
African Journal of Mathematics and Computer Science Research Vol. 3(12), pp. 307-314, December 2010
Available online at http://www.academicjournals.org/AJMCSR
ISSN 2006-9731 ©2010 Academic Journals

Review

A metaheuristic and PTAS approach for NP-hard
scheduling problem with controllable processing times

Hamed Bayat1*, Hassan Akbari1 and Hamid Davoudpour2

1Islamic Azad University, Naragh Branch, Naragh, Iran

2Amirkabir University of Technology, Tehran, Iran.

Accepted 3 November, 2010

Most of the applied and interesting problems in industry and real world are difficult to solve. These
problems are often NP-hard and the problem in this paper is strongly NP-hard. Approximation and
metaheuristic algorithms are used to find a solution to these problems. In this paper we have used a
polynomial time approximation algorithm, this algorithm is a suboptimal approach that provably works
fast and that provably yields solutions of very high quality. In this paper, the problem of scheduling
jobs on a single machine with controllable processing times is considered. The fact that the n jobs have
controllable processing times means that it is possible to reduce the processing time of the jobs by
paying a certain cost. In this paper, each job has a release date when it becomes available for
processing, and, after completing its processing, requires an additional delivery time. Furthermore,
preemption is allowed. The preemptive version allows an operation to be interrupted and continued at a
later time. Feasible schedules are further restricted by job precedence constraints. The algorithm in this
paper gives a substantial improvement for the special case without controllable processing times
obtained by Hall et al. (1989) and the special case with controllable processing times by Mastrolilli
(2009). In this paper we added controllable processing time instead fixed processing time and
preemption to the problem. Moreover, we develop a polynomial time approximation scheme whose
running time depends only linearly on the input size.This improves and generalize the previous
(ε+23)-approximation algorithm by Mastrolilli (2009). At last it will be shown that the problem with its

constraints has a polynomial time approximation scheme. It means that for any givenε , a polynomial
algorithm exists for the problem. It will be shown by a numerical example finally.

Key words: Scheduling, controllable processing times, polynomial time approximation scheme (PTAS),
metaheuristic methods, computational complexity, intractable problems.

INTRODUCTION

For single machine scheduling problems, it is generally
assumed that release times and processing times of jobs
are known and constant. However, in many cases, the
release times and the processing times can be made
earlier and shorter by using additional resources such as
manpower, fuels, raw materials and so on. Many
researchers have focused on problems with controllable
processing times and problems with resource dependent
release times, independently.

In this paper we consider the following single machine

*Corresponding author. E-mail: habayat@yahoo.com.

scheduling problem. A set, nJJJ ,...,, 21 , of n jobs is to
be processed without interruption on a single machine.

For each job jJ there is an interval []jj ul , , jj ul ≤≤0 ,

specifying its possible processing times. The cost for
processing job jJ in time jl is 0≥l

jc , and for processing

it in time ju the cost is 0≥u
jc . For any value []1,0∈jδ

the cost for processing job jJ in time

() () jjjjjj ulp δδδ −+= 1 is () () u
jj

l
jjjj ccc δδδ −+= 1 ,

where jδ is the compression parameter. Additionally,

308 Afr. J. Math. Comput. Sci. Res.

each job jJ has a release date 0≥jr ¸ when it first

becomes available for processing and, after completing
its processing on the machine, requires an additional
delivery time 0≥jq ; if ()jj rs ≥ denotes the time

jJ starts processing, then it has been delivered at time

() jjjj qps ++ δ , for compression parameter jδ .

Delivery is a non-bottleneck activity, in that all jobs may
be simultaneously delivered. Feasible schedules are
further restricted by job precedence constraints given by
the partial order � , where

{ }()nkjJJ kj ,...,2,1,, ∈� means that job kJ must be

processed after job jJ . Let θ be a permutation of the set

J that is consistent with the precedence constraints; θ
denotes a processing order of jobs. Denote by ()θδ ,T
the (earliest) maximum delivery time of all the jobs for
compression parameters ()nδδδδ ,...,, 21= and

processing order θ . The total cost of compression

parameters δ is equal to ()�
∈Jj

jjc δ , and the total

scheduling cost for compression parameters δ and
processing order θ is defined as

() () ()�
∈

+=
Jj

jjcTL δθδθδ ,,

The problem is to find θ and δ that minimizes ()θδ ,L .
Since the special case with fixed processing times and
without precedence constraints is strongly NP-hard
(Lenstra et al., 1977) the stated problem is also strongly
NP-hard. When all processing times are

fixed () jj luJj =∈∀ ; , the problem as stated is

equivalent to that with release dates and due dates, jd ,

rather than delivery times, in which case the objective is
to minimize the maximum lateness, jjjj dpsL −+= ,

of any job jJ . When considering the performance of

approximation algorithms, the delivery time model, which
assumes 0≤jd , is preferable (Hall and Shmoys, 1989;

Hall and Shmoys, 1992). Without this restriction, results
are likely to be elusive, since the problem of determining
whether 0max ≤L is NP-complete. Because of this
equivalence, we shall denote the problem with fixed

processing times as max,1 Lprecr j (and max1 Lr j when

there are no precedence constraints), using the notation
of Graham et al. (1979). As these scheduling problems
are known to be hard to solve optimally, most research
focuses on giving polynomial-time approximation

algorithms that produce a solution close to the optimal
one. Ideally, one hopes to obtain a family of polynomial
algorithms such that for any given 0>ε the
corresponding algorithm guaranteed to produce a
solution with a value within a factor of ()ε+1 of the
optimum value; such a family is called a polynomial time
approximation scheme (PTAS).

Hall et al. (1990) proposed two polynomial time

approximation schemes for problem max1 Lr j , the

running time of which are () ()()211log εε OnnnO +

and () ()()εε 1OnO . For the corresponding problem with
controllable processing times, Zdrzalka (1991) gives a
polynomial time approximation algorithm with a worst-
case ratio of ε+23 , where 0>ε can be made
arbitrarily small. When the precedence constraints are
imposed and the job processing times are fixed

(max,1 Lprecr j), Hall et al. (1990) give a PTAS. This

consists of executing, for ∆2log times, an extended

version of their previous PTAS for max,1 Lprecr j , where

∆ denotes an upper bound on the optimal value of any
given instance whose data are assumed to be integral.
This polynomial running time should be contrasted with

the time complexity of their result for problem max1 Lr j ,

where they were able to achieve a considerably better
time. To some extent, this is not surprising, since
precedence constraints add a substantial degree of
difficulty, and one important area of research in
scheduling theory has been to study under what
conditions a precedence-constrained problem is
computationally harder than its counterpart with
independent jobs.

In this paper we generalized the first known PTAS for

problem max,1 Lprecr j with controllable processing

times that runs in linear time (the hidden constant
depends exponentially on ε1) given by Mastrolilli (2006)
by using a new approximation algorithm for knapsack
problem. We use this to improve and generalize all the
previous results (Shmoys, 1989; Hall and Shmoys, 1990;
Hall and Shmoys, 1992; Zdrzalka, 1991; Mastrolilli, 2009).
The linear complexity bound is a substantial improvement
compared to the above mentioned result. Moreover, the
existence of a PTAS whose running time is also
polynomial in ε1 for a strongly NP-hard problem would
imply P=NP (Garey and Johnson, 1979).

The "0-1" knapsack problem is as follows:

Given n pairs of positive integers, ()jj ap , and a positive

integer b, find nxxx ,,, 21 � so as to

{ }.1,0,.

max

∈≤=

=

�

�

jjj

j
jj

xbxaAts

xpP

We may think of j as indexing items, with associated
profits jp and weights ja . The objective is to find the

most portifable possible selection of items wich can be
made to fit into a knapsack with capacity b. One variation
of the problem permits items to be chosen with repetition.
That is, jx is permitted to be any nonnegative integer.

This is sometimes called the "unbounded" knapsack
problem.

To obtain a new linear complexity bound we use the
method for simplifying the input. Rounding the input is a
widely used technique to obtain polynomial time
approximation schemes. Arithmetic or geometric
rounding is the most successfully and broadly used way
of rounding to obtain a simpler instance that may be
solved in polynomial time. It is well known that KP is NP-
hard but pseudopolynomially solvable through dynamic
programming, and the same properties hold for kKP.
Basically, the developed approximation approaches for
KP and kKP can be divided into two groups:

1) Approximation Algorithms: for KP the classical
2
1

-

approximation algorithm [] needs only)(nO running time.

An approximation ratio of
2
1

 can be obtained also for

kKP by rounding the dolution of the linear programming
relaxation of the problem (Capara et al., 2000) this
algorithm can be implemented to run in linear time when
the LP relaxation of kKP is solved by using the method by
Megiddo et al. (2000).
2) Polynomial time approximation scheme (PTAS): PTAS
reach any given approximation ratio and have a running
time polynomial in the length of the encoded input.
Caprara et al.(2000) gave an approximation ratio of
()ε+1 within []()nnnO log21 +−ε and []()11 −εnO
running time, for KP and kKP, respectively. The best
schemes currently known requiring linear space are given
in Mastrolilli and Hutter (2006); they present a PTAS for
KP and kKP requiring linear space a running

time () ()()εε 11log OnO () ()()εε 11log OknO +
respectively.

In this paper we first obtain a multiple-choice knapsack
problem for the best schemes currently known and at last
we improve a linear complexity bound for the assumed
scheduling problem.

Bayat et al. 309

MULTIPLE-CHOICE PROBLEMS

Suppose the n items are partitioned into m equivalence
classes and it is stipulated that no more than one item (or
multiples of one item) may be chosen from each
equivalence class. Such a problem is sometimes called a
multiple-choice knapsack problem.

In this paper we must relax the restrictions
{ } ,,,2,1,1,0 njx j �=∈ to 10 ≤≤ jx . If

,,,2,1, miS i �= denotes the set of indices of items in
the ith equivalence class, then we obtain a linear
programming problem of the form

.,,2,1,10

,,,2,1,1

,.

max

njx

mix

bxats

xp

j

Sj
j

j
jj

j
jj

i

�

�

=≤≤

=≤

≤

�

�

�

∈

For any feasible solution to this linear programming
problem, the profit-weight contribution of the items in the
ith equivalence class corresponds to the point in the

convex hull of the set of points (){ } { }0,0, ∪∈ ijj Sjpa .

Moreover, by dominance relaxations, this point can be
assumed to lie on the “upper boundery" of the convex hull.

Let the in corner points of the upper boundary for
equivalence class i be designated

() ()() () ()() () ()()
ii njnjjjjj papapa ,,,,,, 2211 � . These

points can be identified first by sorting the items into
nondecreasing order of ratios jj ap and then selecting

out the desired items by observing that

() ()
() ()

() ()
() () ,1,,2,1,0

1

1

1

1
−=>

−+
−+

>
−−
−−

i
jj

jj

jj

jj nk
kaka

kpkp

kaka

kpkp
�

where () () .000 == jj pa All corner points for all

equivalence classes can be identified in ()nnO log time.

Now, for ,1,,2,1 −= ink � let

() () ()

() () ().

,

1

1

−

−

−=

−=

kjkjkj

kjkjkj

ppp

aaa

With these new coefficients, we obtain a linear
programming problem of the form

310 Afr. J. Math. Comput. Sci. Res.

.10

,.

max

≤≤

≤�

�

j

j
jj

j
jj

x

bxats

xp

We assert that the optimal value of the objective function
for this new problem is equal to that of the previous one.

Now we solve this new linear programming problem, as

follows. Firstly, sort the items in nonincreasing
j

j

a
p

ratio, so that, without loss of generality,

n

n

a
p

a
p

a
p

≥≥≥ ...
2

2

1

1

Then place the items in the knapsack in order until either
(a) the items are exhausted or (b) the capacity is exactly
used up or (c) it is necessary to fractionalize one item to
use up the capacity exactly. In case (a) and (b), an
optimal solution is obtained, and it is unnecessary to
proceed further.

So suppose case (c) occurs and

baaa j <+++ ...21

But

baaaa jj >++++ +121 ...

We assert that

,2 00 PPP ≤≤ ∗

Where

{ },,...max max210 PpppP j+++=

and where

{ },maxmax j
j

pP =

as before. This is because

,max1
∗

+ ≤≤ Ppp j��������������,...21
∗≤+++ Pppp j�

But

.... 121
∗

+ >+++ Pppp j

Replacing maxp by 0P in (3.2), we obtain

,0 nPK ε=

and find that

.
2
ε
n

K
P ≤

∗

The compution can now be carried out in ()ε
2nO time

and space, exclusive of the time required to sort the

items in
j

j

a
p

 order.

Now it is not hard to see that this optimal solution has
the property that, for each () 1, =kji xS

implies () ()111 >=− kx kj , and () 0=kjx implies

() ()ikj nkx <=+ 0 . For each iS let

() () ()

()��

�
�
�

<

<==
=′ +

1,0

,11,

1

1

j

kjikjkj

i xif

xornkeitherandxifp
p

then, by reasoning similar to upon, the desired bound is

{ }.,max max210 ppppp m′++′+′= �

However, we can proceed as taking

,0 mPK ε=

so that

.
2
ε
m

K
P ≤

∗

The list of pairs ()AQ, is processed with iteration over
equivalence classes, rather than single items, making the
computation rather similar to the large-item computation.

Initially the list contains only the pair ()0,0 . At the end

of iteration i, each pair ()AQ, is identified with a feasible
solution containing items chosen from equivalence
classes 1 through i. Suppose there are in items in

equivalence class i, to perform iteration i, form in

candidate items for each pair ()AQ, existing in the list at

the end of iteration 1−i . These candidate pairs are
placed in in separate candidate lists. The 1+in lists are
then merged, eliminating dominated entries.

Iteration i requires ()εmnO i time, ()εmO space,

and at most ()εmO nodes are added to the tree used
for backtracing. In this paper we obtain our resultes by
using these methods.

SIMPLIFYING THE INPUT

We start by transforming any given instance into a
standard form. Let,

{ }Jjqq j ∈= ;maxmax�����{ }Jjrr j ∈= ;maxmax

��
∈

=
Jj

jdD� ���{ }u
jj

l
jjj cucld ++= ,min

Moreover, let OPT denote the optimal solution value of
the given instance.

Lemma 1

Without loss of generality, we can assume that the
following holds:

�31 ≤≤ OPT�
��{ } 1,,max maxmax ≤qrD

30&30 ≤≤≤≤≤≤ l
j

u
jjj ccul

Proof (Capara et al., 2000)

Following Lageweg et al. (1977), if kj JJ � and kj rr > ,

then, we can reset jk rr =: and each feasible schedule

will remain feasible. Similarly, if kj qq < then we can

reset kj qq =: without changing the objective function

value of any feasible schedule. Thus, by repeatedly
applying these updates we can always obtain an
equivalent instance that satisfies,

()kjkjkj qqrrJJ ≥≤� ,� (1)

Such a resetting requires ()lO time, where l denotes the
number of precedence constraints. Thus in the following
we assume that (1) holds. A technique used by Hall et al.
(1989) allows us to deal with only a constant number of
release dates and delivery times. The idea is to round
each release and delivery time down to the nearest
multiple of εi , for Ν∈i . Since 1max ≤r , the number of
different release dates and delivery times is now bounded
by 11 +ε . Clearly, the optimal value of this transformed
instance cannot be greater than OPT. Every feasible

Bayat et al. 311

solution for the modified instance can be transformed into
a feasible solution for the original instance just by adding
ε to each job’s starting time, and reintroducing the

original delivery times. It is easy to see that the solution
value may increase by at most ε2 . Therefore, we will
assume henceforth that the input instance has a constant
number of release dates and delivery times, and that
condition (1) holds. We shall refer to this instance as I. By
the previous arguments, OPT ¸ OPT (I), where OPT (I)
denotes the optimal value for instance I.

Partitioning the set of Jobs

Partition the set of jobs in two subsets:

{ },: 2ε>= jj dJL , { }2: ε≤= jj dJS

Let us say that L is the set of large jobs, while S the set of
small jobs. Observe that the number of large jobs is
bounded by 21 ε by Lemma 1. We further partition the
set S of small jobs as follows. For each small job

SJ j ∈ consider the following three subsets of L:

() { }

() { }

() () ()()jSucjeLjFree

JJLJjSuc

JJLJje

ijj

jij

∪−=

∈=

∈=

Pr

,:

,:Pr

�

�

Let us say that () () () (){ },,,Pr jFreejSucjejT = ;

represents a 3-partition of set L with respect to job jJ .

We form the set ()jTT j∪= which is the set of all

distinct 3-partitions. We will index the items in set T
by τTT ,...,1 , where T=τ . The number τ of distinct 3-

partitions is clearly bounded by the number of small jobs

and by
2133 ε≤L , therefore { }ετ 13,min n≤ . Now, we

define the execution profile of a small job jJ to be a 3-

tuple 321 ,, iii such that 1.ir j ε= , 2.iq j ε= and

()
3i

TjT = where ε1,,2,1, 21 �=ii and

τ,,13 �=i .For any given instance, the number of
distinct execution profiles is clearly bounded by the
number of jobs and, by the previous arguments, cannot

be larger than () τε 211+ .

312 Afr. J. Math. Comput. Sci. Res.

Lemma 2

The number π of distinct execution profiles is bounded by

()
�
�
	

�
�
� +≤

21
113,min 2

επ εn .

Partition the set S of small jobs into π subsets,

πSSS ,...,, 21 such that jobs belonging to the same subset
have the same execution profile. Clearly,

{ } { }.,,,,2,1 21 =∩∪∪=∈≠∀ ji SSSSSSji ππ ��

Adding new precedences

Let us say that job hJ is a neighbor of set

{ () }π,,1; �=iS i if:

hJ Is a small job;

ih SJ ∉ ;

there exists a precedence relation between job hJ and

some job in iS .

Moreover, we say that hJ is a front-neighbor (back-

neighbor) of iS if hJ is a neighbor of iS and there is a job

ij SJ ∈ such that ()jhhj JJJJ �� .

Let () ii Sni == π,,1 � , and let ()ini i
JJ ,.1 ,,�

denote any fixed and complete ordering of the jobs from

iS that is consistent with the precedence relation. In the
rest of this section we restrict the problem such that the
jobs from iS are processed according to this fixed
ordering. Furthermore, every back-neighbor (front-
neighbor) hJ of () iSi π,,1 �= must be processed

before (after) every job from iS . This can be

accomplished by adding a directed arc from ijJ , to ijJ ,1+ ,

for 1,,1 −= inj � , and by adding a directed arc from

hJ to iJ ,1 , if hJ is a back-neighbor of iS , or an arc from

ini
J , to hJ , if hJ is a front-neighbor.

We will see later that this transformation does not
considerably affect the optimal solution value. The idea is
that the jobs from iS are “similar” and small. So fixing an
arbitrary order among them and updating precedence

constraints appropriately does not deteriorate too much
the solution quality.

Finally, note that the resulting precedence graph is
without cycles. Indeed, it can be easily checked that a
neighbor hJ of iS for ()π,,1 �=i cannot
simultaneously be a front neighbor and a back-neighbor
of iS . The number of added arcs can be bounded by

ln + (recall that l denotes the number of precedence
constraints of the input instance).

We observe that condition (1) is valid also after these
changes. Indeed, if hJ is a back-neighbor of iS then

there is a job ij SJ ∈ such that jh JJ � , and therefore

by condition (1) we have jh rr ≤ and ih qq ≥ . But, the

jobs from iS have the same release dates and delivery

times, therefore jh rr ≤ and ih qq ≥ for each ij SJ ∈ . It

follows that if we restrict hJ to be processed before the

jobs from iS , condition (1) is still valid. Similar arguments

hold if hJ is a front-neighbor. Moreover, all the jobs from

iS have the same release dates and delivery times,
therefore condition (1) is still satisfied, if we restrict these
jobs to be processed in any fixed ordering that is
consistent with the precedence relation.

Compact representation of job subsets

Consider set iS (for π,,1�=i). Note that the number of

jobs in iS may be O(n).�We replace the jobs from iS with

one compact job #
iJ . Job #

iJ has the same release ()#
ir

and delivery time ()#
iq as the jobs from iS . Furthermore,

if ()jkkj JJJJ �� , ikii SJSJ ∉∈ , , then in the new

modified instance we have ()##
ikki JJJJ �� , and

the resulting precedence relation on #
iJ is “well-defined”,

since all jobs from iS are predecessors (successors) of

kJ .

Finally, the processing requirement of #
iJ is s

pecified by a finite set of alternative pairs of processing
times and costs determined as follows. Consider the
following set (){ }3,,1, �επεπε +=sV by simple

algebra, we have ()21 εOVs = . Recall that π is the

number of distinct execution profiles. Let () ii AB be the

value obtained by rounding ��
∈∈

�

�

�

�

ii Sj
j

Sj
j lu up to the

nearest value from set sV . The possible processing times

for #
iJ are specified by set Pi of values from VS that fall in

interval []ii BA , , that is, []iisi BAVP ,: ∩= . For

each value iPp ∈ , we compute the corresponding cost

value ()pCi as follows. Consider the problems

()pS i , of computing the minimum sum of costs for jobs

belonging to iS , when the total sum of processing times
is at most p, for every p 2 Pi. We can formulate problem
()pS i , by using the following linear program LP(Si; p):

()()�
∈

−+
iSj

u
jj

l
jj cc δδ 1min�

()()�

∈
≤−+

iSj
jjjj pults δδ 1..

ij SJ ∈, 10 ≤≤ jδ

By setting jj x−= 1δ , it is easy to see that an optimal

solution for LP(Si; p) can be obtained by solving the
following linear program:

()

()

ijj

Sj
j

Sj
jjj

Sj
j

u
j

l
j

SJx

lpxluts

xcc

ii

i

∈≤≤

−≤−

−

��

�

∈∈

∈

,10

..

max

Note that �− jlp is non-negative, since iPp ∈ and

the smallest value of iP cannot be smaller than� jl .

The previous linear program corresponds to the classical
knapsack problem with relaxed integrality constraints. By
section 1 and by partially sorting jobs in nonincreasing

jj

u
j

l
j

lu

cc

−
−

 ratio order, the set (){ }ii PppSLP ∈;, of

()31 εO many problems can be solved in

() ()()εε 11log O
iSO time by using the method of section

3. For each value iPp ∈ , the corresponding cost value

()pCi is equal to the optimal solution value of

Bayat et al. 313

(){ }ii PppSLP ∈;, rounded up to the nearest value in

set sV . It follows that the number of alternative pairs of

processing times and costs for each compact job #
iJ is

bounded by the cardinality of set iP . Furthermore,

since� ≤
π

nS i , it is easy to check that the amortized

total time to compute the processing requirements of all

compact jobs is () ()()εε 11log OnO . Therefore, each set

iS is transformed into one compact job #
iJ with ()31 εO

alternative pairs of costs and processing times. We use
#S to denote the set of compact jobs.
Now, let us consider the modified instance as

described so far and turn our attention to the set L of
large jobs. We map each large job LJ j ∈ to a new job

#
iJ which has the same release date, delivery time and

set of predecessors and successors as job jJ , but a

more restricted set of possible processing times and
costs. This restricted set is chosen such that we can still
obtain a near-optimal solution, so the restriction does not
significantly deteriorate the objective function value. More
precisely, let Aj (and Bj) be the value obtained by
rounding () jj lu , up to the nearest value from

set (){ }3,,1, 33
�εεε +=LV . The possible processing

times for #
iJ are specified by set []jjLj ulVP ,: ∩= . For

each value jPp ∈ , the corresponding cost value ()pC j

is obtained by rounding up to the nearest value of set

LV the cost of job jJ when its processing time is p. We

use #L to denote the set of jobs obtained by
transforming jobs from L as described so far.

Let #I denote this modified instance. We observe that
#I can be computed in () () ()()211 21log εεε OOnO +

time: the time required to partition the set of jobs into

π subsets can be bounded by
()()212 εOlnO ++ is the

time to add new precedences; ()()εε 1log1 2nO is the
time to compute the alternative pairs of costs and
processing times. Moreover, this new instance has at

most () 221 1113
2

εεε ++⋅=V jobs; each job has
a constant number of alternative pairs of costs and
processing times. Now let us focus on #I and consider
the problem of finding the schedule for #I with the
minimum scheduling cost such that compact jobs can be
preempted, while interruption is not allowed for jobs
from #L .

314 Afr. J. Math. Comput. Sci. Res.

RESULT

We have obtained a new linear complexity bound for the
specific scheduling problem with controllable processing
time by using a new complexity bound for the kKP.

ACKNOWLEDGEMENTS

The authors are grateful to Islamic Azad University
Naragh Branch for the assistance rendered to our project.
This thesis is extracted from the project “Using
metaheuristic methods and polynomial time
approximation algorithm for solving a strongly NP-hard
scheduling problem”.

REFERENCES

Capara A, Kellerer H, Pfershy U, Pisinger D (2000). Approximation

algorithms for knapsack problems with cardinality constraints, Eur. J.
Oper. Res., 123: 333-345.

Garey MR, Johnson DS (1979). Computers and intractability; A guide to
the theory of NP-completeness. W.H. Freeman.

Graham R, Lawler E, Lenstra J, Kan AR (1979). Optimization and
approximation in deterministic sequencing and scheduling: A survey.
In Ann. Discrete Math., North–Holland, 5: 287–326.

Hall L, Shmoys D (1989). Approximation algorithms for constrained
scheduling problems. In Proceedings of the 30th IEEE Symposium
on Foundations of Computer Science, pp. 134–139.

Hall L, Shmoys D (1990). Near-optimal sequencing with precedence

constraints. In Proceedings of the 1st Integer Programming and
Combinatorial Optimization Conference, University of Waterloo Press,
pp. 249–260.

Hall L, Shmoys D (1992). Jackson’s rule for single-machine scheduling:
Making a good heuristic better. MOR: Math. Oper. Res., 17: 22–35.

Lageweg B, Lenstra J, Kan AR (1977). Minimizing maximum lateness
on one machine: Computational experience and some applications.
Statist. Neerlandica, 30: 25–41.

Lenstra JA, Kan R, Brucker P (1977). Complexity of machine
scheduling problems. Ann. Oper. Res., 1: 343–362.

Zdrzalka S (1991). Scheduling jobs on a single machine with release
dates, delivery times, and controllable processing times: Worst-case
analysis. Oper. Res. Lett., 10: 519–532.

Mastrolilli M (2009). A linear time approximation scheme for single
machine scheduling problem with controllable processing times. J.
Algorithms, Article in press.

Megiddo M, Tamir A (2000). Linear time algorithms for some separable
quadratic programming problems, Oper. Res. Lett., 13: 203-211.

Mastrolilli M, Hutter M (2006). Hybrid rounding techniques for knapsack
problems. Discrete Appl. Math., 154: 640-649.

