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Incidents of cancer in Sudan have been growing in numbers over the last five decades (1967-2010). 
Using data compiled regularly by radiations isotope of cancer in Khartoum (RICK) - which continued to 
be the only cancer treatment centre in Sudan for over the last half century- its trend is studied using 
Box-Jenkins methodology in time series analysis is the optimal method applied to the pattern. This 
method consists of four steps namely identification, estimation, diagnostic checking, and forecasting 
by autoregressive integrated moving average (ARIMA) models. Future forecasts drawn show that the 
number of incidents is likely to continue growing if no significant intervention is made by the health 
authorities as intervention measures are undertaken to curb it. 
 
Key words: Radiations isotope of cancer in Khartoum (RICK), cancer, autoregressive integrated moving 
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INTRODUCTION 
 
Despite the fact that data on health are generally very 
scanty, fairly good data on cancer incidents have been 
compiled via continuous registration systems at hospital 
levels. Good sources of data on cancer incidents over the 
years have been those records of patients attending the 
only ontological hospital offering specialized treatment for 
cancer in the country, the radiation and isotopes centre, 
Khartoum (RICK), and the Sudan cancer registry based 
on histopathologically confirmed cases diagnosed in the 
National Health Laboratories in Khartoum (Parkin et al., 
2003). Early reports presented data on histopathologically 
confirmed cases. For example, Hickey (1959) reported 
1,335 malignant epithelial neoplasms collected from the 
Stack Medical Research Laboratories during the period 
1935-1954, El Hassan and Lynch (1962) reported 2,234 
malignant tumors collected from the same source and 

from the Department of Pathology, University of 
Khartoum, for the period 1954-1961. This series was 
reproduced by Daoud et al. (1968) and compared with 
1,578 malignant tumors from Khartoum district examined 
at the Department of Pathology in 1957-1965.  

Table 1 and its corresponding pictorial representation 
Figure 1, shows the general growth pattern of incidents of 
cancer in Sudan as compiled from different data sources 
which is approximately an exponential trend. 

A cursory look at these data coupled with some 
calculations reveal that cancer incidents in Sudan have 
been growing at an average annual rate of 0.061 over the 
period covered. Taking source of data into consideration, 
the considerable growth in the number of incidents of 
cancer in Sudan over the last decade or so, as observed 
from Figure 1, may be attributed to increasing awareness 
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Table (1). Incidents of Cancer in Sudan (1967- 2010). 
 

Year 
Number of incidents 

of cancer 
Cancer 

rate/1000 
Year 

Number of Incidents 
of cancer 

Cancer 
rate/1000 

1967 303 0.0234 1989 1357 0.0558 

1968 448 0.0339 1990 1572 0.0629 

1969 540 0.0400 1919 1494 0.0582 

1970 512 0.0371 1992 2157 0.0817 

1971 538 0.0382 1993 1847 0.0722 

1972 500 0.0348 1994 1645 0.0625 

1973 562 0.0398 1995 1733 0.0640 

1974 692 0.0472 1996 1810 0.0649 

1975 470 0.0308 1997 2119 0.0739 

1976 565 0.0357 1998 2145 0.0727 

1977 738 0.0449 1999 2102 0.0692 

1978 545 0.0319 2000 2541 0.0813 

1979 568 0.0320 2001 2963 0.0922 

1980 704 0.0381 2002 3070 0.0928 

1981 672 0.0350 2003 3185 0.0936 

1982 773 0.0388 2004 3450 0.0986 

1983 870 0.0422 2005 3705 0.1029 

1984 913 0.0431 2006 3505 0.0946 

1985 903 0.0415 2007 4813 0.1262 

1986 1112 0.0497 2008 5156 0.1317 

1987 927 0.0403 2009 5739 0.1425 

1988 1308 0.0553 2010 6303 0.1522 

 
 
 

among patients of the need to visit specialized hospitals 
for diagnosis and treatment, where they will be registered 
via the continuous registration system. This pointed to the 
seriousness of the situation and necessitated the 
investigation of volume of future incidents which will 
occur if similar conditions prevail. These number 
incidents rate expressed as rates per 1000 population are 
also shown in Table 1. Its annual rate of growth over the 
period covered is 0.03443 which is fairly similar to its 
counterparts for other common diseases in Sudan such 
as malaria (FMOH, 2010).    
 
 

Cancer incidents model 
 

As is generally known, developing a time series model 
from such data starts by exploring the main features 
inherent in the series. Among these features are 
stationarity and the existence of seasonality (cyclical 
pattern) in the data. Appropriate statistical procedures will 
now be used for investigating these aspects of the series 
in an attempt to determine the suitable time series model 
that fits it. 
 
 

Testing for stationarity 
 

Stationary series vary around the constant mean level, 
neither decreasing nor increasing systematically over 

time with constant variance. Certain time series models, 
like the Box-Jenkins model, assume the existence of 
stationarity. General Box-Jenkins model includes difference 

operators, autoregressive terms, moving average terms, 
seasonal difference operators, seasonal autoregressive 
terms, and seasonal moving average terms. This phase is 

founded on the study of autocorrelation and partial 
autocorrelation.  

The Box-Jenkins model assumes the stationarity of the 
series under investigation, which means that the series 
has constant mean, constant variance, and constant 

autocorrelation structure. Thus, the first step in developing a 
Box-Jenkins model is to determine if the series is stationary 
and if there is any significant seasonality that needs to be 

modeled (Box and Jenkins, 1970). 
Consider the AR (1) model: 
                       
  

 

For this model the autoregressive polynomial equation 
is  and therefore is the root of the 

autoregressive polynomial. Thus, for the AR (1) model to 

be stationarity, it is required that  and 

therefore . 
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Figure 1. Incidents of cancer in Sudan (1967-2010). 

 
 
 

Similarly, for an MA (1) model  to 

be invertible, it is required that   and therefore 

 . 

 
For the stationarity and invertibility conditions for other 
popular Box-Jenkins models like the AR (2), MA (2), and 
ARMA (1, 1) models, see ADF and PACF results.  

By definition, all AR (p) models are invertible while all 
MA (q) models are stationarity. Now consider the 
practical implications of stationarity and invertibility in 
Box-Jenkins models.  When a Box-Jenkins model is 
stationarity, its observations yt satisfies the following 
three properties: 
  

(1) E(y)t =μ (that is, the mean of  is constant for all 

time periods)  

(2) Var(yt ) =   (that is, the variance of is constant 

for all time periods)  

(3) Cov( ) =  (that is, the covariance between 

 is constant for all time periods and fixed j, j = 

1, 2,)   

These three conditions give rise to what is called weak 
stationarity (or  just  stationarity  for  short).  The  practical 

implication of stationarity is that only one realization of 
the time series yt is needed for us to be able to 

consistently estimate the mean μ, the variance , the 

covariance , and the autocorrelation with the sample 

statistics   and . These statistics are defined as:   

 

                                                            (1) 

 

                                                          (2) 

 

                                        (3) 

 

                                 (4) 

 
where T denotes the total number of observations 
available on yt  (sample mean) for Equation 1, Equations 
2 is the Sample variance; 3 is Sample covariance and 4 
Sample autocorrelation. Stationarity can be accessed 
from a run sequence plot. The run sequence plot should 
show constant location and scale. It can also be detected 
from an autocorrelation plot. Specifically, non-stationarity 
is often indicated by an autocorrelation plot with very slow 
decay. 



 

 
 
 
 
Box and Jenkins recommend differencing non-stationary 
series one or more times to achieve stationarity. Doing so 
produces an Autoregressive integrated moving average 
(ARIMA) model, with "I" short for "Integrated". But its first 

difference, expressed as 
Δy

t 
= y

t 
− y

t−1 
= u

t 
,  
 is 

stationary, so y is integrated of order 1”, or y ~ I  .  
 
 
Seasonality in Box-Jenkins models  
 
Box-Jenkins models can be extended to include seasonal 
autoregressive and seasonal moving average terms.   
Model identification: seasonality of order s is revealed by 
"spikes” at s, 2s, 3s, lags of the autocorrelation function.  
Model estimation: to make a series stationary, may need 
to take s

th
 differences of the raw data before estimation. 

These seasonal effects may themselves follow AR and 
MA processes.  

At the model identification stage, our goal is to detect 
seasonality, if it exists, and to identify the order for the 
seasonal autoregressive and seasonal moving average 
terms. For Box-Jenkins models, it isn’t necessary to 
remove seasonality before fitting the model. Instead, it 
can include the order of the seasonal terms in the model 
specification to the ARIMA estimation software.   
Once stationarity and seasonality have been addressed, 
the next step is to identify the order (the p and q) of the 
autoregressive and moving average terms. The primary 
tools for doing this are the autocorrelation plot and the 
partial autocorrelation plot. The sample autocorrelation 
plot and the sample partial autocorrelation plot are 
compared to the theoretical behaviour of these plots 
when the order is known.   
 
 
Order of autoregressive process (p)  
 
Specifically, for an AR (1) process, the sample 
autocorrelation function should have an exponentially 
decreasing appearance. However, higher-order AR 
processes are often a mixture of exponentially 
decreasing and damped sinusoidal components. For 
higher-order autoregressive processes, the sample 
autocorrelation needs to be supplemented with a partial 
autocorrelation plot. The partial autocorrelation of an AR 
(p) process becomes zero at lag p+1 and greater, so we 
examine the sample partial autocorrelation function to 
see if there is evidence of a departure from zero. This is 
usually determined by placing a 95% confidence interval 
on the sample partial autocorrelation plot (most software 
programs that generate sample autocorrelation plots will 
also plot this confidence interval). If the software program 
does not generate the confidence band, it is 
approximately ±2/N, with N denoting the sample size.  

The data is AR (p) if:  autocorrelation function (ACF) 
will decline steadily, or follow a damped cycle and  partial  
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autocorrelation function (PACF) will cut off suddenly after 
p lags.  
 
 
Order of moving average process (q)  
 
The autocorrelation function of an MA (q) process 
becomes zero at lag q+1 and greater, so we examine the 
sample autocorrelation function to see where it essen-
tially becomes zero. Alternating positive and negative, 
autoregressive model. Using the partial autocorrelation 
plot to decaying to zero, help identify the order as one or 
more spikes; the rest are Moving average model, where 
order is identified by where plot essentially zero, 
becomes zero. Decay, starting after a few lags mixed 
autoregressive and moving average model. All zero or 
close to zero data is essentially random. High values at 
fixed intervals Include seasonal autoregressive term. No 
decay to zero series is stationary. 
The data is MA (q) if: ACF will cut off suddenly after q 
lags and PACF will decline steadily, or follow a damped 
cycle.  
It is not indicated to build models with:  
(1) Large numbers of MA terms   
(2) Large numbers of AR and MA terms together; you 
may well see very (suspiciously) high t-statistics. This 
happens because of high correlation (“co linearity”) 
among regressors, not because the model is good.  

It is observable from Figure 2 that the time series is 
likely to have random walk pattern. Moreover, ACFs 
suffered from linear decline and there is only one 
significant spike for PACFs. The correlogram also 
suggests that ARIMA (1, 0, 0) may be an appropriate 
model. Then, we take the first-difference of "cancer" to 
see whether the time series becomes stationary before 
further finding AR (p) and MA (q). 

To see whether first difference can get level-stationary 
time series or not, the results are: the first-difference 
series "cancer" becomes stationary as shown in line 
graph (Figure 3) and is white noise as it shows no 
significant patterns in the graph of correlogram (Figure 4). 
And the unit root test also confirms the first-difference 
becomes stationary since the ADF value is less than 1%   
critical value l, (Tables 2 and 3). 
 
 
Box-Jenkins model estimation  
 
The main approaches to fitting Box-Jenkins models are 
non-linear least squares and maximum likelihood 
estimation. Maximum likelihood estimation is generally 
the preferred technique (Box et al., 1994). 
 
 
Box-Jenkins model diagnostics 
 
Model diagnostics for  Box-Jenkins  models  is  similar  to  
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Figure 2. First difference trend of cancer series in Sudan (1967-2010). 

 
 
 

Table 2. Correlogram graph of incidents of cancer in Sudan (1967-2010). 
 

Auto correlation Partial correlation  AC PAC Q-Stat Prob 

. |*******| . |*******| 1 0.866 0.866 35.333 0.000 

. |****** | . | .     | 2 0.754 0.012 62.708 0.000 

. |*****  | . | .     | 3 0.654 -0.004 83.855 0.000 

. |****   | . | .     | 4 0.556 -0.048 99.517 0.000 

. |****   | . |*.     | 5 0.509 0.146 112.98 0.000 

. |***    | .*| .     | 6 0.447 -0.070 123.63 0.000 

. |***    | . | .     | 7 0.388 -0.021 131.84 0.000 

. |***    | . | .     | 8 0.334 -0.018 138.13 0.000 

. |**     | . | .     | 9 0.276 -0.024 142.53 0.000 

. |**     | .*| .     | 10 0.214 -0.074 145.27 0.000 

. |*.     | . | .     | 11 0.168 0.018 147.00 0.000 

. |*.     | . | .     | 12 0.137 0.030 148.19 0.000 

. |*.     | .*| .     | 13 0.095 -0.068 148.79 0.000 

. | .     | . | .     | 14 0.054 -0.045 148.99 0.000 

. | .     | . | .     | 15 0.032 0.056 149.06 0.000 

. | .     | . | .     | 16 0.003 -0.033 149.06 0.000 

. | .     | . | .     | 17 -0.020 -0.028 149.09 0.000 

. | .     | .*| .     | 18 -0.056 -0.078 149.33 0.000 

.*| .     | .*| .     | 19 -0.112 -0.100 150.35 0.000 

.*| .     | . | .     | 20 -0.143 0.018 152.08 0.000 

 
 
 
model validation for non-linear least squares fitting. That 
is, the error term ut is assumed to follow the assumptions 
for a stationary unvaried process. The residuals should 
be white noise (or independent when their distributions 
are normal) drawings from a fixed distribution with a 
constant mean and variance.  

If the Box-Jenkins model is a good model for the data, 
the residuals should satisfy these assumptions. If these 
assumptions  are  not  satisfied,  we  need  to  fit  a  more 

appropriate model. That is, we go back to the model 
identification step and try to develop a better model. 
Hopefully the analysis of the residuals can provide some 
clues as to a more appropriate model. The residual 
analysis is based on:  
 

                               (5) 

 
(1) Random residuals: the  Box-Pierce  Q-statistic:  where  
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Table 3. Correlogram graph of first difference cancer series. 
 

Auto correlation Partial correlation  AC PAC Q-Stat Prob 

. | .     | . | .     | 1 -0.027 -0.027 0.0338 0.854 

. |**     | . |**     | 2 0.213 0.212 2.1758 0.337 

. |**     | . |**     | 3 0.215 0.237 4.4206 0.219 

. |*.     | . |*.     | 4 0.096 0.079 4.8741 0.300 

. | .     | .*| .     | 5 0.000 -0.094 4.8741 0.431 

. |*.     | . | .     | 6 0.138 0.049 5.8753 0.437 

. |*.     | . |*.     | 7 0.074 0.078 6.1681 0.520 

. | .     | . | .     | 8 0.057 0.047 6.3470 0.608 

. |*.     | . |*.     | 9 0.127 0.076 7.2663 0.609 

. | .     | . | .     | 10 0.047 -0.005 7.3962 0.688 

.*| .     | .*| .     | 11 -0.067 -0.143 7.6643 0.743 

. |*.     | . | .     | 12 0.120 0.051 8.5569 0.740 

. | .     | . | .     | 13 -0.053 -0.026 8.7388 0.792 

**| .     | **| .     | 14 -0.271 -0.319 13.656 0.476 

. |**     | . |*.     | 15 0.198 0.165 16.368 0.358 

.*| .     | . | .     | 16 -0.125 0.009 17.483 0.355 

. | .     | . | .     | 17 -0.008 0.046 17.489 0.422 

. | .     | . | .     | 18 0.030 0.017 17.556 0.485 

. |*.     | . |*.     | 19 0.095 0.084 18.280 0.504 

.*| .     | . | .     | 20 -0.114 -0.055 19.379 0.497 

 
 
 

Table 4. Augmented Dickey-Fuller Unit Root test on cancer series in Sudan (1967-2010). 
 

ADF Test Statistic 4.43351 1%   Critical value* -3.593 

   5%   Critical value -2.932 

   10% Critical value -2.6039 
 

Source: Own construction from study data analysis. 
 
 
 
r(k) is the k-

th
 residual autocorrelation and summation is 

over first s autocorrelations.  
(2) Fit versus parsimony: the Schwartz Bayesian Criterion 
(SBC):  
 

SBC = ln {RSS/n} + (p+d+q) ln (n)/n,  
 

where RSS = residual sum of squares, n is sample size, 
and (p+d+q) the number of parameters.  

Having investigated the main feature of cancer data for 
1967- 2010 in an attempt to lay the foundation for choice 
of the appropriate method of fitting a model which best 
fits the data, and having concluded that the data as in 
Table 1 is an ARIMA (1, 1) model it is now time for fitting 
it to the data, that is, its parameters will now be obtained 
from cancer data. 

Model with high adjusted R
2 

indicates that the 
regression line perfectly fits the data, small value of the 
Akaike information criterion (AIC) is the best model and 
Durbin–Watson statistic around 2 indicates no 
autocorrelation in the model, (Table 4). 

Cancer is being diagnosed more and more frequently in 
the Sudan recently because there is lack of practical 
advice for programme managers and policy-makers on 
how to advocate, plan and implement effective cancer 
control programmes.  
 
 

Incidents of cancer in Sudan for 2011- 2025 
 
Using the developed model, forecasts of incidents 
expected to occur in future (other things follow similar 
patterns) are given in Table 5. 
 
 

Conclusion 
 
Incidents of cancer in Sudan started growing steadily in 
number since the mid-sixties and are likely to continue 
growing over the next 15 years (Table 5), if no significant 
intervention is made by the health authorities. Since the 
main causes behind such growing numbers remain to  be  
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Table 5. Augmented Dickey-Fuller Unit Root test on first difference cancer 
series (1967-2010) in Sudan. 
 

ADF Test Statistic -3.923045     1%   Critical value* -3.5973 

        5%   Critical value -2.9339 

        10% Critical value -2.6048 
 

Source: Own construction from study data analysis. 
 
 
 
investigated, such interventions are likely to include: 
increasing the awareness of the importance of early 
detection and provision of treatment centres etc. 
However for more concrete solution to the problem, 
researches on the main cause of cancer in Sudan are 
inevitable. 
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