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Motivated by the assertion that all physical systems exist in three space dimensions, and that 
representation in one or two space dimensions entails a large degree of approximations. The main 
objective of this paper is to extend the successive over-relaxation (SOR) method which is one of the 
widely used numerical methods in solving the Laplace equation, the most often encountered of the 
Elliptic partial differential equations (PDEs) in two dimensions to solving it in three dimensions. This is 
done by providing an easier procedure to obtain proper estimates to the SOR parameter and the 
stability criterion which are the two determinant elements used in facilitating convergence to the 
solution when solving PDEs by the SOR method. The hope is that, with the emergence of this finding, 
the representation of physical and environmental science problem will be closer to reality by 
representing them in three dimensions. 
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INTRODUCTION 
 
To describe changes in a most physical system, there is 
a need to study partial differential equations (PDEs). The 
general linear equations governing physical fields take 
the form: 

 

 + C  = D  + E  + FU + G 
          (1) 

 
By letting the parameters A to G assume positive, 
negative or zero magnitude, the PDE could be classified 
as being hyperbolic, parabolic or elliptic. For instance, if 
AC > B

2
, the equation is termed elliptic. The same 

situation will arise if B is 0, and A and C are positive. This 
classification of PDEs into these three categories is 
necessary because the basic analytical and numerical 
methods for treating field problems are different for the 
three types of equations (Vemuri and Karplus, 1981). It is 
also possible for an equation to be of more than one type, 
depending on the values of the coefficients. As an 

example, the equation 
  = 0, 

 is elliptic for y > 
0,   parabolic    for    y = 0,    and    hyperbolic    for   y < 0  

(Kallin, 1971b). 
In this research, interest is in the elliptic type of 

equation and specifically in the Poisson equation. The 
most often encountered of the elliptic PDE, and indeed of 
all PDEs in applied physical sciences and physics, is 
Laplace’s equation as stated by Brandt and Diskin 
(1999). This is a special case of the Poisson equation 
and it arises when all the terms on the right hand side of 
the Poisson equation equal zero. The prototypical elliptic 
equation in three dimensions is the Poisson equation of 
the form: 
 

,                                 (2) 

 

where the source term   is given. Thus, if this source 

term is equal to zero, the equations become Laplace’s 
equation. The cross product term is not included because 
there is no theoretical foundation to expect convergence 
in such a case as seen in Kallin (1971a). 

The advantage of the Poisson equation as stated by 
Reynolds  (1988)  lies  in its mode of solution. That is, the  



 
 
 
 
Poisson equation also has the important benefit of 
behaving well numerically. Thus, when the equations are 
expanded by finite differencing into a set of linear 
algebraic equations, they can be solved iteratively to 
obtain a unique solution. This behaviour is especially 
convenient since the set of equations varies as the 
boundary points respond to changes. 
 
 
SOLVING THE THREE-DIMENSIONAL (3D) LAPLACE 
EQUATION 
 
In order to solve the Laplace equation which is also an 
example of a boundary value problem, it is necessary to: 
 
1) Specify boundary values along the perimeter of the 
region of interest, 

2) Set the forcing term  to the Laplacian; otherwise  is 

set to zero. 
 
One of the methods of solving this equation is the finite 
difference method as stated by Kallin (1971a). The 
resulting set of simultaneous equation can be solved 
either by elimination or by iterative methods as shown in 
Dorn and McCracken (1972). It is worth noting that 
solving simultaneous equations by elimination is not 
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a simple task, especially with a large system of algebraic 
equations. In fact, even for computers, the solution of a 
large system of algebraic equations by elimination may 
not be practicable because of storage requirements and 
accumulation of round-off errors. McCracken (1974) and 
Edgar (1992) provided some guidelines on how to build 
computer codes to solve systems of algebraic equations. 
Therefore, the best approach is to use an iterative 
method. This has the advantage over elimination in that it 
is self-correcting in the sense that the arithmetic error at 
any stage is eventually suppressed as described by 
Kallin (1971b).  

Since the resulting matrix arising from this finite-
differencing is sparse, it can be solved easily using the 
relaxation method. A somewhat more physical way of 
looking at the relaxation method, which also enhances 
convergence, is by making use of the diffusion equation. 
Therefore writing Equation 2 as a diffusion equation, with 
t as the time-step, the following equation is obtained.  
 

 = , 
                        (3) 

 

As t → , the solution to this problem is a solution to the 

original elliptic Equation 2. 
This can then be represented using finite differencing as: 

 
 

Where  represents the difference between two points in 

either the i, j or k directions and  represents the time-

step from one iteration to another. The solution of the 
system of linear simultaneous equations, resulting from 
this expression when all the boundary conditions have 
been applied, can be obtained by the relaxation method.  

The concern here shall be to establish the procedures 
for obtaining the stability criterion and the over-relaxation 
parameter which are the two determinant elements used 
in facilitating convergence to the solution when solving 
PDEs by the successive over-relaxation (SOR) method.   
 
 
Obtaining the stability criterion for 3D finite 
differencing 
 
The stability criterion for one-dimensional finite 

differencing of the diffusion equation is   and in 

the two-dimensional case, it is , where  

represents the time-step from one iteration to another. 
Empirically, the criterion for higher-dimensions can be 
obtained as follows: 
 
1) Let the number of dimensions  (the  number  of  spatial  

variables) be k and 
2) Let y be the order of the partial derivative, 
3) Then the stability criterion can be calculated as 

. 

 
Following this procedure, it is easy to see that the 
condition for stability for the 3D case when calculated will 

be . This matches with the suggestion of Roberts 

(2001) on the multi-grid solution of Poisson’s equation 
using diagonally oriented grids. 

 
 
Obtaining the over-relaxation parameter for 3D finite 
differencing 

 
To the best of my knowledge, the only attempt to 
estimate the optimum SOR parameter for higher order 
Laplace’s equation has been made by T.J. Randall, 
Department of Physics and Mathematics, John Dalton 
College of Technology, Manchester 1 Technical report, 
400–401. This was for the case of 3D region with axial 
symmetry. The approach used here is from Frankel 
(1950) point of view. From his formula for obtaining the 
over-relaxation   parameter     in    two    dimensions,    an  
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Table 1. The values obtained for the over-relaxation parameter in the 3D case, with 
varying dimensions. 
 

m n l 
 

10 10 10 1.528 

15 20 10 1.621 

40 35 20 1.796 

200 100 50 1.920 

230 65 46 1.907 

1000 1000 1000 1.994 

2000 2000 2000 1.997 

10000 10000 10000 1.999 
 

In all the cases, the value obtained lies between 1 and 2. This falls in line with the 
fact that the over-relaxation parameter should always lie between this ranges. 

 
 
 

extension to obtain this parameter for the 3D case was 
approached intuitively as follows: 
 
1) A close observation of the formula indicates that the 
calculation of the parameter does not depend on any 
other variable except the number of grid points and the 
number of spatial variables. This means that, if k = 2 is 
the number of spatial variables (that is, in the 2D case), 
and m and n are the number of grid points in the various 
directions (that is, the area is of dimension m × n), then a 
general rule for obtaining the over-relaxation parameter 

could be given as: 
-1

 
. 

To extend this to three dimensions, the following 
modifications can be made. 
2) In the parentheses containing , a third term 

was added containing the number of grid points in the 
third spatial variable, say l. This became 

, 

3) The multiplying factor of   , is    when k = 2 in the 2D 

case, therefore, in three dimensions, k= 3 and thus the 

multiplier becomes   .  

4) Thus, the formula for calculating the over-relaxation 
parameter in the 3D case can then be written as: 

-1, 
 or in the case 

where m = n = l, the shorter formula used was: 

. This matches what is described in Thompson 
(1961). 

 
 
NUMERICAL ILLUSTRATION 

 
Table 1 shows the values of over-relaxation parameters 
obtained using the idea proposed in the work for solving 
3D problems with some selected numbers of grid points. 
The  numbers  of  grid points in each dimension are given 

as m, n and l and the relaxation parameter ( ) is then 

calculated as previously described. 
To test whether the over-relaxation parameters so 

obtained are optimum, the following example of 3D 
problem was solved using different numbers of equally 
sized grid points from 10 to 100. The convergence 
criterion was set to 1 × 10

-6
 and the maximum number of 

iterations allowed was 10000. The numbers of iterations 
at the point of convergence were recorded at different 
over-relaxation parameters and then compared to the 
numbers of iterations at convergence when the over-
relaxation parameter calculated using the developed 
formula was used. 
 
 
Example 1 
 
Let u = x

2
z + 3z

3
y

2 
+ y

3
x

2
z + 1, found in Spiegel (1974), 

be considered in the interval [(0; 1); (0; 1); (0; 1)], with the 
x-axis divided into i = 1,...,m, the y-axis into j= 1,...,n and 
the z-axis into k=1,...,l grid points. The working surface is 
thus of dimension m ×n × l. To solve this problem, it is 
necessary to start by looking for the derivatives with 
regards to all the spatial variables. That is, 
 

;     
 

 

;   
 

 

;   

 
 
The boundary conditions are: 
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Table 2. The comparison of the rate of convergence when using different fixed over-relaxation parameters and those 
calculated using the formula herein developed.  
 

Relaxation coefficient  
1.99 1.9 1.8 1.7 1.6 1.5  

Grid points Iteration Iteration Iteration Iteration Iteration Iteration  iteration 

10 1500 146 74 54 35 30 1.528 31 
20 1504 172 79 70 110 148 1.728 65 
30 1499 178 96 175 248 326 1.811 97 
40 1534 162 192 309 430 561 1.854 129 
50 1508 166 302 473 653 849 1.881 160 
60 1494 192 431 666 916 1188 1.901 192 
70 1519 261 577 886 1215 1575 1.914 223 
80 1520 350 741 1132 1551 2007 1.924 254 
90 1607 446 922 1404 1920 2483 1.932 285 

100 1538 550 1119 1701 2323 3001 1.939 316 

 
 
 

 

 

      j = 2,...,n − 1;  k = 2,…, l – 1 

      j = 2,...,n − 1;  k = 2,…, l – 1 
 

 

 
 

 

  + 3     j = 2,...,n − 1;  k = 2,…, l – 1 

  + 3     j = 2,...,n − 1;  k = 2,…, l – 1  
 

 
 

 

     i = 2,...,m − 1;  k = 2,…, l – 1 

     i = 2,...,m − 1;  k = 2,…, l – 1 
 

 

 

 

    i = 2,...,m − 1;  k = 2,…, l – 1 

    i = 2,...,m − 1;  k = 2,…, l – 1 
 

 

 

 

      i = 2,...,m − 1;  j = 2,…, n – 1 

      i = 2,...,m − 1;  j = 2,…, n – 1 
 

 

 

 

   I=2,...,m−1;j=2,…,n–1  

   I=2,...,m−1;j=2,…,n–1   
 

 

 

 

  i = 2,...,m − 1;  j = 2, … ,n 

–1; k = 2, ... ,l - 1      i = 2,...,m − 1;  j = 2, … ,n 

–1; k = 2, ... ,l - 1    

  i = 2,...,m − 1;  j = 2, … ,n 

–1; k = 2, ... ,l - 1     
 
The calculated over-relaxation parameter was the same 
irrespective of whether the long form or the short form of 
the formula was used. The number of grid points was 
assumed equal in all the axes. 

Table 2 shows the results obtained. From Table 2, it is 
clear that when using the over-relaxation parameter 
computed from the formula given, convergence is 
attained faster than when fixed values are used. Note the 
closeness in iteration numbers between relaxation 
parameters very close to those obtained using the 
formula. Thus, this formula gives an effective choice of 
the parameter and shall be used throughout the rest of 
this research when necessary. After having obtained the 
stability criterion and the over-relaxation parameter for 
the 3D case, the Gauss-Seidel scheme for solving the 
system of simultaneous equations resulting from this can 
be written in its extrapolated Liebmann form as follows: 

 

 
 
This can be written in short form as: 
 

, 
 
This matches with what is shown in Oort (1983) and 
Southwell (1946), where: 

 
(1)   is  the  residual which must 

be less than a stated tolerance limit  for convergence to 

be attained, and  is calculated from the recently 

obtained U as:  

2) The superscript n is the iteration number, while  

3)  is the over-relaxation parameter. 

 
The choice of the over-relaxation parameter determines 
the  rapidity  of  convergence.  If  the  parameter  is equal  
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to 1, the method reduces to the Gauss-Seidel scheme as 
described by Ames (1972). If the parameter is less than 
1, then there is under-correction as seen in Press et al. 
(1992). This scheme is then iterated until convergence is 
attained. The convergence set thus obtained is the 
solution field of the process. 
 
 
Conclusion 
 
We have been able to provide intuitively a procedure for 
obtaining the stability criterion and the over-relaxation 
parameter which are the two determinant elements used 
in facilitating convergence to the solution when solving 
PDEs by the SOR. These parameters were obtained for 
the 3D case by a natural extension of the one and 2D 
formulae developed by Frankel (1950). 

Since the approach is intuitive, the main focus was to 
match this with reality. Thus, the detail derivation by 
Frankel (1950) has not been included. Instead, 
comparisons to the conditions of optimality posed by 
Frankel (1950) were tested on the obtained values. The 
performances of the parameters obtained from the 
procedure herein developed can be seen clearly in Table 
2. The belief is that, with this development, many physical 
problems which were hitherto approximated by the use of 
1D or 2D PDEs shall be explicitly expressed in three 
dimensions and be solved easily. 
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