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Most of the applied and interesting problems in industry and real world are difficult to solve. These 
problems are often NP-hard and the problem in this paper is strongly NP-hard. Approximation and 
metaheuristic algorithms are used to find a solution to these problems. In this paper we have used a 
polynomial time approximation algorithm, this algorithm is a suboptimal approach that provably works 
fast and that provably yields solutions of very high quality. In this paper, the problem of scheduling 
jobs on a single machine with controllable processing times is considered. The fact that the n jobs have 
controllable processing times means that it is possible to reduce the processing time of the jobs by 
paying a certain cost. In this paper, each job has a release date when it becomes available for 
processing, and, after completing its processing, requires an additional delivery time. Furthermore, 
preemption is allowed. The preemptive version allows an operation to be interrupted and continued at a 
later time. Feasible schedules are further restricted by job precedence constraints. The algorithm in this 
paper gives a substantial improvement for the special case without controllable processing times 
obtained by Hall et al. (1989) and the special case with controllable processing times by Mastrolilli 
(2009). In this paper we added controllable processing time instead fixed processing time and 
preemption to the problem. Moreover, we develop a polynomial time approximation scheme whose 
running time depends only linearly on the input size.This improves and generalize the previous 
( ε+23 )-approximation algorithm by Mastrolilli (2009). At last it will be shown that the problem with its 

constraints has a polynomial time approximation scheme. It means that for any givenε , a polynomial 
algorithm exists for the problem. It will be shown by a numerical example finally. 
 
Key words: Scheduling, controllable processing times, polynomial time approximation scheme (PTAS), 
metaheuristic methods, computational complexity, intractable problems. 

 
 
INTRODUCTION 
 
For single machine scheduling problems, it is generally 
assumed that release times and processing times of jobs 
are known and constant. However, in many cases, the 
release times and the processing times can be made 
earlier and shorter by using additional resources such as 
manpower, fuels, raw materials and so on. Many 
researchers have focused on problems with controllable 
processing times and problems with resource dependent  
release times, independently. 

In this paper we consider the following single machine 
 
 
 
*Corresponding author.  E-mail: habayat@yahoo.com. 

scheduling problem. A set, nJJJ ,...,, 21 , of n jobs is to 
be processed without interruption on a single machine. 

For each job jJ  there is an interval [ ]jj ul , , jj ul ≤≤0 , 

specifying its possible processing times. The cost for 
processing job jJ in time jl  is 0≥l

jc , and for processing 

it in time ju the cost is 0≥u
jc . For any value [ ]1,0∈jδ  

the cost for processing job jJ in time 

( ) ( ) jjjjjj ulp δδδ −+= 1 is ( ) ( ) u
jj

l
jjjj ccc δδδ −+= 1 ,  

where   jδ is   the   compression  parameter.  Additionally, 
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each job jJ has a release date 0≥jr ¸ when it first 

becomes available for processing and, after completing 
its processing on the machine, requires an additional 
delivery time 0≥jq ; if ( )jj rs ≥ denotes the time 

jJ starts processing, then it has been delivered at time 

( ) jjjj qps ++ δ , for compression parameter jδ  . 

Delivery is a non-bottleneck activity, in that all jobs may 
be simultaneously delivered. Feasible schedules are 
further restricted by job precedence constraints given by 
the partial order � , where 

{ }( )nkjJJ kj ,...,2,1,, ∈� means that job kJ  must be 

processed after job jJ . Let θ  be a permutation of the set 

J that is consistent with the precedence constraints; θ  
denotes a processing order of jobs. Denote by ( )θδ ,T  
the (earliest) maximum delivery time of all the jobs for 
compression parameters ( )nδδδδ ,...,, 21=  and 

processing order θ . The total cost of compression 

parameters δ  is equal to ( )�
∈Jj

jjc δ , and the total 

scheduling cost for compression parameters δ  and 
processing order θ  is defined as 
 

( ) ( ) ( )�
∈

+=
Jj

jjcTL δθδθδ ,,  

 

The problem is to find θ  and δ  that minimizes ( )θδ ,L . 
Since the special case with fixed processing times and 
without precedence constraints is strongly NP-hard 
(Lenstra et al., 1977) the stated problem is also strongly 
NP-hard. When all processing times are 

fixed ( ) jj luJj =∈∀ ; , the problem as stated is 

equivalent to that with release dates and due dates, jd , 

rather than delivery times, in which case the objective is 
to minimize the maximum lateness, jjjj dpsL −+= , 

of any job jJ . When considering the performance of 

approximation algorithms, the delivery time model, which 
assumes 0≤jd , is preferable (Hall and Shmoys, 1989; 

Hall and Shmoys, 1992). Without this restriction, results 
are likely to be elusive, since the problem of determining 
whether 0max ≤L  is NP-complete. Because of this 
equivalence, we shall denote the problem with fixed 

processing times as max,1 Lprecr j  (and max1 Lr j when 

there are no precedence constraints), using the notation 
of Graham et al. (1979). As these scheduling problems 
are known to be hard to solve optimally, most research 
focuses     on     giving    polynomial-time    approximation 

 
 
 
 
algorithms that produce a solution close to the optimal 
one. Ideally, one hopes to obtain a family of polynomial 
algorithms such that for any given 0>ε  the 
corresponding algorithm guaranteed to produce a 
solution with a value within a factor of ( )ε+1  of the 
optimum value; such a family is called a polynomial time 
approximation scheme (PTAS). 

Hall et al. (1990) proposed two polynomial time 

approximation schemes for problem max1 Lr j , the 

running time of which are ( ) ( )( )211log εε OnnnO +  

and ( ) ( )( )εε 1OnO . For the corresponding problem with 
controllable processing times, Zdrzalka (1991) gives a 
polynomial time approximation algorithm with a worst-
case ratio of ε+23 , where 0>ε can be made 
arbitrarily small. When the precedence constraints are 
imposed and the job processing times are fixed 

( max,1 Lprecr j ), Hall et al. (1990) give a PTAS. This 

consists of executing, for ∆2log  times, an extended 

version of their previous PTAS for max,1 Lprecr j , where 

∆ denotes an upper bound on the optimal value of any 
given instance whose data are assumed to be integral. 
This polynomial running time should be contrasted with 

the time complexity of their result for problem max1 Lr j , 

where they were able to achieve a considerably better 
time. To some extent, this is not surprising, since 
precedence constraints add a substantial degree of 
difficulty, and one important area of research in 
scheduling theory has been to study under what 
conditions a precedence-constrained problem is 
computationally harder than its counterpart with 
independent jobs. 

In this paper we generalized the first known PTAS for 

problem max,1 Lprecr j with controllable processing 

times that runs in linear time (the hidden constant 
depends exponentially on ε1 ) given by Mastrolilli (2006) 
by using a new approximation algorithm for knapsack 
problem. We use this to improve and generalize all the 
previous results (Shmoys, 1989; Hall and Shmoys, 1990; 
Hall and Shmoys, 1992; Zdrzalka, 1991; Mastrolilli, 2009). 
The linear complexity bound is a substantial improvement 
compared to the above mentioned result. Moreover, the 
existence of a PTAS whose running time is also 
polynomial in ε1  for a strongly NP-hard problem would 
imply P=NP (Garey and Johnson, 1979). 

The "0-1" knapsack problem is as follows: 
 
Given n pairs of positive integers, ( )jj ap ,  and a positive 

integer b, find nxxx ,,, 21 �  so as to 



 
 
 
 

{ }.1,0,.

max

∈≤=

=

�

�

jjj

j
jj

xbxaAts

xpP

 

 
We may think of j as indexing items, with associated 
profits jp  and weights ja . The objective is to find the 

most portifable possible selection of items wich can be 
made to fit into a knapsack with capacity b. One variation 
of the problem permits items to be chosen with repetition. 
That is, jx  is permitted to be any nonnegative integer. 

This is sometimes called the "unbounded" knapsack 
problem. 

To obtain a new linear complexity bound we use the 
method for simplifying the input. Rounding the input is a 
widely used technique to obtain polynomial time 
approximation schemes. Arithmetic or geometric 
rounding is the most successfully and broadly used way 
of rounding to obtain a simpler instance that may be 
solved in polynomial time. It is well known that KP is NP-
hard but pseudopolynomially solvable through dynamic 
programming, and the same properties hold for kKP. 
Basically, the developed approximation approaches for 
KP and kKP can be divided into two groups: 
 

1) Approximation Algorithms: for KP the classical 
2
1

-

approximation algorithm [] needs only )(nO  running time. 

An approximation ratio of 
2
1

 can be obtained also for 

kKP by rounding the dolution of the linear programming 
relaxation of the problem (Capara et al., 2000) this 
algorithm can be implemented to run in linear time when 
the LP relaxation of kKP is solved by using the method by 
Megiddo et al. (2000). 
2) Polynomial time approximation scheme (PTAS): PTAS 
reach any given approximation ratio and have a running 
time polynomial in the length of the encoded input. 
Caprara et al.(2000) gave an approximation ratio of 
( )ε+1  within [ ]( )nnnO log21 +−ε  and [ ]( )11 −εnO  
running time, for KP and kKP, respectively. The best 
schemes currently known requiring linear space are given 
in Mastrolilli and Hutter (2006); they present a PTAS for 
KP and kKP requiring linear space a running 

time ( ) ( )( )εε 11log OnO ( ) ( )( )εε 11log OknO +  
respectively. 
 
In this paper we first obtain a multiple-choice knapsack 
problem for the best schemes currently known and at last 
we improve a linear complexity bound for the assumed 
scheduling problem. 
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MULTIPLE-CHOICE PROBLEMS  
 
Suppose the n items are partitioned into m equivalence 
classes and it is stipulated that no more than one item (or 
multiples of one item) may be chosen from each 
equivalence class. Such a problem is sometimes called a 
multiple-choice knapsack problem. 

In this paper we must relax the restrictions 
{ } ,,,2,1,1,0 njx j �=∈  to 10 ≤≤ jx . If  

,,,2,1, miS i �=  denotes the set of indices of items in 
the ith equivalence class, then we obtain a linear 
programming problem of the form 
 

.,,2,1,10

,,,2,1,1

,.

max

njx

mix

bxats

xp

j

Sj
j

j
jj

j
jj

i

�

�

=≤≤

=≤

≤

�

�

�

∈

 

 
For any feasible solution to this linear programming 
problem, the profit-weight contribution of the items in the 
ith equivalence class corresponds to the point in the 

convex hull of the set of points ( ){ } { }0,0, ∪∈ ijj Sjpa . 

Moreover, by dominance relaxations, this point can be 
assumed to lie on the “upper boundery" of the convex hull. 

Let the in  corner points of the upper boundary for 
equivalence class i be designated 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
ii njnjjjjj papapa ,,,,,, 2211 � . These 

points can be identified first by sorting the items into 
nondecreasing order of ratios jj ap  and then selecting 

out the desired items by observing that 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ,1,,2,1,0

1

1

1

1
−=>

−+
−+

>
−−
−−

i
jj

jj

jj

jj nk
kaka

kpkp

kaka

kpkp
�

 
where ( ) ( ) .000 == jj pa  All corner points for all 

equivalence classes can be identified in ( )nnO log  time. 
 
Now, for ,1,,2,1 −= ink �  let 
 

( ) ( ) ( )

( ) ( ) ( ).

,

1

1

−

−

−=

−=

kjkjkj

kjkjkj

ppp

aaa
 

 
With these new coefficients, we obtain a linear 
programming problem of the form 
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.10

,.

max

≤≤

≤�

�

j

j
jj

j
jj

x

bxats

xp

 

 
We assert that the optimal value of the objective function 
for this new problem is equal to that of the previous one. 

Now we solve this new linear programming problem, as 

follows. Firstly, sort the items in nonincreasing 
j

j

a
p

 

ratio, so that, without loss of generality, 
 

n

n

a
p

a
p

a
p

≥≥≥ ...
2

2

1

1  

 

Then place the items in the knapsack in order until either 
(a) the items are exhausted or (b) the capacity is exactly 
used up or (c) it is necessary to fractionalize one item to 
use up the capacity exactly. In case (a) and (b), an 
optimal solution is obtained, and it is unnecessary to 
proceed further. 

So suppose case (c) occurs and 
 

baaa j <+++ ...21  
 
But 
 

baaaa jj >++++ +121 ...  
 

We assert that 
 

,2 00 PPP ≤≤ ∗  
 
Where 
 

{ },,...max max210 PpppP j+++=  
 
and where 
 

{ },maxmax j
j

pP =  

 

as before. This is because 
 

,max1
∗

+ ≤≤ Ppp j��������������,...21
∗≤+++ Pppp j�  

 

But 
 

.... 121
∗

+ >+++ Pppp j  
 

Replacing maxp  by 0P  in (3.2), we obtain 
 

,0 nPK ε=  

 
 
 
 
and find that 
 

.
2
ε
n

K
P ≤

∗

 

 

The compution can now be carried out in ( )ε
2nO  time 

and space, exclusive of the time required to sort the 

items in 
j

j

a
p

 order. 

Now it is not hard to see that this optimal solution has 
the property that, for each ( ) 1, =kji xS  

implies ( ) ( )111 >=− kx kj , and ( ) 0=kjx  implies 

( ) ( )ikj nkx <=+ 0 . For each iS  let 

 

( ) ( ) ( )

( )��

�
�
�

<

<==
=′ +

1,0

,11,

1

1

j

kjikjkj

i xif

xornkeitherandxifp
p

 
then, by reasoning similar to upon, the desired bound is  
 

{ }.,max max210 ppppp m′++′+′= �  
 
However, we can proceed as taking 
 

,0 mPK ε=  
 
so that 
 

.
2
ε
m

K
P ≤

∗

 

 
The list of pairs ( )AQ,  is processed with iteration over 
equivalence classes, rather than single items, making the 
computation rather similar to the large-item computation. 

Initially the list contains only the pair ( )0,0 . At the end 

of iteration i, each pair ( )AQ,  is identified with a feasible 
solution containing items chosen from equivalence 
classes 1 through i. Suppose there are in  items in 

equivalence class i, to perform iteration i, form in  

candidate items for each pair ( )AQ,  existing in the list at 

the end of iteration 1−i . These candidate pairs are 
placed in in  separate candidate lists. The 1+in  lists are 
then merged, eliminating dominated entries. 

Iteration i  requires  ( )εmnO i   time,  ( )εmO   space, 



 
 
 
 
and at most ( )εmO  nodes are added to the tree used 
for backtracing. In this paper we obtain our resultes by 
using these methods. 
 
 
SIMPLIFYING THE INPUT 
 
We start by transforming any given instance into a 
standard form. Let, 
 

{ }Jjqq j ∈= ;maxmax�����{ }Jjrr j ∈= ;maxmax 

��
∈

=
Jj

jdD�   ���{ }u
jj

l
jjj cucld ++= ,min 

 
Moreover, let OPT denote the optimal solution value of 
the given instance. 
 
 
Lemma 1 
 
Without loss of generality, we can assume that the 
following holds: 
 

�31 ≤≤ OPT�  
��{ } 1,,max maxmax ≤qrD  

30&30 ≤≤≤≤≤≤ l
j

u
jjj ccul  

 
 
Proof (Capara et al., 2000) 
 
Following Lageweg et al. (1977), if kj JJ � and kj rr > , 

then, we can reset jk rr =: and each feasible schedule 

will remain feasible. Similarly, if kj qq < then we can 

reset kj qq =: without changing the objective function 

value of any feasible schedule. Thus, by repeatedly 
applying these updates we can always obtain an 
equivalent instance that satisfies, 
 

( )kjkjkj qqrrJJ ≥≤� ,�            (1) 

 
Such a resetting requires ( )lO  time, where l denotes the 
number of precedence constraints. Thus in the following 
we assume that (1) holds. A technique used by Hall et al. 
(1989) allows us to deal with only a constant number of 
release dates and delivery times. The idea is to round 
each release and delivery time down to the nearest 
multiple of εi , for Ν∈i . Since 1max ≤r , the number of 
different release dates and delivery times is now bounded 
by 11 +ε . Clearly, the optimal value of this transformed 
instance   cannot  be  greater  than  OPT.  Every  feasible 
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solution for the modified instance can be transformed into 
a feasible solution for the original instance just by adding 
ε  to each job’s starting time, and reintroducing the 

original delivery times. It is easy to see that the solution 
value may increase by at most ε2 . Therefore, we will 
assume henceforth that the input instance has a constant 
number of release dates and delivery times, and that 
condition (1) holds. We shall refer to this instance as I. By 
the previous arguments, OPT ¸ OPT (I), where OPT (I) 
denotes the optimal value for instance I. 
 
 
Partitioning the set of Jobs 
 
Partition the set of jobs in two subsets: 
 

{ },: 2ε>= jj dJL ,   { }2: ε≤= jj dJS  

 
Let us say that L is the set of large jobs, while S the set of 
small jobs. Observe that the number of large jobs is 
bounded by 21 ε by Lemma 1. We further partition the 
set S of small jobs as follows. For each small job 

SJ j ∈ consider the following three subsets of L: 

 
( ) { }

( ) { }

( ) ( ) ( )( )jSucjeLjFree

JJLJjSuc

JJLJje

ijj

jij

∪−=

∈=

∈=

Pr

,:

,:Pr

�

�

 

 
Let us say that ( ) ( ) ( ) ( ){ },,,Pr jFreejSucjejT = ; 

represents a 3-partition of set L with respect to job jJ . 

We form the set ( )jTT j∪=  which is the set of all 

distinct 3-partitions. We will index the items in set T 
by τTT ,...,1 , where T=τ . The number τ of distinct 3-

partitions is clearly bounded by the number of small jobs 

and by 
2133 ε≤L , therefore  { }ετ 13,min n≤ . Now, we 

define the execution profile of a small job jJ to be a 3-

tuple 321 ,, iii  such that 1.ir j ε= , 2.iq j ε= and 

( )
3i

TjT =  where ε1,,2,1, 21 �=ii  and 

τ,,13 �=i .For any given instance, the number of 
distinct execution profiles is clearly bounded by the 
number of jobs and, by the previous arguments, cannot 

be larger than ( ) τε 211+ . 
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Lemma 2 
 
The number π of distinct execution profiles is bounded by  
 

( )
�
�
	

�
�
� +≤

21
113,min 2

επ εn . 

 
Partition the set S of small jobs into π subsets, 

πSSS ,...,, 21 such that jobs belonging to the same subset 
have the same execution profile. Clearly, 
 

{ } { }.,,,,2,1 21 =∩∪∪=∈≠∀ ji SSSSSSji ππ ��  

 
 
Adding new precedences 
 
Let us say that job hJ is a neighbor of set 
 
{ ( ) }π,,1; �=iS i if: 
 

hJ Is a small job; 

ih SJ ∉ ; 

there exists a precedence relation between job hJ and 

some job in iS . 

Moreover, we say that hJ is a front-neighbor (back-

neighbor) of iS if hJ is a neighbor of iS and there is a job 

ij SJ ∈  such that ( )jhhj JJJJ �� . 

Let ( ) ii Sni == π,,1 � , and let ( )ini i
JJ ,.1 ,,�  

denote any fixed and complete ordering of the jobs from 

iS that is consistent with the precedence relation. In the 
rest of this section we restrict the problem such that the 
jobs from iS are processed according to this fixed 
ordering. Furthermore, every back-neighbor (front-
neighbor) hJ of ( ) iSi π,,1 �= must be processed 

before (after) every job from iS . This can be 

accomplished by adding a directed arc from ijJ ,  to ijJ ,1+ ,  

for 1,,1 −= inj � , and by adding a directed arc from 

hJ to iJ ,1 , if hJ  is a back-neighbor of iS , or an arc from 

ini
J , to hJ , if hJ is a front-neighbor. 

We will see later that this transformation does not 
considerably affect the optimal solution value. The idea is 
that the jobs from iS  are “similar” and small. So fixing an 
arbitrary order  among  them  and  updating  precedence  

 
 
 
 
constraints appropriately does not deteriorate too much 
the solution quality. 

Finally, note that the resulting precedence graph is 
without cycles. Indeed, it can be easily checked that a 
neighbor hJ of iS  for ( )π,,1 �=i  cannot 
simultaneously be a front neighbor and a back-neighbor 
of iS . The number of added arcs can be bounded by 

ln +  (recall that l denotes the number of precedence 
constraints of the input instance). 

We observe that condition (1) is valid also after these 
changes. Indeed, if hJ  is a back-neighbor of iS then 

there is a job ij SJ ∈ such that jh JJ � , and therefore 

by condition (1) we have jh rr ≤ and ih qq ≥ . But, the 

jobs from iS  have the same release dates and delivery 

times, therefore jh rr ≤ and ih qq ≥  for each ij SJ ∈ . It 

follows that if we restrict hJ to be processed before the 

jobs from iS , condition (1) is still valid. Similar arguments 

hold if hJ is a front-neighbor. Moreover, all the jobs from 

iS have the same release dates and delivery times, 
therefore condition (1) is still satisfied, if we restrict these 
jobs to be processed in any fixed ordering that is 
consistent with the precedence relation. 
 
 
Compact representation of job subsets 
 
Consider set iS  (for π,,1�=i ). Note that the number of 

jobs in iS may be O(n).�We replace the jobs from iS with 

one compact job #
iJ . Job #

iJ  has the same release ( )#
ir   

and delivery time ( )#
iq  as the jobs from iS . Furthermore, 

if ( )jkkj JJJJ �� , ikii SJSJ ∉∈ , , then in the new 

modified instance we have ( )##
ikki JJJJ �� , and 

the resulting precedence relation on #
iJ  is “well-defined”, 

since all jobs from iS  are predecessors (successors) of 

kJ . 

Finally,  the   processing  requirement of #
iJ  is s 

pecified by a finite set of alternative pairs of processing 
times and costs determined as follows. Consider the 
following set ( ){ }3,,1, �επεπε +=sV  by simple 

algebra, we have ( )21 εOVs = . Recall that π is the 

number of distinct execution profiles. Let ( ) ii AB  be the  



 
 
 
 

value obtained by rounding ��
∈∈





�

�


�

�

ii Sj
j

Sj
j lu up to the 

nearest value from set sV . The possible processing times 

for #
iJ are specified by set Pi of values from VS that fall in 

interval [ ]ii BA , , that is, [ ]iisi BAVP ,: ∩= . For 

each value iPp ∈ , we compute the corresponding cost 

value ( )pCi  as follows. Consider the problems 

( )pS i , of computing the minimum sum of costs for jobs 

belonging to iS , when the total sum of processing times 
is at most p, for every p 2 Pi. We can formulate problem 
( )pS i , by using the following linear program LP(Si; p): 
 

( )( )�
∈

−+
iSj

u
jj

l
jj cc δδ 1min�   

 
( )( )�

∈
≤−+

iSj
jjjj pults δδ 1..  

 

ij SJ ∈, 10 ≤≤ jδ  

 
By setting jj x−= 1δ , it is easy to see that an optimal 

solution for LP(Si; p) can be obtained by solving the 
following linear program: 
 

( )

( )

ijj

Sj
j

Sj
jjj

Sj
j

u
j

l
j

SJx

lpxluts

xcc

ii

i

∈≤≤

−≤−

−

��

�

∈∈

∈

,10

..

max

 

 
Note that �− jlp  is non-negative, since iPp ∈ and 

the smallest value of iP  cannot be smaller than� jl . 

The previous linear program corresponds to the classical 
knapsack problem with relaxed integrality constraints. By 
section 1 and by partially sorting jobs in nonincreasing 

jj

u
j

l
j

lu

cc

−
−

 ratio order, the set ( ){ }ii PppSLP ∈;,  of 

( )31 εO  many problems can be solved in 

( ) ( )( )εε 11log O
iSO  time by using the method of section 

3. For each value iPp ∈ , the corresponding cost value 

( )pCi   is   equal   to   the   optimal   solution    value    of 
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( ){ }ii PppSLP ∈;,  rounded up to the nearest value in 

set sV . It follows that the number of alternative pairs of 

processing times and costs for each compact job #
iJ  is 

bounded by the cardinality of set iP .  Furthermore, 

since� ≤
π

nS i , it is easy to check that the amortized 

total time to compute the processing requirements of all 

compact jobs is ( ) ( )( )εε 11log OnO . Therefore, each set 

iS  is transformed into one compact job #
iJ  with ( )31 εO  

alternative pairs of costs and processing times. We use 
#S to denote the set of compact jobs. 
Now, let us consider the modified instance as 

described so far and turn our attention to the set L of 
large jobs. We map each large job LJ j ∈ to a new job 

#
iJ  which has the same release date, delivery time and 

set of predecessors and successors as job jJ , but a 

more restricted set of possible processing times and 
costs. This restricted set is chosen such that we can still 
obtain a near-optimal solution, so the restriction does not 
significantly deteriorate the objective function value. More 
precisely, let Aj (and Bj) be the value obtained by 
rounding ( ) jj lu ,  up to the nearest value from 

set ( ){ }3,,1, 33
�εεε +=LV . The possible processing 

times for #
iJ  are specified by set [ ]jjLj ulVP ,: ∩= . For 

each value jPp ∈ , the corresponding cost value ( )pC j  

is obtained by rounding up to the nearest value of set 

LV the cost of job jJ   when its processing time is p. We 

use #L   to denote the set of jobs obtained by 
transforming jobs from L as described so far. 

Let #I  denote this modified instance. We observe that 
#I  can be computed in ( ) ( ) ( )( )211 21log εεε OOnO +  

time: the time required to partition the set of jobs into 

π subsets can be bounded by 
( )( )212 εOlnO ++ is the 

time to add new precedences; ( )( )εε 1log1 2nO  is the 
time to compute the alternative pairs of costs and 
processing times. Moreover, this new instance has at 

most ( ) 221 1113
2

εεε ++⋅=V  jobs; each job has 
a constant number of alternative pairs of costs and 
processing times. Now let us focus on #I and consider 
the problem of finding the schedule for #I  with the 
minimum scheduling cost such that compact jobs can be 
preempted, while interruption is not allowed for jobs 
from #L . 
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RESULT 
 
We have obtained a new linear complexity bound for the 
specific scheduling problem with controllable processing 
time by using a new complexity bound for the kKP.  
 
 
ACKNOWLEDGEMENTS 
 
The authors are grateful to Islamic Azad University 
Naragh Branch for the assistance rendered to our project. 
This thesis is extracted from the project “Using 
metaheuristic methods and polynomial time 
approximation algorithm for solving a strongly NP-hard 
scheduling problem”. 
 
 
REFERENCES 
 
Capara A, Kellerer H, Pfershy U, Pisinger D (2000). Approximation 

algorithms for knapsack problems with cardinality constraints, Eur. J. 
Oper. Res., 123: 333-345. 

Garey MR, Johnson DS (1979). Computers and intractability; A guide to 
the theory of NP-completeness. W.H. Freeman. 

Graham R, Lawler E, Lenstra J, Kan AR (1979). Optimization and 
approximation in deterministic sequencing and scheduling: A survey. 
In Ann. Discrete Math., North–Holland, 5: 287–326. 

Hall L, Shmoys D (1989). Approximation algorithms for constrained 
scheduling problems. In Proceedings of the 30th IEEE Symposium 
on Foundations of Computer Science, pp. 134–139. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Hall L, Shmoys D (1990). Near-optimal sequencing with precedence 

constraints. In Proceedings of the 1st Integer Programming and 
Combinatorial Optimization Conference, University of Waterloo Press, 
pp. 249–260. 

Hall  L, Shmoys D (1992). Jackson’s rule for single-machine scheduling: 
Making a good heuristic better. MOR: Math. Oper. Res., 17: 22–35. 

Lageweg B, Lenstra J, Kan AR (1977). Minimizing maximum lateness 
on one machine: Computational experience and some applications. 
Statist. Neerlandica, 30: 25–41. 

Lenstra JA, Kan R, Brucker P (1977). Complexity of machine 
scheduling problems. Ann. Oper. Res., 1: 343–362. 

Zdrzalka  S (1991). Scheduling jobs on a single machine with release 
dates, delivery times, and controllable processing times: Worst-case 
analysis. Oper. Res. Lett., 10: 519–532. 

Mastrolilli  M ( 2009). A linear time approximation scheme for single 
machine scheduling problem with controllable processing times. J. 
Algorithms,  Article in press. 

Megiddo M, Tamir A (2000). Linear time algorithms for some separable 
quadratic programming problems, Oper. Res. Lett., 13: 203-211. 

Mastrolilli M, Hutter M  (2006). Hybrid rounding techniques for knapsack 
problems. Discrete Appl. Math.,  154: 640-649. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


