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In this paper we study the dynamics of two competing species model, one of the competing species is
stage structured and the disease spreads only in the other competing specie. In order to keep the
model simple, we present it under the strong assumption that the disease cannot cross the species
barrier. Dynamical behaviors such as positivity, roundedness, stability, bifurcation and persistence of
the model, are studied analytically using theories of differential equations. Computer simulations are
carried out to substantiate the analytical findings. It is noted that the parameters, C the loss rate of

population, T the maturation time and f

the intraspecific coefficient are the key parameters which we

need to control to keep away the mature healthy population from extinction and the infected individuals

of the latter species from extinction respectively.

Key words: Competing species, stage structure, disease, stability, permanence, numerical simulation.

INTRODUCTION

Populations that compete for common resources are
known among ecologists. They are classically modeled
by observing their interactions that hinder the growth of
both populations and are thus described by negative
bilinear terms in all the relevant differential equations. In
the natural world, there are many species whose
individual members have a life history that takes them
through two stages - immature and mature. In Freedman
and Gopalsamy (1986), a stage structured model of
population growth consisting of immature and mature
individuals was analyzed, where the stage-structure was
modeled by introduction of a constant time delay. Other
population growth and infectious disease models with
time delays were considered in Freedman and
Gopalsamy (1986), d’Onofrio (2002), Hethcote (2000)
and Roberts and Kao (2002).

Another major problem in today’s modern society is the
spread of infectious diseases. In general, the spread of

infectious diseases in a population depends upon various
factors such as the number of infectives and
susceptibles, modes of transmission as well as socio-
economic factors, environmental factors and ecological
and geographic conditions (Dutour, 1982). A detailed
account of modeling and the study of epidemic diseases
can be found in literature, in the form of lecture notes,
monographs, etc. (Bailey, 1975; Hethcote, 1976;
Waltman, 1974, Bailey, 1982; Hethcote et al., 1982). The
population biology of infectious diseases has also been
presented in Anderson and May (1979). A recent trend
on modeling population dynamics is to emphasize
infectious diseases as regulators of population size
(Mena-Lorca and Hethcote, 1992). A system where one
disease-free species competes with another host which is
infected by the epidemics is also considered in Begon
and Bowers (1995). These are most closely related to the
present investigation. The classical paper (Anderson and
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May, 1986) considered two competitor one of which is
affected by a disease, which is assumed to annihilate the
reproductive rate of the infected individuals. The
possibility that an infection of a superior competitor favors
coexistence with another one, which would otherwise be
wiped out, is inferred from the study.

MATHEMATICAL MODEL

Here, we consider a competition model with infection as
studied in Venturino (2001), where two logistically

growing populations P® and QM which are competing
for the same recourse are analyzed. It is assumed that

one of the competing specie PO s stage-structured and
the disease spreads only in the other competing specie,

say QM- e specify the healthy individuals, immature

and mature © (Y and P (O, the healthy individuals
Q. and the infected individuals of the latter species
denoted by v (-

To study the effect of the disease in the competing
species system we have proposed the following models:
Bt =aP,(t) — /R () —ae "R, (t—7),
Po () = @8 B, (t —7) — AP (t) — P, (DQ() — 7P, (t)V (1),

Q(t) =dQ(t) —eR, (HQAL) — f (Q) +V (1)) — &V Q).

V() =V (O — gR, (OV (O — T (QEM) +V )V (©),

1)
where, n (0 =0 () =0,
—7<t<0gnd R(® >0, Q(0) >0, V() =>0.
Now for continuity of initial conditions, we require,
0
R(0) = j' ae B g (s)ds,
- (2)

With the help of Equation (2) the solution of the first
equation of system (1) can be written in terms of solution
t

for P'“ (t) as,

R(t) = J'ae*ﬂt*S)Pm (s)ds

@3)
Equations (2) and (3) suggest that, mathematically no
information on the past history of R is needed for the

system (1) because the properties of 0 can be
obtained from Equations (2) and (3) if we know the

properties of P (t) Therefore, in the rest of this paper
we need only to consider the following model:

Pn(t) =ce " P, (t—7) — Py (1) —cR, (DQ() — 7P, (V (1),
Q(t) =dQ(t) —eP, (1)Q(t) — f(Q(L) +V ())Q(H) — &V (HQ(L),

V(1) =V O — gR, (V) — f(QM®) +V D)V (©), (4)

where Pm(t) :¢m(t) >0, —-7<t<0 and Q(O) >0, V(O) >0.

At any time t>0, birth into the immature healthy
population is proportional to the existing mature healthy

population with proportionality constant <& >0.The
immature healthy population will transfer to mature

healthy class after its birth with a maturity period 7- The
immature healthy population has the natural death rate

7 >0- The death rate of mature healthy population is
proportional to the square of existing mature healthy

population with proportionality constant £ > 0. The term

e 7R, (t—7) that appears in the first and second
equations of system (1), represents the immature healthy

population born at time (t—2) and surviving at the time

L and therefore represents the transformation from
immature healthy to mature healthy population. Cis the

loss rate in population P () due to the competitor
Q) and € is the loss rate in population Q) due to the

competitor Pn(®- 7 s the loss rate in population P ()
due to competitor V() and 9 is loss rate in population
V() due to the competitor PO B, 1 are intraspecific
coefficients of competition of Pn(®. Q) and V(O Jis

the transmission rate of the infection.
Positivity of solutions
Theorem 1

All solutions of the system in Equation (4) are positive for
all T 0.

Proof

Clearly Q(t) >0 44gV(®) >0Q(0)>0,vV(0)>0,t>0.

Now Fn(©® >Ohence if there exist to such that

Fa(to) =0, then to > 0. Assume that b is the first time
such that Pn® =0:jatis. to = inf{t.0:P, (t) =0} then
. o™’ t, —7 , 0o<t,<r
Pm (to) — { _yrgom( 0 ) 0
P (t,—7) ty>7



Pm(t0)>o | €>O,

So that
P.(t, —&) >0.

Hence for sufficiently smal

But by definition of Lo Palty—6)<0 4

contradiction. Hence Fm(® >0 for g to =0

Boundedness of solutions

To prove the bondedness of solutions, we shall need the
following result, which is direct application of Theorem (1)
in Kuang (1993).

Lemma 1l

Consider the equation,

Pa(®) =ce "R, (t—7) — A () —cR, (1)
(a,c, 8, 7>0,P, (1) >0, for—z<t<0),
we have:

" (e’ -c)
e im Py (0 = ——,
(1) 1f @77 >Crthen 1= o

lim P, (t)=0.

L
@) 1f @ <Cihen t>e

Theorem 2

All solutions of model (4) will lie in the region,

|
Jas

P,,Q,.V,) € R®.

Q= {(Pm,Q,V)eRf: 0<Py <Prx: 0<Q< Qs 0<V Vi

t—%9, for all positive initial values (

Proof
From the first equation model (4) we get:
P, () <ae P, (t—7)— BPZ(1).

According to Lemma 1 and the comparison theorem
(d’Onofrio, 2002), thereisa T > Oand ¢ > O such that

—yT

PM=%" ,¢

for t>T+7.

e
lim SupP,, (t) < “eﬂ =P .

t—0

This implies that

Similarly, from the second and third equation in model (4)
we getast —>©:
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o

. &
Qe !mSUP\(t)S?:Vm-

lim SupQ(t) <
e and

+=
This completes the proof of the theorem.

Boundary equilibria and these stabilities

Setting P () = QM) =V (®) =0 in model (4) and solving
the resulting equations,
ae 7P, (t—17) — Py (1) — P, (DQ) — 7P, (V (1) _

dQ(t) —eR, (HQM — F(Q() +V [M)QM) -V (IO -
NVOQM) —gR, MV (M) — F(QM +V)V() _ o

The model (4) has six non negative equilibria.
E,(0,0,0), E,(P,,,0,0), E;(0.Q; 0) E;(R,;,Q;,0),

A A

E.(0,Q,.V.) ang EPmQV)

ae 7

m1 —
where, B

_d _ (afe 7" —cd) _(pd—aee™)
Q=% Pre =T Teoy o (ff-e9
df o— f)d
Q, = 57 V, = %
Equilibria E exists if the system of the following
equations:

e — R0 QW -V g
d —eR, (® — QM +V (1) —V (®) =

QO-gR MO TQM+V®) = -

has a positive solution (Pn. Q). From Equations 2 and

3 of system (5) we get,

v _(d—eR, — Q)
(f+95) (6)
and
VGRS EL 8
(7)

From Equations (6) and (7) we get,

(d—-eR, - fQ) (b-T)Q-gR,
(f+3) = f
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Now solving the above equation we get,

_ fd—(ef +gf + )R,

? 5 ®)

Using Equation (7) in Equation (8) we get,

v :[(5— f)(fg+g§—ef)_g}l§ L (6-f)d

o2 f flr o )

V=aP,+a \here

(06— f)(fg+go—ef) g (5—f)d
al = 5% f f and a, = 52
Also using Equation (8) in Equation (9) we get,
G- fd (gf+go—eh)

o o (10)
. . . , fd
Q=a, +a,R, ,WhereQ:a3 +,R, 52 gng@ =
(gf +go—ef)

52
Now putting values of Q and V in first equation of system
(5) we get,

P = (ae™" —ca; —na,)
" (B +ca, +na,)

A

The interior equilibrium E is feasible
5> f, g(f +8)>ef, €7 >(Ca+78,) 4y
(06— f)(gf +go—ef) > go°.

when

The characteristic equation of equilibria = is

(A—ce 7Y (A—d) (A—0) =0.

ﬂa = ae_(lﬂ)r, /1 = d

Clearly, and 4=0 g

eigenvalues are positive, therefore equilibrium E, is
completely unstable. The characteristic equation of

equilibria Elis
A—ae "+ 2pP ) (A+€eP,, —d) (1+gP,)=0.

Since this characteristic equation has one negative

eigenvalue corresponding to B direction and all other

. . . . P -
eigenvalues, that is, eigenvalues in ™ and Q

_ —(A+A) T -
direction are given by solution of A=ce 2P

E

which always has a positive solution
provided that —1 is unstable. The characteristic equation

of equilibria E, is

(A—ce @7 1cQ,) (A+21Q, —d) (1-(5-)Q,)=0.

From this 4=0-2fQ, 2=(5-H)Q gngA=e""" -Q,
Since one eigenvalueA=(6—=)Q, is always positive

therefore equilibrium E, is unstable. The characteristic

equation of equilibrium E3is
(A+9gPRy, —(5— £)Q,), (£ +BA+B,—(B,A+B,)e” )=0.

where Bl = (2f +C)Q3 +(e+2ﬂpm3)_d ,
B, = (2fQ, —d)(2/P,; +cQ,) + 2P
B, =™ = (P, +€Q5)

B, =(2f —Q, +eR)e ™ = (2 —Q, +eRy) (P +0Q)

A=(5—1)Q,—gR, >0

Clearly, ' therefore

equilibrium 2 is unstable. The characteristic equation of

equilibrium E, is
(A+cQ, +7V, —ae ¥7), (22 +AH, +H,) =0.

where
H, = BfQ+3fV + oV — & —d),
H, =(d(5— )Q, —2MdV, —2f (5— f)QZ +4F°Q,V, +2f (5+ F)V?)

The characteristic equation of equilibrium E is
B H LA+ + A= (AL +AL+A)TT =0, (17
Where

A =(@8, +cQ+N)~(d—eP, ~21Q—(f +V +(5- 1)Q-gP, —21V))
[la—eB, ~210—(f + oW |5 - 1)O-gP, ~21V J+ (6% - 12)OV - cePQ - g,V
—(2, +cQ+V)(d —eP, ~21Q—(f + 6N + (5 1)Q-gP, ~2V ) '

(Z/;’ﬁw»fc(j»fr]\/:)(d—eﬁm—zfd—(f oV 6~ 13- 6B, -20 )+ @B, +c0 V)

(07~ 1907 +{5- Q- 68, 2N .0+ (1 + g #1(1 -91B A +9ifY |

(d-¢B,-219-(1 + o))

A=

A =ae”" = P, +cQ+1V,

(12)

A =(e+a)P, +2F(Q+V)+(5+ FIV —(5— F)O—d he”,
—(e+ )P, +2f Q+V)+(5+ TV —(5— F)Q—d [ B, +cQ+7V)
A = (82 — F2)QVae 7" = (5% — £2)(BP, +CP, +1V)QV,

Let ?(A.7) = B+ A +IA, + A —(AX +AL+A)e " =0. (13)



To show the positive equilibria E(R,.QV) is locally

asymptotically stable for all =~ 0. we use the following
Theorem 3 (Begon and Bowers, 1995).

Theorem 3

A set of necessary and sufficient conditions for
E(F.. Q:V) to be asymptotically stable for all z=0Ois
(1) The real part of all roots of AA0) =0 gre negative.

>0, (iey,7) =0

(2) For all real ®o and where

i =~/—1

Theorem 4

Assume that ¢ > T, 9(f +36) >ef,
ae’" > (ca, +17a,)

(5 — F)(gf +g5—ef)>0d°,

and

Then the positive equilibrium of
asymptotically stable.

system (4) is

Proof

We now apply Theorem 3 to prove Theorem 4. We prove
this theorem in two steps.

Step 1
Substituting = = 0 in Equation (11), we get

¢(1,O):A3+12A1 +AA, + A, — (A + A A+ A) =0,

2,0) A2 +S2P+TA+U =0,
P(2,0) =2 + S +TA+ 14

where,
S :(Al_A4) >0-T:(A2_AS)>O:U :(A3_Ae)>0and

ST—U >O0.Therefore by Routh-Hurwitz criterion, all
roots of Equation (14) have negative real parts. Hence

condition (1) of Theorem 3 is satisfied and Eisa locally
asymptotically stable equilibrium in the absence of delay.

Step 2

suppose that (1% 7) = 0. ho1ds for some real “°-

Firstly, when @, =0,
(O, 7) = A, — A =0.
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Secondly, suppose @, #0,

oliwy,7) = -} — A +iA,w + A, — (—A0F +iAgw, + A )e™™ .

(15)

Equating real and imaginary parts of Equation (15), we
get

—Adf +A =(Ach —A)cosar—Amysinay, 5

— o) + Ao, = (A0} - A)Sin o,r — Aw, COSw,T (17)

Squaring and adding Equations (16) and (17), we get

o + (A =28 — A)ay +(AF — 2 Ay +2A A — A ) + (A5 — AZ) =0, (18
where (A_L2_2A2—Af)>0,(A22_2A1A3+2A4A6_A52)>0

It follows that
oy + (A =28, = A))o; + (A ~2A A +2AA - Aoy + (A7 - A)) >0,

This  contradicts with  Equation (18). Hence

o(iw,,7) = 0.

For any real @0+ it satisfies condition (2)
of Theorem 3. Therefore the unique positive equilibrium

E(F.. Q:V)js locally asymptotically stable for all
7z = 0 and the delay is harmless in this case.

Bifurcation analysis

Substituting A=a(r)+ib(z) 4, Equation (13) and
separating real and imaginary parts, we obtain the
following transcendental equations,

a®~3a + A (a2 %) + Ab+ A —e*[A,(a% ~b?) +aA, + A casbr

—e7(2abA, +DbA;)sinbz =0, (19)

~b*+3a’b+2Aab+ Ab—e " (2abA, +bA,)cosbr
+e‘“[A4(a2—b2)+aA5+A6]sinbr:O, (20)
where a and b are functions of 7. We are interested in

the change of stability of E which will occur at the values
of 7 for which @=0and b=0.
Let T Dbe such that for
b(#) =b = 0.

which &%) =0 zpq

then Equations (19) and (20) becomes
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— Ab? + A, —(-Ab% + A)cosh7 - Absinb7 =0,
(21)

—b® + Ab— Abcosb? +(~Ab® + A)sinb 7 =0. 22)

Now eliminating z from Equations (21) and (22), we get

b® + (A7 —2A, — A)b* + (A? —2A A, +2A,A - ALD? + (A - A2) =0.
(23)

To analyze the change in the behavior of stability of E
da

with respect to T'we examine the sign of dz as a
crosses zero. If this derivative is positive (negative), then
clearly a stabilization (destabilization) cannot take place
at that value of 7 . Differentiating Equations (19) and (20)

with respect to 7 then setting 7 = 7, a=0gpg b=b,
we get:

0,922+ 0,922 —,
dzr dr (24)
_gzd_a({-)_,_glﬁ(f) —1,
dzr dzr (25)

where,

6, =302 + A, + (—A,D? + A;)Tcosb7 — A, cosb 7+ AbZsinbz —2A,bsinb7,
6, =—2Ab+(-Ab? + A)#sinb7— A sinb7— Ab7cosb7 +2A,bcosb 7,
k = Ab? cosb?—(—A,b2 + A,)bsinb7,

| = —ADb2sinb7—(—A,b2 + A,)bcosb7,

(26)

Solving Equations (24) and (25), we get :

da , . ko, —16
ar D= o7
T -+ 6, 27)
da .
From Equation (27), it is clear that d7 has the same
signas K& —10;.

From Equation (26) after simplification and solving
Equations (21) and (22), we get:

K6, —10, =b52[36* +2(A? —2A, — A)B + (A ~2A A, +2A,A — AD)]
(28)

Lo BU) =07 +S,u° +S,u+S,,
(29)

where, S1=A —2A, —A;, S, =A]-2AA +2AA - A,
S; = As‘z - Aez
From Equation (29), we note that

side of Equation (23) with b* =u.
Therefore, Equation (30)

G is the left hand

Now

22
dGM7) _ 354 4 2567 + s,
du
— 35 4 2(A 24, — ADB? +(AZ —2AA, +2A,A, — AD)
KO, 10, O?+672 da ,.
= ~ = =~ 7(2’)
b 6 dr (30)

This implies that,

b2  dG(b?)
O +602 du

da .
d_a (%) =
‘ (31)

Hence the criterion for instability (stability) of E are:

(1) If the polynomial G(u) has no positive root, there can
be no change of stability.

(2) If G(u) is increasing (decreasing) at all of its positive
roots, instability (stability) is preserved.

Now in this case, if (a) 55 <0, G(u) has unique positive

real root then it must increase at that point (since G(u)

lim G(u) =0).
is a cubic in U7 ue

S; >0, . - :
(b) then (1) is satisfied, that is, there can be no
change of stability.
Therefore, we have the following theorems:

Theorem 5

it S; <0 =0

and E is unstable for it will remain

unstable for 7 > 0.

Theorem 6

If S; <0 and E is asymptotically stable for r=0, it is

impossible that it remain stable for 7 > 0. Hence there
>0, such that for <% E s asymptotically
T>7, E

exist a
stable for is unstable and as 7 increases

together with T E pifurcates into small amplitude



periodic solutions of Hopf type (Begon and Bowers,
1995). The value of 7 is given by the following equation

- Lains| 07 ZABCAD? + A) — (AB* — A)AB |
b (—Ab2 + A2 + AZb?

PERSISTENCE

Theorem 7

Assume that

and 4 > B

Then system (4) is permanent.
exe™ " (f +5)ad
S -
f

d

Where 9 =

Proof

From the first equation of system (4), we have
P () = ae 7 R, (t —7) — ARZ (1) —(CQux + 7V )P (O
According to Lemma 1 and comparing principal, it follows
that

lim inf P, (t) >
t—>oo " ﬁ

(>0)

From the second equation of system (4), we have

SIOE Q(t)[d —— (1 +5) K- fQ(t)].
g=cee” (f+&Hs
this yields that for, s f
d _ece” (f+o)ad

s fe
f

liminfQ(t) = (>0).=q" (say).

From third equation of system (4), we have

j « goe” (A d
V(t)zva)[éq -9 [fzj—fV(t)—f(fﬂ_
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& > goe ™ [ajj+d,

2
this yields that for, s f
~ goe (&
s ( f? jf

liminfv (t) = (> 0).

f

According to the above arguments and Theorem 2, we
have

oe " — (c + La‘j(g
f f

B

oe™”

5

J s‘lim infPR, (t) < ‘Iim SupR(®) <

_eae” (f +5)5d_

d
B f2

< tIim inf Q(t) < tIim SupQt) < %

< tIim infV(t) < tIim SupM) < %

This completes the proof of theorem 7.

NUMERICAL SIMULATION

In this section, we present numerical simulation to explain
the applicability of the result discussed above. We
choose the following parameters in model (1):

f =1,
(32)

o =1,
g =0.2,

£ =1, c=0.1, d=2, e=0.1,
5=157=01 »=0.1, r=10.

A

For the above set of parameter values, the equilibrium E
is given by,

P,=0.2330 Q=0.9304, V = 0.4186.

Here, we note that all conditions of local stability and
permanence are satisfied. From the existence, stability

and persistence criteria ne and f are recognized to be

the important parameters. Using MATLAB software

package, graphs are plotted for different values of ne

and f in order to conclude and confirm some important
points.

Figure 1 shows that P decreases with 7, and

becomes extinct if Z=2018Figure 2 shows that QM)
decreases with 7 increases. Figure 3 shows the

behavior of V(D) with time for different values of 7 . From
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Figure 1. Variation of mature healthy population Pm (1) with time

for different T and other value of parameters are same as in
Equation (32).

1.2 T T T T T T T T T

=10
=13
=16
=20.15

bt

0.6F b

05 1 1 1 1 1 1 1 1 1
1] g 10 15 20 25 30 35 40 45 a0
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Figure 2. Variation of QM) with time for different Z and other value of
parameters are same as in Equation (32).

this figure, we can infer that 7 increases with increase in
time and maturity time, and finally attains its equilibrium
level. Figure 4 shows that the value of ¢ at which the
mature healthy population P (© tends to extinction is
¢ =0.364Figure 5 shows that the value of € increases,
the population Q) decreases. Figure 6 shows that the

value of Cincreases, the infected population vV®)
increases. Figure 7 shows that the value of intraspecific

05 T T T T T T T T T
D45+ i
0.4k —— =10 b
—— =13
—— =1E
g D35+ — =2015 | 4
0.3 :
0.25 :
Dz 1 1 1 1 1 1 1 1 1
0 5 10 15 20 2% 30 35 40 45 A0

Tirne ) ——

Figure 3. Variation of v with time for different Z and other values
of parameters are same as in Equation (32).

§ —— =01
0z —— =02 ]
g —— =03
i —=— c=0.364
T 015 |. B
= 01 B
E
o

0.0s M

_D DE 1 1 1 1 1 1 1 1 1
0 ] 10 14 20 25 30 35 40 45 a0

Timelt] —

Figure 4. Variation of mature healthy population Pm (1) with time for

different C and other values of parameters are same as in Equation
(32).

f

coefficient increases, the mature healthy population

P (D) increases.Figure 8 shows the behavior of QM)

with time for different values of f . This figure shows that

initially Q) increases for some time, reaches to the
peak, then starts decreasing and finally attains its
equilibrium level. From the Figure 8, we also note that

f

QY remains constant at its equilibrium level as and
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Figure 5. Variation of Q) with time for different C and other values of
parameters are same as in Equation (32).
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Figure 6. Variation of v(©) with time for different © and other values
of parameters are same as in Equation (32).

o.a T T T T T T T T T
0.45 |
04r —— =10 T

—— =13

—— =156
= 0.35 —— T=20.15 B
0.3 =
0.25 =

02 . . . . . . . . .
a 5 10 15 20 25 30 35 40 45 50

Timet) ———m
. - . P, . ..
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different f

(32).

and other values of parameters are same as in Equation
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Figure 8. Variation of QM) with time for different and other values

of parameters are same as in Equation (32).
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Figure 9. Variation of V(® with time for different f and other values of
parameters are same as in Equation (32).

increases but the amplitude and timing of the peak

f

decreases with increase in

value of | at which the infected population ¥ (V) tends to
extinctionis T =1.4655

. Figure 9 shows that the

CONCLUSION

In this paper, a competition model with infection which is
competing for the same recourse is analyzed. Where one
competing specie is divided into two stages, immature
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mature by a constant time delay and the disease spreads
only in the other competing species. This system is
analyzed for positivity and boundedness of solutions,
equilibria and their stabilities. Conditions that influence
the permanence of all populations are given by Theorem
7, the population is permanent provided that

e S\ d eae”™ (f+5)A goe™” (&
oe >[c+ fj[fj,d> 5 +44F47,&r> 7 ( J+d

These results indicate that the loss rate, intraspecific
coefficient, death rate, and transmission rate of the
infection of populations play an important role for the
permanence of the solution. With the help of computer
simulations, it is concluded that if the maturation time
increases, then the system is not permanent and mature
healthy population tends to extinction. It is also noted that
if the value of maturation time increases, healthy

population Q1) and the infected individuals of the latter

species V(D) gecreases and increases respectively. Also,
when the value of parameter C (loss rate) increases,
mature healthy population tends to extinction. It is also
noted that if the value of loss rate increases, healthy

population Q1) and the infected individuals of the latter

species V(D gecreases and increases respectively.

f

When the value of parameter (intraspecific coefficient)

increases, the mature healthy population P (0
increases and the infected individuals of the latter

species V(O tends to extinction respectively. It is also
noted that healthy population QM remains constant at

its equilibrium level as increases but the amplitude

and timing of the peak decreases with increase in f Ctis
observed that the parameters © the loss rate of

population, 7 the maturation time and f the intraspecific
coefficient are the key parameters which we need to
control, to keep away the mature healthy population from
extinction and the infected individuals of the latter species
from extinction respectively.
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