0g    ,5.1  ,1.0   ,1.0  .10

           (32) 
 

For the above set of parameter values, the equilibrium Ê  
is given by, 
 

 ,2330.0ˆ mP        ,9304.0ˆ Q         .4186.0ˆ V  
 
Here, we note that all conditions of local stability and 
permanence are satisfied. From the existence, stability 

and persistence criteria  
c ,

 and 
 f

 are recognized to be 
the important parameters. Using MATLAB software 

package, graphs are plotted for different values of  c ,
 

and 
 f

 in order to conclude and confirm some important 
points. 

Figure 1 shows that  )(tPm  decreases with   , and 

becomes extinct if  .15.20 Figure 2 shows that  )(tQ  

decreases with    increases. Figure 3 shows the 

behavior of  )(tV with time for different values of  . From  
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Figure 1. Variation of mature healthy population  )(tPm with time 

for different    and other value of parameters are same as in 
Equation (32). 

 
 
 

 
 

Figure 2. Variation of  )(tQ
with time for different    and other value of 

parameters are same as in Equation (32). 

 
 
 

this figure, we can infer that    increases with increase in 
time and maturity time, and finally attains its equilibrium 

level. Figure 4 shows that the value of  c  at which the 

mature healthy population  )(tPm  tends to extinction is 

 .364.0c Figure 5 shows that the value of  c  increases, 

the population  )(tQ  decreases. Figure 6 shows that the 

value of  c increases, the infected population  )(tV  
increases. Figure 7 shows that the value of intraspecific  

 
 
 
 

 
 

Figure 3. Variation of  )(tV
 with time for different    and other values 

of parameters are same as in Equation (32). 
 
 
 

 
 

Figure 4. Variation of mature healthy population 
 )(tPm with time for 

different  c  and other values of parameters are same as in Equation 

(32). 
 

 
 

coefficient 
 f

increases, the mature healthy population 

 )(tPm  increases.Figure 8 shows the behavior of  )(tQ  

with time for different values of 
 f

. This figure shows that 

initially  )(tQ  increases for some time, reaches to the 
peak, then starts decreasing and finally attains its 
equilibrium level. From the Figure 8, we also note that 

 )(tQ  remains constant at its equilibrium level  as  
 f

 and  



 
 
 
 

 
 

Figure 5. Variation of  )(tQ with time for different  c  and other values of 

parameters are same as in Equation (32). 

 
 
 

 
 

Figure 6. Variation of 
 )(tV

 with time for different  c  and other values 

of parameters are same as in Equation (32). 

 
 
 

 
 

Figure 7. Variation of mature healthy population  )(tPm with time for 

different  f  and other values of parameters are same as in Equation 

(32). 
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Figure 8.  Variation of  )(tQ
with time for different  f  and other values 

of parameters are same as in Equation (32). 
 
 
 

 
 

Figure 9. Variation of  )(tV  with time for different  f and other values of 

parameters are same as in Equation (32). 
 
 
 

increases but the amplitude and timing of the peak 

decreases with increase in 
f

. Figure 9 shows that the 

value of 
f

at which the infected population  )(tV tends to 

extinction is  .4655.1f
 

 
 
CONCLUSION 
 
In this paper, a competition model with infection which is 
competing for the same recourse is analyzed. Where one 
competing specie is  divided  into  two  stages,  immature  
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mature by a constant time delay and the disease spreads 
only in the other competing species. This system is 
analyzed for positivity and boundedness of solutions, 
equilibria and their stabilities. Conditions that influence 
the permanence of all populations are given by Theorem 
7, the population is permanent provided that  
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These results indicate that the loss rate, intraspecific 
coefficient, death rate, and transmission rate of the 
infection of populations play an important role for the 
permanence of the solution. With the help of computer 
simulations, it is concluded that if the maturation time 
increases, then the system is not permanent and mature 
healthy population tends to extinction. It is also noted that 
if the value of maturation time increases, healthy 

population  )(tQ and the infected individuals of the latter 

species  )(tV decreases and increases respectively. Also, 

when the value of parameter  c  (loss rate) increases, 
mature healthy population tends to extinction. It is also 
noted that if the value of loss rate increases, healthy 

population  )(tQ and the infected individuals of the latter 

species  )(tV decreases and increases respectively. 

When the value of parameter 
 f

 (intraspecific coefficient) 

increases, the mature healthy population 
 )(tPm  

increases and the infected individuals of the latter 

species  )(tV  tends to extinction respectively. It is also 

noted that healthy population  )(tQ  remains constant at 

its equilibrium level as 
 f

 increases but the amplitude 

and timing of the peak decreases with increase in 
 f

. It is 

observed that the parameters  c  the loss rate of 

population,   the maturation time and 
 f

the intraspecific 
coefficient are the key parameters which we need to 
control, to keep away the mature healthy population from 
extinction and the infected individuals of the latter species 
from extinction respectively. 
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