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In this paper we consider the following problem 2 0   0 in 0 on p u
u u uuε

ν
∂∆ − + = , > Ω, = ∂Ω,
∂
�

� � ��  

where Ω  is a bounded domain in 3R  with smooth boundary, ε  is a small parameter, ν  denotes the 
outward normal of Ω  and 1p > . Let Γ  be a straight line intersecting with ∂Ω  at exactly two points. 

We will prove the existence of a solution uε  possessing curve concentrating set near Γ , exponentially 
small in ε  at any positive distance from the concentrating set, provided ε  is small and away from 
certain critical numbers. 
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INTRODUCTION 
 
We consider the following problem;  
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            0 on 

pu u u Ru
u

ε

ν

∆ − + = , > Ω ⊂ ,
∂ = ∂Ω,
∂

� � ��

�       (1.1) 

 
where Ω  is a bounded domain in 3R  with smooth 
boundary, ε  is a small parameter, ν  denotes the 
outward normal of Ω  and 1p > . Problem (1.1) comes 
from the shadow system of Gierer-Meinhardt model, 
which used densities of a chemical activator U  and an 
inhibitor V  to describe experiments of regeneration of 
hydra by the form (Gierer et al., 1972; Ni, 1998, 2004). 

In the following, we discuss the existence of some 
related kinds of concentrated solutions to (1.1). Under the 
condition that p  is subcritical, Lin et al. (1988), Ni et al. 
(1991, 1993) established the existence of a least-energy 
solution Uε  of problem (1.1) and showed that, for ε  

sufficiently small, Uε  has only one local maximum 

point Pε ∈ ∂Ω . Moreover, ( ) max ( ) as 0
P

H P H Pε ε +

∈∂Ω
→ → ,  

where ( )H P  is the mean curvature of ∂Ω  at the point 

P . Such a solution is called boundary spike-layer. 
Since then, many papers investigated further solutions 

of (1.1) concentrating at one or multiple points of Ω . 
(These solutions are called spike-layers.) A general 
principle is that the location of interior spike layer 
(locating in the interior of Ω ) is determined by the 
distance function from the boundary. We refer the reader 
to the articles (Bates et al., 2000; Dancer et al., 1999; del 
Pino et al., 2000; Grossi et al., 2000, Gui and Wei, 1999, 
2000, Wei et al., 1998)[2] and references therein. On the 
otherhand, boundary spike layers are related to the mean 
curvature of ∂Ω . This aspect is discussed in the papers 
of Bates et al. (1999), Dancer et al. (1999), del Pino et al. 
(1999), Gui et al. (2000), Li (1998), Wei (1997), Wei et al. 
(1998) and references therein. A good review of the 
subject up to 2004 can be found in Ni (2004). 

The question of constructing high dimensional 
concentration sets has been investigated only in  recent 
years. It has been conjectured in Ni (2004) that for any 
1 1k n≤ ≤ − , problem (1.1) has a solution U ε  which 

concentrates on a k -dimensional subset of Ω . We 
mention some results that support such a conjecture. 
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Malchiodi and Montenegro (2002, 2004) proved that for 
2n ≥ , there exists a sequence of numbers 0kε →  

such that problem (1.1) has a solution U
kε  which 

concentrates at the boundary ∂Ω  (or any component of 
∂Ω ). Malchiodi (2004, 2005) showed the concentration 
phenomena for (1.1) are also present along a closed 
non-degenerate geodesic of ∂Ω  in three-dimensional 
smooth bounded domain Ω . For (1 2),k n≤ ≤ −  
Mahmoudi and Malchiodi (2007) proved a full general 
concentration of solutions along k -dimensional 
non-degenerate minimal submanifolds of the boundary 
for 3n ≥  and 2

21 n k
n kp − +

− −< < . 
However, for the results discussed in above paragraph, 

the higher dimensional concentration set is on the 
boundary. A natural question is that if there are solutions 
with high dimensional concentration set inside the 
domain. In this paper we consider problem (1.1) for the 
existence of solutions with interior concentration layers 
near a straight line Γ  intersecting the boundary. 

Throughout the paper, our candidate curve Γ ∈Ω  
satisfies the following assumptions: The curvature of Γ  
is zero and in the 1 2 3( )y y y, ,� � �  coordinates, Γ  is 

contained in the 3y�  axis. After rescaling, we can always 

assume 1| Γ |= . Γ  intersects ∂Ω  at exactly two 

points, saying, 1 1
1 02 2(0 0 ) (0 0 )γ γ= , , , = , , −  and at 

these points Γ ⊥ ∂Ω . We also assume that ∂Ω  can 
be smoothly represented as 13 1 2( )y y yϕ= ,� � �  and 

03 1 2( )y y yϕ= ,� � �  near 1 0γ γ,  respectively. Hence, there 
hold 
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                                            (1.2) 
By defining two matrixes as: 
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we also assume  

 
further restriction on ∂Ω  at 1γ  and 0γ  in the sense 
that  
 

1 1  at  ( ,  ) (0, 0).AB BA y y= =� �          (1.3)                         

 
 
 
                                               
From the theory of linear algebra, there exists a unitary 
matrix Q  such that 
  

1 2
1 1

1 2
0 0

diag( , ),

diag( , ).

Q AQ k k

Q BQ k k

′ =
′ =

                                        

 
                                              (1.4) 
 
By defining two geometric eigenvalue problem,  

1 1 1
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                                              (1.5) 
 

2 2 2

2
2 1 2

2
2 0 2

( ) ( ) 0 0 1

(1) (1) 0

(0) (0) 0

f f

f k f

f k f

θ λ θ θ′′ + = , < < ,

+ = ,

′ + = ,

                               

 
                                              (1.6) 
 
we say that Γ  is non-degenerate if problem (1.5) and 
problem (1.6) do not have zero eigenvalues. This is 
equivalent to: 
 

0 1 0 1 | | 0,  1,2.i i i ik k k k i− + Γ ≠ =                                   
 
                                              (1.7) 
 
Let w  be the unique (even) solution of 
 
 

2

2

( )

0  and  0 in 
   max ( ) (0 0)

  ( ) 0 as ( )

p

x y R

w w w w R

w x y w

w x y x y
, ∈

− + = > ,
, = , ,
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                                             (1.8) 
 
and consider the associated linearized eigenvalue 
problem, 
 
 

1 2in 
( ) 0 as ( )

ph h pw h h R

h x y x y

λ−∆ − + = ,
, → | , |→ +∞.

                            

 
                                        (1.9) 



 

 
 
 
 
It is well known that this equation possesses a unique 
positive eigenvalue 0λ (the first eigenvalue), with 

associated even and positive eigenfunction Z  in 
1 2( )H R  which can be normalized in the sense 

that
2

2 1.
R

Z =� Moreover x yw w,  are eigenfunctions with 

respect to the zero Eigen values (with 2 -multiplicity). 
The fourth eigenvalue is negative. 

For the special case of dimension 2n = , Wei et al. 
(2007) constructed curve like concentration solutions to 
problem (1.1) near the nondegenerate segment ,Γ  
provided that ε  satisfies the gap condition; 
 

2 2 2 2
0 /  ,j c j Nπ ε ελ − | Γ | ≥ , ∀ ∈� �                                 

 
                                         (1.10) 
 
with small 0c >� . 0λ�  is the first eigenvalue of problem 
(1.9) in one dimensional case (Wei et al., 2008) for 
clustered concentration solutions. 

Now we will extend the result in Wei et al. (2007) to 
three dimensional case for the existence of curve like 
concentration solutions. 
 
 
THEOREM 1.1  
 
Assume that the line segment Γ  satisfies (1.3) and the 
non-degenerate condition (1.7). Given a small positive 
constant c� , there exists 0ε  such that for all 0ε ε<  
satisfying the following gap condition 
 

2 2 2 2
0 /  ,j c j Nλ π ε ε− | Γ | ≥ , ∀ ∈�                                 

 
                                          (1.11) 
 
problem (1.1) has a positive solution uε  concentrating 

along a curve εΓ  close to Γ . Near Γ , uε  takes the 
form; 
 

dist( )
( ) (1 (1) )

y
u y w oε

ε ε
, Γ� �= + .� �

� �

�
�                                

                                          (1.12) 
 
Moreover, there exists some number 0c , for 

1 2( )y y y= , ∈Ω� � � , 

uε  satisfies globally, 0( ) exp[ dist( ) ]u y c yε ε ε≤ − , Γ /� �  

and the curve εΓ  will collapse to Γ  as 0ε → . 
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Let us comment on some related results, the difficulties 
as well as the main steps in proving Theorem 1.1. 
 
 
Remark 1  
 
The geometric Eigen value problems (1.5) and (1.6) also 
appeared in the study of transition layer for the following 
Allen-Cahn equation; 
 

2 3 0 in

   0 on

u u u
u

ε

ν

∆ + − = Ω,
∂ = ∂Ω.
∂

                                  

                                             (1.13) 
 
Using Γ − convergence, Kohn and Sternberg, 1989 
constructed local minimizers to (1.13) with transition layer 
at straight line segment contained in Ω  which locally 
minimizes length among all curves nearby with endpoints 
lying on ∂Ω . Later, Kowalczyk 2004, 2005 extended the 
construction to non-minimizing line segments. More 
precisely, assuming that Γ  satisfies (1.7), he 
constructed a solution uε  whose zero set εΓ  

converges to Γ , for all ε  sufficiently small. Pacard and 
Ritore, 2003 constructed transition layer solutions to 
(1.13) near minimal submanifold. 
 
 
Remark 2 
 
As for the results in Malchiodi et al. (2002, 2004a,b, 
2005), Mahmoudi, (2007) del Pino et al. (2006, 2007), 
Wei et al. (2007, 2008), existence results are proved only 
for small ε  satisfying a similar gap condition like (1.11). 
This is caused by a resonance phenomenon (to be 
described in the following), which also appears in some 
geometric problems (Pacard et al., 2003). 
 
 
Remark 3 
 
To explain in a few words the difficulties we have 
encountered, assume for the moment that 3RΩ ⊂  is an 
infinite strip as;  
 

2 (0 1)RΩ = × , .  
 
In terms of the stretched coordinates 

1
1 2 3( ) ( )s t z y y yε −, , = , ,� � � , the equation would look near 

the curve approximately like 

 
0  i n

               / 0 o n

p
s s t t z zv v v v v S

v z S

+ + − + = ,
∂ ∂ = ∂ .
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where 2 (0 1/ ).S R ε= × , The effect of curvature and of 
the boundary conditions are here neglected. The 
linearization of this problem around the profile ( , )w s t  
becomes 
 

1 0 ( )

/ 0 on

p
zz ss tt pw s t z S

z S

φ φ φ φ φ
φ

−+ + − + = , , , ∈ ,
∂ ∂ = ∂ .

Function

s of the form 
1

2

3

( )cos( )

( )cos( )

( )cos( )

s

t

w s t k z

w s t k z

Z s t k z

φ πε
φ πε
φ πε

= , ,

= , ,

= , ,
 

 
are eigenfunctions associated to eigenvalues respectively 

2 2 2 2
0 and k kε λ ε− − . Many of these numbers are small 

and thus “near non-invertibility” of the linear operator 
occurs. These effects, combined in principle orthogonally 
because of the 2L -orthogonality of Z  and s tw w, , are 
actually coupled through the smaller order terms 
neglected. 

In Alikakos et al. (2000), Kowalczyk (2004, 2005), 
Pacard et al. (2003), related singular perturbation 
problems, involving the Allen-Cahn equation (1.13), the 
translation effect 1φ  have been successfully treated 
through successive improvements of the approximation 
and fine spectral analysis of the actual linearized operator. 
In [26, 27] Malchiodi et al. (2004, 2005) resonance 
phenomena similar to the “ 3φ -effect” has been faced in 
the Neumann problem involving whole boundary 
concentration. In Mahmoudi et al. (2007), Malchiodi 
(2004, 2005) the boundary concentration on a 
k − dimensional minimal surface of the boundary, 

involving both 1φ  and 3φ  effects, has been treated via 
arbitrary high order approximations. 

The main difficulty in this paper, as well as Wei et al. 
(2007, 2008), will come from not only the coupling of 

1 2φ φ,  and 3φ , but also the boundary condition. In [8], 

the error term is of the order 2( )O ε , while here the error 

term is ( )O ε  since the stretching of the boundary 

conditions gives ( )z Oφ ε∂
∂ + . However, the spectrum gap 

in (1.11) is also ( )O ε  which creates additional difficulty. 

Worse than that, the spectrum gap caused by 3φ  and 
the boundary corrections are strongly coupled. We 
overcome these difficulties by first using successive 
improvements of the approximation and then perform the 
infinite-dimensional reduction in [8] to reduce the problem 
to coupled nonlinear ODEs. The reduced ODEs  involve  

 
 
 
 
coefficients of both fast and slow variables (See section 
6). A careful analysis of Fourier modes is needed to 
ensure the invertibility. 
 
 
Remark 4 
 
A new ingredient is present in this paper: 1φ  and 2φ  
has strong coupling on the boundary, which calls for the 
symmetric condition (1.3) to decompose these two effects. 
In fact, under condition (1.3), the terms (of order ( )O ε  

in (2.10) and (2.11)) involving s ttu su,  disappear on the 

boundary S∂ . Moreover, we will use the technique in 
section 5 of del Pino et al. 2007 to find a boundary layer 
to get further improvement of approximation, see also 
Wei et al. (2007). It is interesting to construct solutions 
with twisted concentration set in higher dimensional case 
with a weaker restriction like (1.3). 

The remaining part of this paper is devoted to the 
complete proof of Theorem 1.1. The organization is as 
follows: In Section 2, after setting up the problem in 
stretched variables ( )s t z, , , we introduce a local 

approximation by 1 2( )w s f t f− , −  in which the 

parameters 1f  and 2f  are used to characterize the 
location of the concentration set. Then we find an 
improvement of the approximation to cancel all error 
terms of order ( )O ε  on the boundary. In Section 3, a 
gluing procedure, as in del Pino et al. (2007), reduces the 
nonlinear problem (1.1) to a projected problem on the 
infinite strip S , while in Section 4 and 5, we show that 
the projected problem has a unique solution φ  for given 

parameters 1 2f f e, ,  in a chosen region. The final step 

is to adjust the parameters 1 2f f e, ,  such that problem 
(1.1) has a real concentrating solution, which is 
equivalent to solving a nonlocal, nonlinear coupled 
second order system of differential equations for the 
functions 1 2f f e, ,  with suitable boundary conditions. 
This is done in sections 6 and 7. 
 
 
Setting up the problem and approximation 
 
Let us make some notations in what follows as 
 

{( ) 0 1/ }S x y z x R y R z ε= , , : ∈ , ∈ , < < ,      (2.1) 
                             

1

0

{( ) 1 / }

{( ) 0}

S x y z x R y R z

S x y z x R y R z

ε∂ = , , : ∈ , ∈ , = ,
∂ = , , : ∈ , ∈ , = .

 

 
                                              (2.2) 



 

 
 
 
 
SETTING UP THE PROBLEM 
 
Now, we turn to the procedure of setting up the problem 
near Γ . Globally in 3R , making scaling  
 

1 2 3 1 2 3( ) ( / ,  / ,  / )Y y y y y y yε ε ε≡ , , = ,� � �                               
 
                                           (2.3) 
 
denote ε ε

ΩΩ =  and εν  is the outward normal of εΩ . 
The problem (1.1) becomes 
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∂ ∂ ∂
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∂ = ∂Ω .

∂

                                   

 
                                             (2.4) 
Introducing new coordinates near εΓ  
 

( )
( ) ( )

3 0 1 2
1 2

1 1 2 0 1 2

( )
( )

( ) ( )

y y y Q
s t z y y

y y Q y y Q

ϕ ε ε
ϕ ε ϕ ε

′� �− ,
, , = , , ,� �� �′ ′, − ,� �

                       

 
                                             (2.5)                                                            
 
where 0 0s tδ δ− < , < for all small 0δ , and then using 
the assumptions (1.2) - (1.4) to make Taylor expansion, 
we get that in a neighborhood of εΓ  problem (2.4) takes 
the form 
 

1 ( ) 0p
ss tt zzu u u B u u u+ + + − + = ,  

0 0, 0 1/s t zδ ε ε δ ε− < < , < < ,                                    
 
                                            (2.6) 
 

1 0( ) ( ) 0zu u uD D+ + = ,  

0 0, 0 1/s t zδ ε ε δ ε− < < , < < ,                
 
                                      (2.7) 

1 0( ) ( ) 0zu u uD D+ + = ,  
 

0 0, 0 1/s t zδ ε ε δ ε− < < , < < ,                                    
 
                                             (2.9) 
 
where 
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2 2 2 2 2
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                                            (2.9) 

2
15 16 3 0( ( )) ( )za s a t z u B uε α+ + + + ,  
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                                             (2.11) 
 
The constants 1 14jb j, = , ⋅ ⋅ ⋅, ,  are the derivatives 

(from second order up to third order) of 1ϕ  and 0ϕ  at 

the point (0 0), . 
 

1 1
1 0 1

2 2
2 0 1

1 2 1 2
3 0 0 1 1

( ) 2( )

( ) 2( )

( ) ( )

z k k z

z k k z
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α
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= − ,
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                                           (2.12) 
 
The constants 1 16ia i, = , ⋅ ⋅ ⋅, ,  depend on 

1 14jb j, = , ⋅ ⋅ ⋅, .  Note that 0 0( ) ( )B u uD,  and 0( )uD  

are of size 3( )O ε . 

Supposing that the location of the concentration set εΓ is 

characterized by the twisted curve 1 2( ( ) ( ) )f z f z zε ε, , , 
introduce new variables  
 

1 2( )  ( )  x s f z y t f z zε ε η= − , = − , = ,                              
 
                                            (2.13) 
 
and then  
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Therefore, after writing the variable η  back to z  again, 

we can consider the problem in the infinite strip S  as 
the following 
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with boundary conditions  
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where 
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Note that 2 ( )B u  is a term of size 3( )O ε . The 

derivatives in terms 0 ( )B u , 0( )uD  and 0( )uD  are 

expressed in the variables ( )x y z, , . 
 
 
First approximate solution 
 
We take 1 ( )u w x y= ,  as the first approximate solution 

of the problem in S . The error in S  takes the form 
 

4

1 3 2
1

( ) ( ) ( ) in i
i

E S w B w S B w S
=

≡ = = + ,�                               

                                         (2.18) 
 
where  
 

2   1  2  
1 1 2 0 1 2 0 2 1[2 2 2 ] xyS f f k f f k f f wε ′ ′ ′ ′= + +  

 
is an odd function in the variable x  and y  
 

2  2 1  
2 1 0 1 1

2  2 2  
2 0 2 2

[( ) 2 ]

        [( ) 2 ]
xx

yy

S f k f f w

f k f f w

ε
ε

′ ′

′ ′

= +

+ +
 

 
is an even function in the variable x  and y ,  
 

2  1  
3 1 0 1

1 2  2  
0 0 1 0 1

[ 2

     ( ) 2 ]
x xx

x xy

S f w k f xw

k k f w k f yw

ε ′′ ′

′ ′

= +

+ + +
 

is even in the variable y  and odd in the variable x ,  
 

2  2  
4 2 0 2

1 2  1  
0 0 2 0 2

[ 2

             ( ) 2 ]

y yy

y xy

S f w k f yw

k k f w k f xw

ε ′′ ′

′ ′

= +

+ + +
 

 
is even in the variable x  and odd in the variable y . On 
the boundary, the errors can be read 
 

4

11 3 0 0
1

( ) ( ) ( ) on b i
i

w w w SE D D R D
=

≡ + = + ∂ ,�       (2.19) 

 
 

4

01 3 0 0
1

( ) ( ) ( ) on b i
i

w w w SE D D R D
=

≡ + = + ∂ ,�       (2.20) 

 
where 
 

2
4 1 5 21 [ (1) 2 (1)]( )x yb f b f yw xwR ε= − + + ,  
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is odd in the variables x  and y ; 
 

1 2
1 12

2
3 1 4 2

2
5 1 7 2

       [2 (1) (1)]

       [2 (1) 2 (1)]

x y

x

y

k xw k ywR

b f b f xw

b f b f yw

ε ε

ε
ε

= − −

− +

− + ,

  

 
is even in the variables x  and y ; 

 1 2
1 1 1 53

2 2 2
3 3 1 4 1 2

2 2
5 2 5

[ (1) (1)] 2

[ (1) (1) (1)

(1) ]

x y

x

f k f w b xywR
b x b f b f f

b f b y w

ε ε
ε

′= − + −

− + +
+ + ,

  

 
is odd in the variables x  and even in the variable y ; 
 

 2 2
2 1 2 44

2 2 2
4 4 1 5 1 2

2 2
7 2 7

[ (1) (1)] 2

1 1[ (1) 2 (1) (1)
2 2
(1) ]

y x

y

f k f w b xywR

b x b f b f f

b f b y w

ε ε

ε

′= − + −

− + +

+ + ,

 

 
is odd in the variables y  and even in the variable x ; 
 

2
11 1 12 21 [ (0) 2 (0)]( )x yb f b f yw xwR ε= − + + ,  

 
is odd in the variables x  and y ; 

1 2
0 02

2
10 1 11 2

2
12 1 14 2

[2 (0) (0)]

[2 (0) 2 (0)]

x y

x

y

k xw k ywR

b f b f xw

b f b f yw

ε ε

ε
ε

= − −

− +

− + ,

 

is even in the variables x  and y ; 
 

 1 2
1 0 1 123

2 2 2
10 10 1 11 1 2

2 2
12 2 12

[ (0) (0)] 2

[ (0) (0) (0)

          (0) ]

x y

x

f k f w b xywR

b x b f b f f

b f b y w

ε ε
ε

′= − + −

− + +
+ + ,

 

 
is odd in the variables x  and even in the variable y ; 
 

 2 2
2 0 2 114

2 2 2
11 11 1 12 1 2

2 2
14 2 14

[ (0) (0)]

1 1[ (0) 2 (0) (0)
2 2

       (0) ]

y x

y

f k f w b xywR

b x b f b f f

b f b y w

ε ε

ε

′= − + −

− + +

+ + ,

 

 
is odd in the variables y  and even in the variable x . 

The terms 0( )wD  and  
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0( )wD  are some terms of order 3( )O ε . 

To cancel the terms of first order of ε  on the boundary 
we impose the following restrictions for 1f  and 2f  
   

 1  1
1 1 1 1 0 1

 2  2
2 1 2 2 0 2

(1) (1) (0) (0) 0

(1) (1) (0) (0) 0

f k f f k f

f k f f k f

′ ′

′ ′

+ = + = ,

+ = + = .
                              

 
                                          (2.21) 
 
Moreover, we need a boundary layer to cancel other 
terms of order ( )O ε  in the error on the boundary S∂ , 
which will be carried out in next subsection. 
 
 
The boundary layer problem 
 
We will construct an improvement in approximation by 
first solving the following problems  
 

1

0 0 0 0 0

1 2

0 0 0 0

( ) ( ) in

( 1 ) 0 ( 0)

p

z z x y

L pw z Z S

x y x y k xw k yw

ρ ε

ε

−

, ,

Φ ≡∆Φ −Φ + Φ = ,

Φ , , / = , Φ , , = + .                         

 
                                           (2.22) 
                                

1

1 1 1 1 1

1 2

1 1 1 1

( ) ( ) in

( 0) 0 ( 1 )

p

z z x y

L pw z Z S

x y x y k xw k yw

ρ ε

ε

−

, ,

Φ ≡ ∆Φ −Φ + Φ = ,

Φ , , = , Φ , , / = + .
                       

 
                                           (2.23) 
 
Lemma 2.1: There exist two functions 0 ( )ρ ζ  and 

1 ( )ρ ζ  in 2 (0 1)L ,  with the bounds 
 

1 1
2 2

2 20 1(0 1) (0 1)
,

L L
C Cρ ε ρ ε

, ,
|| || ≤ , || || ≤                          

 
                                           (2.24) 
 
 
such that problem (2.34) and problem (2.35) have unique 
solutions 2

0 ( )H SΦ ∈  and 2
1 ( )H SΦ ∈ , which are 

even in x  and y  for each z . Besides, there is a 

constant 0C >  such that for all small ε , 
 

2 20 1( ) ( )
|| || || ||

H S H S
C CΦ ≤ , Φ ≤ .                                  

 
                                          (2.25) 

 
 
 
 
In addition there exist constants 1 4ν < / , 0µ >  and 

0Cν >  such that the following estimates hold:  
 

0 0

2 [ (1 ) ( ) ]

0

1 1

2 [ (1 ) ( ) (1 ) ]

1

( ) ( )

   ( )

( ) ( )

   ( )

x y z

x y z

x y z x z

D x z C e

x y z x z

D x z C e

ν µ

ν

ν µ ε
ν

− − | , |+

− − | , |+ / −

| Φ , , | + | ∇Φ , |

+ | Φ , | ≤ ,

| Φ , , | + | ∇Φ , |

+ | Φ , | ≤ .
              
                                            (2.26) 
 
Proof: We will give the proof of this lemma at the end of 
Section 4. 
 
Let 0Φ  and 1Φ  be the functions defined by Lemma 
2.1 and set 
 

1 0 1( ) ( ) ( )x y z x y z x y zφ ε ε, , = Φ , , + Φ , , .                             
 
                                            (2.27) 
 
The next goal is to show that 1 ( )x y zφ , ,  is the 
boundary layer that we want in previous section. Define 
the second approximate solution by 2 1 1u u φ= + .  

The new error in the interior of S  can be computed as 
the following 
 
 

2 1 1 1 1 1 3 1( ) ( ) ( ) ( )E S u E L N Bφ φ φ φ≡ + = + + + ,                              
 
                                           (2.28) 
 
where  
 

1
1 1 1( ) ( ) p p pN w w pwφ φ φ−= + − − ,                               

 
 
                                           (2.29) 
 
 

1
1 1 1 1

0 1

( )

        ( ) ( )

pL pw

z Z z Z

φ φ φ φ
ερ ε ερ ε

−≡ ∆ − +
= + .                                 

 
                                           (2.30) 
 
The main error term is 



 

 
 
 
 

2 1  
3 1 0 1 1 0 1

2  
0 2 2 0 1

( ) [2 ( ) 2 ]( )

   [2 ( ) 2 ]( )
zx

zy

B k x f f

k y f f

φ ε
ε

′

′

= − + + Φ + Φ

− + + Φ + Φ
  

 
1 2 3
0 0 0 1( )( ) ( )zk k Oε ε− + Φ + Φ + .        2.31)  

 
On the boundary, the error terms are 
 

1 02 1

1 13 0 0

( 1 ) ( 1 )

   ( ) ( ) ( )
z zb b x y x yE E

w wD D D

ε ε ε ε
φ φ

, ,= + Φ , , / + Φ , , /
+ + + −

   

2
1( ) onO Sε= ∂ ,                    (2.32) 

 
1 02 1

1 13 0 0

( 1 ) ( 1 )

   ( ) ( ) ( )
z zb b x y x yE E

w wD D D

ε ε ε ε
φ φ

, ,= + Φ , , / + Φ , , /
+ + + −

   

2
0( ) onO Sε= ∂ .                   (2.33) 

 
Therefore, the following lemma is readily checked. 
 
 
Lemma 2.2: With the notations of previous section we 
have  
 

2 2 1 0 1

2
1

( ) ( ) ( )

       ( ) ( )

E S u E z Z z Z

N O

ερ ε ερ ε
φ ε

≡ = + +

+ + .
 

 
Moreover,  
 

2
3 2

2 ( )
|| ||

L S
E C ε /≤ .                                             

 
                                      (2.34) 
 
In addition there is an extension 2bE  of terms 2bE  and 

2bE  to the whole strip S  such that 
 

1
3 2

2 ( )
|| |||b H S

E Cε /≤ .                                            

 
                                       (2.35) 
  
Proof: The remaining terms 3 1( )B φ  and 1( )N φ  are 
easily seen to be smaller then the ones we have just 
considered. Estimate (2.34) follows immediately from 
direct computations. Obviously (2.35) is an easy 
consequence of the construction. 
 
 
An improvement of approximation 
 
To improve the approximation for solution still keeping 
the term of 2ε , we need to introduce a new  parameter  
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e , additional to 1f  and 2f , and define our basic 

approximate solution to the problem near εΓ  as 
 

3 1( ) ( ) ( )

                     ( ) ( )

u x y z w x y x y z

e z Z x y

φ
ε ε

, , = , + , ,
+ , .

                                

 
                                             (2.36) 
 
In all what follows, we will assume the validity of the 
following constraints on the parameters 1 2f f,  and e  
as the following 

 

1
2

2

 
1 1 1(0 1) (0 1)

 
1 (0 1)

             

a L L

L

f f f

f ε

∞ ∞
′

, ,

′′
,

|| || =|| || + || ||

+ || || ≤ ,
                         

                                          (2.37) 
 

1
2

2

 
2 2 2(0 1) (0 1)

 
2 (0 1)

              

a L L

L

f f f

f ε

∞ ∞
′

, ,

′′
,

|| || =|| || + || ||

+ || || ≤ ,
                          

                                          (2.38) 
 

2

1
2

2

 
(0 1) (0 1)

2  
(0 1)

           

b L L

L

e e e

e

ε

ε ε

∞
′

, ,

′′
,

|| || =|| || + || ||

+ || || ≤ .
                         

                                          (2.39) 
 
We also impose the periodic boundary condition on e  
as 
 

  (1) (0) (1) (0)e e e e′ ′= , = .                                
 
                                            (2.40) 
 
We set up the full problem in the form 3( ) 0S u φ+ = , 
then it can be expanded in the following way 
 

3 3 1 3 1( ) ( ) ( ) ( ) ( )

                0 in 

S u S u L B N

S

φ φ φ φ+ = + + +
= ,

                              

 
                                             (2.41) 
 
with boundary condition 

3 33 0 3 0

1 1

( ) ( ) ( )

                                        on 
z bu uD D E D

g S

φ φ φ+ + + = − +
≡ ∂ ,

                             

                                             (2.42) 
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3 33 0 3 0

0 0

( ) ( ) ( )

                                        on 
z bu uD D E D

g S

φ φ φ+ + + = − +
≡ ∂ ,

                              

 
                 
                                       (2.43) 
 
where  
 
 

1
1 3

1
1 1 3 3 3

( )

( ) ( )

p
xx yy zz

p p p

L pu

N u u pu

φ φ φ φ φ φ

φ φ φ

−

−

= + + − + ,

= + − − .
                               

 
                                        (2.44) 
 

30( )uD φ+  and 30( )uD φ+  are of order 3( )O ε . 
Other boundary error terms are 
 
 

2  
33 0 2 3

2
2 10

( ) ( )

 ( ) ( ) on
b bu e Z eZE D E D

u O SD

ε ε
ε

′− = + +

− = ∂ ,
                               

 
                                        (2.45) 
 

2  
33 0 2 3

2
2 00

( ) ( )

( ) ( ) on
b bu e Z eZE D E D

u O SD

ε ε
ε

′− = + +

− = ∂ .
                               

 
                                        (2.46) 
 
The error of the approximation is 
 

2  
3 3 1 0

3 1

1
1 1

1 1
1

( ) ( ) ( )

( ) ( )

( ) ( )

[( ) ]

p

p p

p p

E S u S w e Z eZ

B eZ w eZ

w p w eZ

p w w eZ

φ ε ε λ
ε φ ε
φ φ ε

ε φ

′′

−

− −

= = + + +

+ + + +
− + − +
+ + − ,

                              

 
                                       (2.47)  
 
where 1( )S w φ+  is defined in (2.28). Moreover, we 
decompose 
 

3 31 32 ,E E E= +                                               
 
                                      (2.48)  
 
 
with 3  

31 0 32 3 31 and E e Z eZ E E Eε ελ′′= + = − .   

 
 
 
 
For further reference, it is useful to estimate the 2 ( )L S  

norm of 3E . From the uniform bound of e  in (2.39), it is 
trivial that  
 

1
2

231 ( )L S
E Cε|| || ≤ .                                        

 
                                             (2.49) 
 
Since 1φ  and eZε  are of size ( )O ε , all terms in 32E  

carry 2ε  in front. We claim that  
 

3
2

232 ( )L S
E Cε|| || ≤ .                                          

 
                                             (2.50) 
 
A rather delicate term in 32E  is the one carrying  

1f
′′  

and  
2f

′′  since we only assume a uniform bound on 

2
 

1 (0 1)L
f ′′

,
|| ||  and 2

 
2 (0 1)L

f ′′
,

|| || . For example, we 

have a term 2  
1fε ′′  in ( )S w  which has bound like 

 

2
2  2

1 ( )L S
f Cε ε′′|| || ≤ .   

 
Other terms can be estimated in the similar way. 
Moreover, for the Lipshitz dependence of the term of 
error 32E  on the parameter 1 2f f,  and e  for the norm 
defined in (2.37) - (2.39), we have the validity of the 
estimate 
 

232 1 2 32 1 2 ( )

3 2
1 21 2

( ) ( )

[ ]

L S

a a b

E f f e E ef f

C f f e ef fε /

|| , , − , , ||

≤ || − || +|| − || +|| − || .

� � �

� � �
                        

 
                                            (2.51) 
 
 
THE GLUING PROCEDURE 
 
In this section, we will use the reduction method in del 
Pino et al. (2007) to reduce the problem (1.1) to a 
projected problem.  

Let 3 ( )u Y  denote the approximate solution 

constructed near the curve εΓ  in the coordinates 

1 2 3( )Y y y y= , , , which was introduced in (2.3) in 3R .  



 

 
 
 
 
Let 0 100δ δ< /  be a fixed number, where 0δ  is a 
constant defined in (2.5). We consider a smooth cut-off 
function ( )tδη  where t R+∈  such that  
 

1 if  and  0 if 2t tδ δη δ η δ= < = > .                                
 
                                          (3.1) 
 
Denote as well ( ( ) ) ( ( ) )s t s tε

δ δη η ε| , | = | , |  where 

( )s t| , |  is the normal coordinate to εΓ . We define our 
first global approximation to be simply  
 

3 3( ( ) )W s t uε
δη= | , | ,                                            

 
                                          (3.2) 
 
extended globally as 0  beyond the 6δ ε/ -neighborhood 
of εΓ .  

Denote the term ( ) p
YS u u u u= − +�  for ˆu W φ= + , 

now φ̂  globally defined in εΩ .  

Then u  satisfies (2.4) if and only if  
 

ˆ ˆ( ) ( ) in L E N εφ φ= − − Ω ,� �                                       
 
                                          (3.3) 
 
with boundary condition  
 

ˆ
0 on 

W
ε

ε ε

φ
ν ν

∂ ∂+ = ∂Ω ,
∂ ∂

                                       

 
                                         (3.4) 
 
Where 
 

1

1

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( )

p
y

p p p

E S W L pW

N W W pW

φ φ φ φ

φ φ φ

−

−

= , = − + ,

= + − − .
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�
 

 

We further separate φ̂  in the following 
 

3
ˆ ε

δφ η φ ψ= + ,  
 
where, in the coordinates ( )x y z, ,  of the form (2.13), 

we assume that φ  is defined in the whole strip S . 
Obviously, (3.3) - (3.4) is equivalent to the following 
problem;  
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1
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1

( ) [ ( )

                                   ]

p
Y

p

pW N

E pW

ε ε ε
δ δ δη φ φ φ η η φ ψ

ψ

−

−

− + = − +

+ − ,

��

�
                       

 
                                             (3.5) 
 

1 2
3(1 ) ( )p

Y YpWε ε
δ δψ ψ η ψ ε η φ−− + − = −� �  

32 ( )( ) (1 ) ( ) (1 ) .Y Y N Eε ε ε ε
δ δ δ δε η φ η η φ ψ η− ∇ ∇ + − + + −� �                        

 
                                             (3.6) 
 
On the boundary, we get 
 

3 0
Wε ε

δ δ
ε ε

φη η
ν ν
∂ ∂+ = ,
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                                            (3.7) 
 

3(1 ) 0
W ε

ε δ
δ

ε ε ε

ηψ η ε φ
ν ν ν

∂∂ ∂+ − + = .
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          (3.8) 

 
The observation is that, after solving (3.6) and (3.8), the 
problem can be changed to the following nonlinear 
problem involving the parameter ψ  
 

1( ) [ ( ) ] in 

0 on 

pL N E pW S

W
S

ε
δ

ε
δ

ε ε

φ η φ ψ ψ
φ η
ν ν

−= − + + − ,
∂ ∂+ = ∂ .
∂ ∂

� � �

                           

 
                                           (3.9) 
 
Notice that the operators L�  in εΩ and 

εν
∂

∂  on ε∂Ω may be taken as any compatible extension 

outside the 6δ ε/ -neighborhood of the interface εΓ  in 

the strip S . 
Firstly, we solve, given a small φ , problem (3.6) and 

(3.8) for ψ . Assume now that φ  satisfies the following 
decay property; 
 
 

( ) ( )   ify y e sγ εφ φ δε− /|∇ |+| |≤ | |> / ,                              
 
                                        (3.10)  
 
 
for certain constant 0γ > . The solvability can be done 

in the following way: let us observe that W  is exponentially  
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small for s δ ε| |> / , where s  is the normal coordinate to 

εΓ , then the problem 
 

1

3

[1 (1 ) ] in 

(1 ) on 

ppW h

W

ε
δ ε

ε
ε δ
δ ε

ε ε ε

ψ η ψ
ηψ η ε φ

ν ν ν

−− − − = Ω ,

∂∂ ∂= − − + Ω ,
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�

                            

 
                                         (3.11) 
 
has a unique bounded solution ψ  if h ∞|| || ≤ +∞ . 

Moreover, C hψ ∞ ∞|| || ≤ || || .  
Since N�  is power-like with power greater than one, a 
direct application of contraction mapping principle yields 
that (3.6) and (3.8) has a unique (small) solution 

( )ψ ψ φ=  with 
 

( )

( )

( ) [

            ]

L L s

L s
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δ ε

ψ φ ε φ

φ

∞ ∞
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+ || ∇ || + ,
                                 

 
                                          (3.12) 
 
where s δ ε| |> /  denotes the complement of 

δ ε/ -neighborhood of εΓ . Moreover, the nonlinear 
operator ψ  satisfies a Lipshitz condition of the form  
 

1 2 1 2 ( )

1 2 ( )
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                                          (3.13)  
 
Therefore, from above discussion, the full problem 
(3.3)-(3.4) has been reduced to solving the following 
(nonlocal) problem in the infinite strip S  
 

2

1

( ) [ ( ( ))

                          ( )]  in p

L N E

pW S

ε
δφ η φ ψ φ

ψ φ−

= − + +

− ,
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                                           (3.14) 
 

( ) 0 on
W

B Sε
δ

ε

φ η
ν

∂+ = ∂ ,
∂                                           

                                           (3.15) 
 
for 2 ( )H Sφ ∈  satisfies condition (3.10). Here 2L  

denotes a linear operator that coincides with L�  and B   

 
 
 
 
denotes the outward normal derivatives of S  that 
coincides with outward normal 

εν
∂

∂  of εΩ  on the region 

( ) 10s t δ ε| , |< / . The definitions of these operators can 

be showed as the following. The operator L�  for 
( ) 10s t δ ε| , |< /  is given in coordinates ( )x y z, ,  by 

formula (2.44). We extend it for functions φ  defined in 

the strip S  in terms of ( )x y z, ,  as follows 
 

2 1 3( ) ( ) ( ( ) ) ( ) in L L x y B Sφ φ χ ε φ= + | , | ,                             
 
                                         (3.16) 
 
where ( )rχ  is a smooth cut-off function which equals 1 

for 0 10r δ≤ <  and vanished identically for 20r δ>  
and 1L  is the operator in (2.44). Similarly, the boundary 
conditions can be written as 
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                                       (3.17) 
 
where the operators 3D  and 3D  are defined in 

(2.16)-(2.17) and 0D , 0D  are defined in (2.15). 
Rather than solving problem (3.14) and (3.15), we deal 

with the following projected problem: given functions 

1 2f f,  and e  satisfying (3.37)-(3.39), finding functions 
2 ( )H Sφ ∈ and 2

1 2 (0 1)c c d L, , ∈ ,  such that 
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S

φ χ χ φ χ φ= − − +
∂ ,

                              

 
                                     (3.20) 



 

 
 
 
 

2 2

2

1
0            0

x yR R

R

w dxdy w dxdy

Zdxdy z

φ φ

φ
ε

=

= = , < < ,

� �

�
                              

 
                                         (3.21) 
 
where 1

2 ( ) ( ( )) ( ).pN N pWφ φ ψ φ ψ φ−= + −�  
In Proposition 5.1, we will prove that this problem has a 

unique solution φ  whose norm is controlled by the 
2L -norm, not of whole 3E , but rather of 32E  and, 

moreover and that φ  will satisfies (3.10). After this has 

been done, our task is to adjust the parameter 1 2f f, and 

e such that the functions 1 2  and c c d,  are identically 
zero. Finally, we need to solve a nonlocal, nonlinear 
coupled second order system of differential equations for 
the pair 1 2( )f f e, , with boundary conditions. In Section 6, 
we will see that this system is solvable in a region where 
the bounds (2.37)-(2.39) hold. 
 
 
The invertibility of 2L  
 
Let 2L  be the operator defined in 2 ( )H S  by (3.16). 

Note that the function ( ( ) )x yχ ε | , |  in the definition of 

2L  is an even function in 2R . In this section, we study 
the linear problem, for given 
functions 2 ( ),h L S∈ 1 ( ),g H S∈  finding functions 

2 ( )H Sφ ∈ and 2
1 2 (0 1)c c d L, , ∈ ,  such that  

 

2 1 2( ) ( ) ( )

( ) in on

x yL h c z w c z w

d z Z S g S

φ ε χ ε χ
φε χ
ν

= + +

∂+ , = ∂ ,
∂

                             

 
                                           (4.1)  
 

2 2

2
  0 0 1/

x yR R

R

w dxdy w dxdy

Zdxdy z

φ φ

φ ε

=

= = , < < .

� �

�
                                

 
                                           (4.2)  
 
Proposition 4.1: If δ  in the definition of 2L  is chosen 

small enough and 2 ( )h L S∈  and 1 ( ),g H S∈ then  
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there exists a constant 0C > , independent of ε , such 
that for all small ε , the problem has a unique solution 

1 2 2( ) ( )c c d T h gφ, , , = ,  which satisfies 
 

2 2 1( ) ( ) ( )
[ ]

H S L S H S
C h gφ|| || ≤ || || + || || .  

 
Moreover, if h  has a support contained in 
( ) 20x y δ ε| , |≤ / , then  

 
2( ) ( )

                      for ( ) 40
L

x z x z e

x y

δ εφ φ φ
δ ε

∞
− /| , | + | ∇ , |≤|| ||

| , |> / .
                             

 
                                          (4.3) 
  
For the proof of Proposition 4.1, we need the validity of a 
priori estimate and existence result for a simpler problem. 

Given 2 1( ) ( )h L S g H S∈ , ∈� � , let us consider the 
problem 
 

2 2 2
1

2 2 2
in

                               on

ppw h S
x y z

g S

φ φ φ φ φ

φ
ν

−∂ ∂ ∂+ + − + = ,
∂ ∂ ∂

∂ = ∂ ,
∂

� � �
�� �

�
                            

 
                                           (4.4) 
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             ( ) 0

x yR R
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w dxdy z w dxdy z

Zdxdy z z

φ φ

φ
ε

= , = ,Λ Λ

= , < < ,Λ

� �

�
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� �

                            

 
                                           (4.5) 
where 
 

2 (0 1 )
|| || 1 2 3i H

C i
ε, /

≤ , = , , .Λ�                                      

 
                                           (4.6) 
 
 
Lemma 4.2: There exists a constant 0C > , 
independent of ε  such that solutions of (4.4)-(4.5) with 

1 2 3, ,Λ Λ Λ� � �  satisfying (4.6) have the estimate 
 

2 2 1

2

( ) ( ) ( )

3

(0 1 )
1

|| || [ || || || ||

                       ]|| ||
H S L S H S

i H
i

C h g

ε

φ
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=

≤ +

+ .Λ�
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Proof:  Let 0φ  be the solution of 

0 0 0 in onS g S
φφ φ
ν

∂∆ − = , = ,
∂

�

 

 

and set 0φ φ φ= −� , then φ  is a solution to a similar 
problem, except that it has homogeneous Neumann 
boundary condition, with all nonhomogeneous terms 
replaced by 1 2 3h , , ,Λ Λ Λ  with bounds like 

2 2 1

2 2 1

( ) ( ) ( )

(0 1 ) (0 1 ) ( )

|| || [|| || || || ]

|| || [|| || || || ]

                                                       1 2 3

L S L S H S

i iH H H S

h C h g

C g

i
ε ε, / , /

≤ + ,

≤ + ,Λ Λ
= , , .

� �

� � T

o prove the general case it suffices to apply the following 
argument with  

2 2

2

1 2

2 2

3

2

( ) ( )
( ) ( )

( )
         ( )

x y

x yR R

R

z z
w x y w x y

w w

z
Z x y

Z

φ φ Λ Λ= − , − ,

Λ− , .

� �

�

 

Then φ  satisfies a problem of the same form with 
homogeneous Neumann boundary condition and 
orthogonality condition replaced by 0 1 2 3i iΛ = , = , ,  as 

well as h  replaced by a function h  with 2 ( )L S  norm 
bounded by  

2 2 1

2

( ) ( ) ( )

3

(0 1 )
1

|| || [ || || || ||

                      ]|| ||
L S L S H S

i H
i

h C h g

ε, /
=

≤ +

+ .Λ�

� �

�
 

 
Let us consider Fourier series decompositions for h  and 
φ  of the form 
 

( )

( )
0

0

( ) ( ) cos

( ) ( ) cos

k
k

k
k

x y z x y k z

h x y z h x y k z

φ φ π ε

π ε

∞

=

∞

=
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Then we have the validity of the equations 
 
 

2 2 2 2
0 ( ) ink k kk L h Rπ ε φ φ− + = ,                                 

 
                                          (4.7)  

 
 
 
 
and conditions  
 

2 2

2

0  0

                 0

k x k yR R

kR

w dxdy w dxdy

Z dxdy

φ φ

φ

= , = ,

= ,

� �

�
                                

 
                                            (4.8) 
for all k . We have denoted here 
 

2 2
1

0 ( ) 1 pL pw
x x y y

−∂ ∂⋅ = + − + .
∂ ∂ ∂ ∂

 

 
Let us consider the bilinear form in 1 ( )H R  associated 

to the operator 0L , namely 
 

2

2 2 2

1 2

( ) [

                        ]

x yR

p

B

pw dxdy

ψ ψ ψ ψ ψ

ψ−

, = | | + | | + | |

− | | .
�  

 
Since (4.8) holds uniformly in k  we conclude that 
 

2 2 2 2

2 2

2 2
( ) ( )

2
( )

[ || || || ||

              || || ] ( )

k k xL R L R

k y k kL R

C

B

φ φ

φ φ φ
,

,

+

+ ≤ , ,
                             

 
                                            (4.9) 
 
for a constant 0C >  independent of k . Using this fact 
and equation (4.7) we find the estimate  
 

2 2 2 2

2 2 2 2

4 4 4 2 2
( ) ( )

2 2
( ) ( )

(1 ) || || || ||

             || || || ||

k k xL R L R

k y kL R L R

k

C h

π ε φ φ

φ
,

,

+ +
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Moreover, we see from (4.7) that kφ  satisfies an 
equation of the form 
 

2ink xx k yy k k Rhφ φ φ, ,+ − = �  

 
where 2 2 2 2( ) ( )

|| || || ||kk L R L R
C hh ≤� . Hence it follows that 

additionally we have the estimate 

2 2 2 2 2 2
2 2 2

( ) ( ) ( )
|| || || || || ||k xx k yy kL R L R L R

C hφ φ, ,+ ≤ .                   

                                           (4.10) 
  
Adding up estimates (4.9), (4.10) in k  we conclude that  



 

 
 
 
 

2 2 2 2
2 2 2 2 2

( ) ( ) ( ) ( )
|| || || || || || || ||

L S L S L S L S
D D C hφ φ φ+ + ≤ . 

 

The final estimate of φ�  can be easily derived. 
 
We consider now the following problem: given 

2 ( )h L S∈ , 1 ( )g H S∈  finding functions 2 ( )H Sφ ∈ , 
2

1 2 (0 1)c c d L, , ∈ ,  such that 
 

2 2 2
1

12 2 2

2

( )

                    ( ) ( ) in

p
x

y

pw h c z w
x y z

c z w d z Z S

φ φ φ φ φ ε χ

ε χ ε χ
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∂ ∂ ∂
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                                         (4.11) 
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φ
ν
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2 2

2

1 2

3

( ) ( )

1
              ( ) 0

x yR R

R
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                                       (4.13) 
 
Lemma 4.3: If the functions h g, ,  1 2 3Λ , Λ , Λ  satisfy 
the conditions in previous lemma, then problem 
(4.11)-(4.13) possesses a unique solution, denoted by 

1 2 1 1 1 3( ) ( ).c c d T h gφ, , , = , , Λ , Λ , Λ  
Moreover,  
 

2 2 1

2

( ) ( ) ( )

3

(0 1 )
1

|| || [|| || || ||

                 || || ]

H S L S H S

i H
i

C h g

ε

φ

, /
=
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+ Λ .�  

 
Proof. From the argument in Lemma 4.2, it is sufficient to 
prove this result for the case 1 2 3 0Λ = Λ = Λ ≡  and 

0.g ≡ For the proof of existence, we write again 
 

( )
0

( ) ( )cosk
k

h x y z h x y k zπ ε
∞

=

, , = ,�  

and consider the problem of finding 1 2( )k H Rφ ∈ , and  
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constants 1 kc , , 2 kc , , kd  such that 

 
2 2 2

0 1

2
2

( )

              in
k k k k x

k y k

k L h c w

c w d Z R

π ε φ φ ,
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and  
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k x k yR R
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Fredholm’s alternative yields that this problem is solvable 
with the choices 
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Observe in particular that 
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Finally define  
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k

x y z x y k zφ φ π ε
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and correspondingly  



 

252         Afr. J. Math. Comput. Sci. Res. 
 
 
 

( )

( )

( )

1 1
0

2 2
0

0

( ) cos

( ) cos

( ) cos

k
k

k
k

k
k

c c k

c c k

d d k

ζ π ζ

ζ π ζ

ζ π ζ

∞

,
=

∞

,
=

∞

=

= ,

= ,

= .

�

�

�

 

 
 
Estimate (4.14) gives that terms 1 ( ) ,xc z wε  2 ( ) yc z wε  

and ( )d z Zε  have their 2 ( )L S  norm controlled by that 

of h . The a priori estimates of the previous lemma tell us 

that the series for φ  is convergent in 2 ( )H S  and 
defines a unique solution for the problem with the desired 
bounds. 
 
 
Proof of proposition 4.1:  As the argument in Lemma 
4.1, it suffices to consider the case of homogeneous 
boundary condition, that is,  0g = . The problem can be 
written as; 
 

1 1 1
3( ) ( )p p ppw pW w B hφ φ φ φ χ φ− − −− + =− − − +�

1 2( ) ( ) ( ) in x yc z w c z w d z Z Sε χ ε χ ε χ+ + + ,       (4.15) 
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Let 
 

( )1 1
1 3( ) ( ) 0 0 0 0p pT h pW w Bϕ φ χ φ− −= − − − , , , , ,                              

 
                                        (4.18) 
 
where 1T  is the bounded operator defined by Lemma 4.3. 
The point is that the operator 
 

1 1
4 3( ) ( ) ( )p pB B p W wφ χ φ φ− −= − − − ,  

 
 
 
 
is small in the sense that  
 

2 24 ( ) ( )
( )

L S H S
B Cφ δ φ|| || ≤ || || .  

 
Hence, the results can be derived by the invertibility 
conclusion of Lemma 4.3 if we choose δ  sufficiently 
small. Since χ  is supported on ( ) 20x y δ ε| , |< / , then 

φ  satisfies for ( ) 20x y δ ε| , |> /  a problem of the form 
 

(1 (1)) 0

1
( ) 20  0
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φ φ φ φ
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φ
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| , |> / , < < ,

∂ = ∂ .
∂

                           

 
                                         (4.19) 
 
Hence, the validity of formula (4.3) can be showed easily. 

As a special case of Lemma 4.3, we give a proof of 
Lemma 2.1. 
 
 
Proof of Lemma 2.1:  We only give the proof for the 
existence of problem (2.35). From the linear theory just 
developed in Lemma 4.3, the problem 
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has a solution 2

1 2 1 1( ) ( ).c c H Sρ, , , Φ ∈  Careful 
checking the proof of Lemma 4.3 will give the bound of 

1ρ . On the other hand, uniqueness of the problem and 

evenness of the functions ( )xxw x y,  and ( )yyw x y,  

in the variables x  and y  imply that 1 ( )x y zΦ , ,  is even 



 

 
 
 
 
in x  and y  for each z  and 1 ( )c zε  and 2 ( )c zε  

are identically zero. Besides, 2 11 ( ) ( )
|| || || ||

H S H S
C gΦ ≤  

where g  is any 1H -extension of the boundary 
condition. Let us take for instance 

1 2
1 1( ) [ ] (2 )z

x yg x z e k xw k yw zη ε−, = + ,  

with a suitable cut-off function η , in such a way that 

1 ( )
|| ||

H S
g C≤  with C  independent of ε . Thus we get  
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as desired. We will establish the decay estimates (2.38). 
We observe first that since 
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hence 
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where 2 0λ >  is the third eigenvalue of the operator  
 
 

1 2
0( ) inp

xx yyL pw Rψ ψ ψ ψ ψ−=− − + − .  

 
 
Consider function  
 

2

2
1( ) ( )

R
H z x y z dxdy= | Φ , , | .�  

 
From (4.24) it follows that 2 0zzH Hλ− + ≤  and from 

(4.23) we get that (0) .zH C| |≤  Clearly we have also 

(1 ) 0zH ε/ =  and thus by a comparison argument we 

get that  2( ) zH z Ce µ µ λ−| |≤ , ≤ .  
Using local elliptic estimates we then get 

1( ) in zx y z e C Sµ| Φ , , |≤ .  
From this, passing a suitable barrier we get the estimates  
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in (2.38). 
 
 
SOLVING THE NONLINEAR PROJECTED PROBLEM 
 
In this section, we will solve (3.18)-(3.21) in S . A first 
elementary, but crucial observation is the following. The 
term 3  

31 0E e Z eZε ελ′′= + , in the decomposition of 1E , 

has precisely the form ( )d z Zε  and can be absorbed in 

that term. Let g  be an 1 ( )H S -extension of the 

boundary terms 1gχ  and 0gχ  defined in (2.42) and 
(2.43). Let us take for instance 

1
1

0

( ) ( ) (2 ( 1 ))
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z

z

g x y z e g x y z

e g x y z

ε χ η ε ε
χ η ε

− /

−

, , = , − /
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�
 

with a suitable smooth cutoff function η� , in such a way 
that g  is an even function in the variables x y,  for 

each z , and satisfies the estimate 1 ( )
|| ||

H S
g C≤ ,  and 

the boundary constraints 

1 0( 1 ) ( 0)g x y g g x y gε, , / = , , , = ,  with C  
independent of ε . Similarly, we make an 

1 ( )H S -extension of the nonlinear bounder terms 

3 0( ) ( )WD Dχ φ χ φ− +  and 3 0( ) ( )WD Dχ φ χ φ− +  

and denote it by ( )G φ . Then the problem (3.18)-(3.21) is 
equivalent to the fixed point problem 
 
 

2 32 2( ( ) ( )) ( )T E N g G Aφ χ χ φ φ φ= − − , + ≡ .                             
                                             (5.1) 
 
where 2T  is the bounded operator defined by 
proposition 4.1. 

We collect some useful facts to find the domain of the 
operator A  such that A  becomes a contraction 
mapping. The big difference between terms 31E  and 

32E  is their sizes. From formulas (2.49) and (2.50), we 
get 
 

2
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32 ( )L S
E c ε /

∗|| || ≤ ,                                           

 
                                               (5.2) 
 
while 31E  is only of size 1 2( )O ε / . From proposition 4.1, 

the operator 2T  has a useful property: assume ĥ  has a 

support contained in ( ) 20x y δ ε| , |≤ / , then 2
ˆ( )T hφ =  

satisfies the estimate 
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Recall that the operator ( )ψ φ  satisfies, as seen directly 
from its definition 
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and a Lipshitz condition of the form 
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Now, the facts above will allow us to construct a region 
where contraction mapping principle applies and then 
solve the problem (3.18)-(3.21). Consider the following 
closed, bounded subset 
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As the arguments in Wei et al. 2007, we can prove that if 
the constant τ  is sufficiently large, then the map A  
defined in (5.1) is a contraction form D  into itself. In fact, 
from the properties of W  and ( )ψ φ  we obtain 
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Using the Lipshitz dependence of ψ  on φ , it can be 
derived 
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Now, we can find the solution of (4.1) in the sequel. Let 

Dφ ∈  and ( )Aν φ= , then from (5.2) and (5.7) 
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Choosing any number 2C Tτ ∗> || ||,  we get that for 
small ε  
 

2
3 2

( )H S
ν τε /|| || ≤ .  

 
From (5.3)  
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Therefore, Dν ∈ . A  is clearly a contraction thanks to 
(5.8) and we can conclude that (5.1) has a unique 
solution in D . 

The error 32E  and the operator 2T  itself carry the 

functions 1 2f f,  and e  as parameters. For future 
reference, we should consider their Lipshitz dependence 
on these parameters. (2.51) is just the formula about the 
Lipshitz dependence of error 32E  on these two 
parameters. The other task can be realized by careful 
and direct computations of all terms involved in the 
differential operator which will show this dependence is 
indeed Lipschitz with respect to the 2H -norm (for all ε ). 
Emphasizing the dependence on 1f  and 2f  what we 

find for the linear operator 2T  is the Lipschitz 
dependence 
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Moreover, the operator 2N  also has Lipshitz 

dependence on 1 2( )f f e, , . It is easily checked that for 

Dφ ∈  we have, with obvious notation 
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Hence, from the fixed point characterization we get that 
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C f f e ef f

φ φ

ε /

|| , , − , , ||

≤ || − || +|| − || +|| − || .

� � �

� � �

                             

                                           (5.9) 
 
As a conclusion of this section, we get that 
 
 
Proposition 5.1: There is a number 0τ >  such that for 
all ε  small enough and all parameters 1 2( )f f e, ,  
satisfying (2.37) - (2.39), problem (3.18) - (3.21) has a 
unique solution 1 2( )f f eφ φ= , ,  which satisfies 
 
 

2
3 2

( )H S
φ τε /|| || ≤ ,  

2( ( ) 40 ) ( )L x y H S
e δ ε

δ εφ φ φ∞
− /

| , |> /
||| | + | ∇ ||| ≤|| || .  

 
 
Moreover, function φ  depends on Lipshitz continuously 

on the parameters 1 2f f,  and e  in the sense of the 
estimate (5.9). 

As we mentioned in Section 3, in the next part of the 
paper, we will set up equations for the parameters 1 2f f,  
and e  which are equivalent to making the functions 

1 2c c,  and d in (3.18) - (3.21) are zero. These equations 
are obtained by simply integrating the equations (only 
in x y, ) against x yw w,  and Z  respectively. It is 

therefore of crucial importance to carry out computations 

of the terms 2 3 xR
E w dxdy� , 2 3 yR

E w dxdy�  and 

2 3R
E Zdxdy�  and some other similar terms 

involving φ . 
 
 
ESTIMATES FOR PROJECTIONS 
 
In this section, the main object is to carry out estimates 
for the terms 
 

2 2 23 3 3  x yR R R
E w dxdy E w dxdy E Zdxdy, ,� � �  

 
as well as some other similar terms involving φ . For the 

pair 1 2( )f f e, ,  satisfying (2.37) - (2.39), denote by 1b ε  

and 2 ,bε  generic, uniformly bounded continuous 
functions 
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1 2

   
1 2

( ) ( ) ( )

            ( ) ( ) ( ) 1 2

(
)

l lb b z f z f z e z

f z f z e z l
ε ε ε ε ε

ε ε ε ε′ ′ ′

= , , , ,

, , , = , ,
                            

                                            (6.1) 
 
where 1b ε  is uniformly Lipshitz in its four last arguments. 

Firstly, multiplying (2.47) by xw  and integrating over 

the variables x y, , using the decomposition of 3E  in 

(2.48) and the facts that w  and Z  are even functions 
in x y, , we obtain 
 

2

2 2

2

3

1 3

1 1
1

( ) ( )

[( ) ]

xR

x xR R

p p
xR

E w dxdy

S w w dxdy B eZ w dxdy

p w w eZw dxdy

φ ε

ε φ − −

= + +

+ + −

�

� �

�

 

 

2 1 1

1
1

1 2 3 4

[( ) ( )

     ( ) ]

p p

R

p
x

w eZ w

p w eZ w dxdy

I I I I

φ ε φ

φ ε−

+ + + − +

− +
≡ + + + .

�
                        

 
                                               (6.2) 
 
We calculate these terms as the following. From (2.28), 

1I  can be rewritten as  
 

2

2 2

2

1 1

3 1

1
1 1

11 12 13

( )

( ) ( )

 [( ) ]

xR

x xR R

p p p
xR

I S w w dxdy

S w w dxdy B w dxdy

w w pw w dxdy

I I I

φ

φ

φ φ−

= +

= +

+ + − −

≡ + + .

�

� �

�
                        

 
                                               (6.3) 
 
From formula (2.18), integration by parts and using the 
symmetric properties of w , we get 
 

2 2

2 2

2

2

11 3 2

2  2 2 1  
1 0 1

2 1 2  2
0 0 1

2 2  4  3
0 1 2 1 1

2  4  3
1 1 2 1 1

( )

2

 ( )

 2

x xR R

x xx xR R

xR

xy xR

I S w dxdy B w w dxdy

f w dxdy k f xw w dxdy

k k f w dxdy

k f yw w dxdy b f b

f b f b

ε ε

ε ε

ε ε

ε

ε ε ε

ε δ ε ε

′′ ′

′

′ ′′

′′ ′′

= +

= +

+ +

+ + +

= + + ,

� �

� �

�

�

                        

                                               (6.4) 
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where
2

2
1 xR

w dxdyδ = � . From the definitions of 3 1( )B φ  

in (2.31), we obtain 
 

2

2

2

2

12 3 1

2 1  
0 1 1 0 1

2 2  
0 2 2 0 1

2 1 2
0 0 0 1

4  3
2 1 1

2  4  3
1 1 1 1 2 1 2 1 1

( )

[2 ( ) 2 ]( )

[2 ( ) 2 ]( )

( )( )

   

( ) ( )

xR

zx xR

zy xR

z xR

I B w dxdy

k x f f w dxdy

k y f f w dxdy

k k w dxdy

b f b

z f z f b f b
ε ε

ε ε

φ

ε

ε

ε ε

ε ε
ε δ β δ β ε ε

′

′

′′

′ ′′

=

= − + + Φ +Φ

− + + Φ +Φ

− + Φ +Φ

+ +
= + + + .

�

�

�

�

where 

 

2

2

1 0 1
1

1
0

2 0 1
1

2
( ) ( )

2
( ) ( )

zx xR

zx xR

z w dxdy

k
z w dxdy

β
δ

β
δ

= − Φ + Φ ,

= − Φ + Φ .

�

�
                             

                                        (6.5) 
 
The same analysis can be applied to other terms and it 
can be concluded that 
 

2

2   
3 1 1 1 1 1 1 2 1[ ( ) ( ) ]xR

Ewdxdy f z f z fε δ δβ δβ′′ ′= + +�
3  2  3   3

1 2 1 2 2[ ] ( )b e e e b f f bε ε εε ε ε ε′ ′′ ′′ ′′+ + + + + + .   (6.6) 
 
Similarly, we also get the formula 
 

2

2   
3 1 2 1 3 2 1 4 2[ ( ) ( ) ]yR

E w dxdy f z f z fε δ δ β δ β′′ ′= + +�
3  2  3   3

1 2 1 2 2[ ] ( )b e e e b f f bε ε εε ε ε ε′ ′′ ′′ ′′+ + + + + + .    
(6.7) 
 
where 
 
 

2

2

3 0 1
1

2
0

4 0 1
1

2
( ) ( )

2
( ) ( )

zy yR

zy yR

z w dxdy

k
z w dxdy

β
δ

β
δ

= − Φ + Φ ,

= − Φ + Φ .

�

�
                            

 
                                        (6.8) 
 
Secondly, multiplying (2.47) by Z , integrating over the 
variables x  and y , and then using the decomposition 

of 3E  in (2.48), we get  

 
 
 
 

2 2 2

2

3 31 32

3  
0 32

R R R

R

E Zdxdy E Zdxdy E Zdxdy

e e E Zdxdyε ελ′′
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where 
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w eZ w

p w eZ Zdxdy

J J J J

φ ε

ε φ

φ ε φ

φ ε

− −

−
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The computations for these terms are listed in the 
following. The formula (2.28) gives 
 

2

2 2

2

2

1 1
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1
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2
0 0

11 12 13 0 1
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−
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We deal with the components of 13J  in the sequel. From 
the formula (2.27) 
 

2

2

2 2 3
13 1 1

2
2 2 3

0 1 1

2 3
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1
( 1)
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( )
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ε
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where 
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2 2
5 0 1

1
( ) ( 1) ( )

2
p

R
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                                         (6.11) 



 

 
 
 
 
Since 1φ  is of size ( )O ε , then 
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Therefore, we conclude that 
 

2

3  2
3 0 6 ( )

R
E Z d xd y e e z eε ελ ε β′′= + +�  

2
0 1 5

4  4   3
1 2 1 2 1
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( )

z z z

b e b f f bε ε ε

ε ρ ε ρ ε ε β
ε ε ε′′ ′′ ′′
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                                      (6.13) 
 
As a final part of this section, we consider the terms that 
involve φ  in (3.18)-(3.21) integrated against the 

functions x yw w,  and Z  in x y, . For example, 

concerning xw , we denote by ( )φΛ  the sum of these 
terms with the following estimates 

2
3

(0 1)
( )

L
Cφ ε

,
|| Λ || ≤ .  

Moreover, ( )φΛ  can be decomposed into 
components: one defines for fixed ε  a compact 

operator of the pair 1 2( )f f e, ,  from 2 (0 1)H ,  into 
2 (0 1)L ,  and the other has  Lipschitz dependence on 

1 2( )f f e, ,  of the form 
 

2

1
2

1 2 1 2 ( 0 1)

3
1 21 2

( )( ) ( )( )

[ ]

L

a a b

f f e ef f

C f f e ef f

φ φ

ε

,

+

|| Λ , , − Λ , , ||

≤ || − || + || − || + || − || .

� � �

� � �

 
 
THE SYSTEM FOR 1 2( )f f e, , : PROOF OF THE 
THEOREM 
 
In this section we set up equations relating to 1 2f f,  and 
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e  such that for the solution φ  of (3.18) - (3.21) 
predicted by proposition 5.1, one has that the coefficients 

1 2( ) ( ) ( )c z c z d zε ε ε, ,  are identically zero. To achieve 

this, we multiply first the equation against xw  and 

integrate only in x  and y , then the equation 1 0c =  is 
equivalent to the relation; 
 

2 23 2 3

1 1

[ ( ) ( )

                   ( ) ] 0

xR R

p p
x

E w dxdy N B

p W w w dxdy

χ χ φ χ φ

φ− −

+ +

+ − = .
� �

Similarly, 

2 0c =  and 0d =  if and only if  
 

2 23 2 3

1 1

[ ( ) ( )

                  ( ) ] 0

yR R

p p
y

E w dxdy N B

p W w w dxdy

χ χ φ χ φ

φ− −

+ +

+ − = ,
� �

2 23 2 3

1 1

[ ( ) ( )

                ( ) ] 0
R R

p p

E Zdxdy N B

p W w Zdxdy

χ χ φ χ φ

φ− −

+ +

+ − = .
� �  

 
Using the estimates in previous sections, we find that the 
relations above are equivalent to the following nonlinear, 
nonlocal system of differential equations for 1 2( )f f e, , . 
 

  
1 1 1 1 1 2 1( ) ( ) ( ) ( ) ( ) ( )L f f f fθ β θ ε θ β θ ε θ′′ ′∗ ≡ + / + /   

1 0 1M εε θ= , < < ,                        (7.1) 
 

  
2 2 2 3 2 4 2( ) ( ) ( ) ( ) ( ) ( )L f f f fθ β θ ε θ β θ ε θ′′ ′∗ ≡ + / + /   

2 0 1M εε θ= , < < ,                        (7.2) 
 

2  
3 6 0

2
5 0 1 3

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 0 1

L e e e e

M ε

ε θ εβ θ ε θ λ θ
εβ θ ε ρ θ ρ θ ε θ

′′∗ ≡ + / +

= / + + + , < < ,
                            

                                          (7.3) 
   
with the boundary conditions  
 

 1  1
1 1 1 1 0 1(1) (1) 0 (0) (0) 0f k f f k f′ ′+ = , + = ,                            

                                          (7.4) 
 

 2  2
2 1 1 2 0 2(1) (1) 0 (0) (0) 0f k f f k f′ ′+ = , + = ,                            

                                          (7.5) 
 

(1) (0) (1) (0)e e e e′ ′= , = ,                                       
                                          (7.6) 
 
where 1 2 3 4 5 6β β β β β β, , , , ,  are smooth functions 
defined in (6.5), (6.8) and (6.11) and (6.12) respectively.  
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The functions 0ρ  and 1ρ  are defined by Lemma 2.1. 

The operators 1 2 3 0 1i
jM j i, = , , , = ,  are some terms 

of order 
1
2( )O ε . The operators 1 2 3M M Mε ε ε, ,  can be 

decomposed in the following form 

1 2 1 2 1 2( ) ( ) ( ) 1 2 3l l lM f f e A f f e K f f e lε ε ε, , = , , + , , , = , , , where 

lK ε  is uniformly bounded in 2 (0 1)L ,  for 1 2( )f f e, ,  
satisfying (2.37) -(2.39) and is also compact. The 
operator lA ε  is Lipshhitz in this region, 

21 2 1 2 (0 1)
( ) ( )l l L

A f f e A ef fε ε ,
|| , , − , , ||� � �                       

                                          
                                          (7.7) 
 

1 21 2
[ ] 1 2 3a a bC f f e e lf fε≤ || − || +|| − || + || − || , = , , .� � �  

 
Some basic facts are derived to solve above system. 
Firstly, we consider the following problems; 
 

  
1 1 1 2 1

1

 1  1
1 1 1 1 0 1

( ) ( ) ( ) ( )

                                 ( ) in (0 1)

(1) (1) 0 (0) (0) 0

f f f

h

f k f f k f

θ β θ ε θ β θ ε
θ

′′ ′

′ ′

+ / + /
= , ,

+ = , + = .

                            

 
                                         (7.8) 
 

  
2 3 2 4 2

2

 2  2
2 1 2 2 0 2

( ) ( ) ( ) ( )

                                  ( ) in (0 1)

(1) (1) 0 (0) (0) 0

f f f

h

f k f f k f

θ β θ ε θ β θ ε
θ

′′ ′

′ ′

+ / + /
= , ,

+ = , + = .

                              

 
                                        (7.9) 
 
Lemma 7.1: If 2

1 2 (0 1)h h L, ∈ ,  then there is a constant 

0ε , depending on c�  in (1.4), for each 00 ε ε< < , the 
problem (7.8) and  problem (7.9) have unique solutions 

2
1 2 (0 1)f f H, ∈ ,  which satisfy 

2 21 1 2 2(0 1) (0 1)
 a aL L

f C h f C h
, ,

|| || ≤ || || , || || ≤ || || .  

 
 
Proof: The key point is that we can show a priori 
estimates for all solutions to problems (7.8) and (7.9) in 
that the terms 1 ( )β θ ε/ , 2 ( )β θ ε/ , 3 ( )β θ ε/  and 

4 ( )β θ ε/  are very small in the sense that if we projected 
them onto the basis spanned by all eigenfunctions of the 
eigenvalue problems corresponding to (7.8) and (7.9) 
respectively (Wei et al., 2007). 

Secondly, we consider the following problem;  

 
 
 
 

2  
6 0

  

( ) ( ) ( ) ( ) in (0 1)

            (1) (0) (1) (0)

e z e e g

e e e e

ε θ εβ λ θ θ′′

′ ′

+ + = , ,

= , = .
                           

                                         (7.10) 
 
Lemma 7.2: If 2 (0 1)g L∈ ,  then for ε  satisfying (1.11) 

there is a unique solution 2 (0 1)e H∈ ,  to problem (7.10) 
which satisfies 

2
1

(0 1)b L
e c gε −

,
|| || ≤ || || .  

Moreover, if 2 (0 1)g H∈ ,  then 

2 2 2
2   

(0 1) (0 1) (0 1) (01)L L L L
e e e c gε ∞

′′ ′
, , , ,

|| || + || || + || || ≤ || || .  
 
 
Proof: Consider the following Eigen value problem 
corresponding to problem (7.10) 
 

 

  

( ) ( ) 0 in (0 1)

(1) (0) (1) (0)

e e

e e e e

θ ζ θ′′

′ ′

+ = , ,
= , = .

                                

                                          (7.11) 
 
It is standard that the eigenvalue problem has an infinite 
sequence of eigenvalues 0{ }n nζ ∞

=  and eigenfunctions 

0{ }n ny ∞
= , which forms a complete basis in 2L . Moreover, 

nζ  has the asymptotic expression (Levitan et al., 1991) 
 

2
3

1
(2 ) ( )n n O

n
ζ π= + ,                                         

                                            (7.12) 

The condition (1.11) shows that 0
2 n n Nλ

ε
ζ≠ , ∀ ∈ .  

Hence the proof of a priori estimate follows from the 
smallness of the term 6 ( )β θ ε/ . The reader can refer to 
Lemma 8.1 of Wei et al., 2007 for more details.  

For completeness of the paper, we now prove Theorem 
1.1 in the following. 
 
 
Proof Theorem 1.1: Let ê  solves 
 

2 5 1 0

  

ˆ( ) ( ) ( ) ( ) in (0 1)

ˆ ˆ          (1) (0) (1) (0)ˆ ˆ

L e

e ee e

εβ θ ε ρ θ ρ θ∗

′ ′

= / + + , ,
= , = .

                            

                                           (7.13) 
 
By Lemma 7.2 and Lemma 7.1, we get 

1 2ˆ be Cε /|| || ≤ .  

Setting ˆe e e= + � , the system (7.1) - (7.6) keeps the 
same form except that the term 5 1 0εβ ρ ρ+ +   disappear. 



 

 
 
 
 
By Lemma 7.1 and 7.2, the linear problem 

1 2 1 1 2 2 3 1 2( ) ( ( ) ( ) ( )) ( )L f f e L f L f L e h h g∗ ∗ ∗, , ≡ , , = , , with 
suitable boundary conditions is invertible and has the 
following priori estimate 
 

2

2 2

1 2 1 (0 1)

2 (0 1) (0 1)

[

                     ]

a a b L

L L

f f e c h

h g
,

, ,

|| || + || || + || || ≤ || ||

+ || || + || || .  

 
As the method in Wei et al., 2007, we can solve (7.1)-(7.5) 
by the contraction mapping principle and Schauder’s 
fixed point theorem. By Proposition 5.1 and the lines 
followed, we complete the proof of Theorem 1.1. 
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