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This paper studies the asymptotic behavior of solutions of the second-order nonlinear delay differential

equations with impulses:

Ox ) = pOx O+ Y 031 -0)+ f1)=0, 1%1,

x(£)—x(t,) =ax(t).x (t7)—x (t,)=bx (t,), ke Z" and some sufficient conditions are obtained.
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INTRODUCTION

Liu and Shen (1999) studied the asymptotic behavior of
solution of the forced nonlinear neutral differential
equation with impulses:

+XLq,(0) f (x(t—0,)) = h(1),

[x(t)— px(t—7)] + t#£t,

x(t))—x(t,) = b, x(1,), ke Z".

Zhao and Yan (1996) the authors researched the
effective sufficient conditions for the asymptotic stability
of the ftrivial solution of impulsive delay differential
equation:

X (t)+2”1pl(t)x(t—2') 0,t#t1,

x(t)) = x(t,) =b.x(t,). k=12,

In this paper, we discuss the asymptotic behavior of a
class of second-order nonlinear delay differential
equation with impulses. The equation is:
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rx 0) = pOx (Y qOxE-0)+ FD)=0, 1#1,
(1)

X)) =x(t) =ax(t).x (t7)—x t)=bx (t,), keZ".
(2),

where 0<¢, <t <t,<---,lim,_,,_t, =+oo, and
a,,b.,k=1,2,--- are constant.
h h
X )= hmw X (€)= hmw k=12
h=0 h—0"

(@), p(t),q,(@),ht)e (0,00, R"),i=12,--,;;0< 6, <0, <-- <O,

Let PC

z function
0

denotes the set of
¢:[t,—0,t,]— R, which is continuous in the set
[t,—o0,.t,)\t, :k=1,2,---} and may have

discontinuities of the first kind and is continuous from left
at the points #, situated in the interval (f, — o, ,#,]. For



any f,20,9e PC,, a function x is said to be a

solution of (1) and (2) and satisfying the initial value
condition:

x(O =g, xE) =x,,x ) =¢ (). x (17)=x,.t€[t,~0,.1,],
)
x:[t,—0,,2) >R

in the interval [f,—0,,0) ,

satisfies (3) and (i) for

nk=12--

1€ (t, 00t 1,1 #1, +C, =12, x(0),x ()

is continuously differential and satisfies (1);

(i) for 7, € [£,,00), x(t), x (7). x(t;)and x (f;) exist,

x(t,)=x(t,),x '(tk_) =x '(tk) and satisfies (2).

Because (1) can be transformed to one-order differential
equations with impulses, so the existence and sole of
solutions of (1) can be deduced by Wen and Chen (1999)

A solution of (1) and (2) is called eventually positive
(negative) if it is positive (negative) for all ¢ sufficiently
large, and it is called oscillatory if it is neither eventually
positive nor eventually negative. Otherwise, it is called
nonoscillatory.

Main Lemmas

Throughout this paper, we assume that the following
conditions hold:

(H) r=n[ poydt<p,q)<q.i=12-nr,pg ek

(H,)

for all te [0,00), the intergration

H@)= J.:Q f(s)ds converges; X b <o where
b = max{b,,0};

. n=1 n-1 m font 1 p( )
(H,) lim H(ak+1)(b,+1)j,” Tu)exp[

m=0 k=m+1 [=0 " ( )

(H,) H(b,+k +1) xpl=[ " p((:‘)) ds]>

/+n

Lemma 1. Suppose that x(¢) is a solution of

equations(1) and (2), and there exists 7' =7, such that

—=ds]du = +oo.

Xiong and Lihang 209

x(t)>0,6>T, If (H,) hold, then x (z,)>0,x (£)>0,
where te (t,.t,,, 1.k =12,
Proof. First, for all

we prove X '(tk) >0, t,2T.

Otherwise, there exists some j such that 3 2T,x'(r/.)<0,

then x '(t;) =(1+b,)x '(tj)from (1), we get

o ept| Z3a =Y gont-aent{ B dl-oep| 7l

:[—i‘lf@x@ =0)—f(O)lexpl— j p@)

is decreasing on

Hence, r(1)x () expl-[ 22ds]

(¢;,t;,,] and

r(t,,)x (¢, expl— j ’:"” % ds<r(t)x () <t b, +Dx ().

)x(t)e

j+l

x () < (b, +1)— " %ds].

on ([j+l’ [j+2]’
(/H) ’ ]7(5‘)
oy e

M) ey 2L yexpt [ 29 g

r(t;,, r(t;,, ior(s)

r(t_/) , ™ &
T PR

X (1) S (b + 1) —

<®b,,+Dh

Jj+l

=(b;,, +DO; +1)

Jj+l

By induction, we have, for all n>2.

r(t))

(t1,.,) < H (b, +1) w7 i P(S)

x'(tj)exp[ [ ds].

j+n )

Because r(t)x '(t) exp[—f 28 6]

o) is decreasing on

(t;,1;,] so,
j+1]‘

x(t)<(b +1) (())x(t)X ,[ p(s) ds] re (.1

Integrating the above inequality from s to 7, we have

x(t) < x(s)+ (b, +Dr(t,)x )j —e p[j ps )ds]du 1, <s<t<t,,



210 Afr. J. Math. Comput. Sci. Res.

+

Let 1 —>1,,,s —>1;, weget

Jj+2

0,206 )06 )

<(a,+D(t,)+b,,, +Drit)x )J.” 1 .r p(S)

X(0,15) S(@, +Da, D1, )+, +DX6, +Dre, ) )j” j ”(s)
Hb,,+I)Xb +1)r(t)x/(t.)r+2—e;q)[ LLOF
JH J J i r(u) r()
By induction, we get, for all n
st <] Tt #0000 100 )2 )(ZﬁH( 00, ] I”(” ds

because of x(t)>0,x'(tj)<0(tj >T), it is contraction to
the condition (H,). Hence, x,(tk) >0 forall ¢t, 2T

is decreasing on

and r(t)x (t)exp[— j 2 s

(t.,t..,], thus,

VARA!

p(s) i p(s)

——ds]>0.
r(s)

rt)x (1)expl— j oy b1z (¢, expl— j

therefore, x (1) > 0,1€ (¢ The proof is complete.

k’tk+l] )

Theorem 1. Let(H,)—(H;) hold. Suppose that

n

> q(t+0,)20,

i=1

I: i q,(s+0,)ds = oo,
7 @

and there exists constant A >0 such that for sufficiently
large ¢

2.

rqi(s+0'i)dsﬁ/1<r+ p. (5)

where

rel0,0,1 ¢/ (t) =max{g,(r),0}, ¢ (r) = max{—g,(1),0}.

Then every nonoscillatory solution of (1) and (2) tends to
zeroas t —> oo,

Proof: Choose a positive integer N such that (5)
holds for ¢ >t, and o bi<r—p-A. let x(t)

be a nonoscillatory solution of (1) and (2). We will

assume that x(¢) is eventually positive, the case where
x(t) is eventually negative is similar and omitted. Let
x()>0 for t2t,

, By Lemma 1, we know that

X ,(t) >0, for t=t,. Define

WO =ro)x (1)~ j Po)x (s)ds— zj 4+ —HO- Y Hx @)

<GS

(6)
Then for t#t,t#t,+0,i=12-- mk=12---
v (==Y g t-r+o)x-r) )

i=1

and
YD) =y(1t) =B, —B)x ¢,)<0k=N,N+1,---
Thus, y(f) is nonincreasing on [f,,~) . Set
L=1im, _ y(1), we claim that Le R.

Otherwise, L = —oo, then x'(t) must be unbounded by
virtue of (H,) and (4). Hence, it is possible to choose
y&t)+H(@)<0 and

<t<t"}. Thus, we have:

t">t,+0, such that

x'(t*)zmax{x'(t):tN
0>y(")+H(t")

>r()x )j p(s)x (s)ds— Zj G (s+0)x(s)ds - > bix ()

ty<t<t”

Zx'(f)(r—p—ﬂ—Zb;po,
k=N

which is a contradiction and so L€ R. By integrating
both sides of (7) from ¢, to
t, we have:

I: i q,(s—r—0,)x(s—r)ds = —I: y /(s)ds
=6+ D E) = Y@= y(@0) < y(ty) ~ L.

ty <t <t
which, together with (4)
x(t)e L([ty,>),R) andso lim,__
proof is then complete.

implies that
x(t)=0. The

Lemma 2. Let x(f) be an oscillatory solution of



equation (1) and (2), suppose that there exists some
T 21, if (H,) hold, then |x (z) 2| x()].|x ()2 x(@)],
where

te (t,t, L k=12,---

Proof: From the result of Lemma 1, we know that, if
x(t)>0 then, x/(tk)>0,x'(t)>0, where, te (t,.1,,,].
xt)>0 we have
x (1) = x(t,),x (t)=x(t).te (t,,t,,,], thecase x(t) is
negative is similar and omitted. From Lemma 1, we
have x'(tk)>0,x'(t)>0,te(tk,tkH] , then the x(¢) is
increased. We also obtained

we will assume that when

[rOxOexpl-| %)dsn’ <IrOx Oexpl| %)dsn’ <0

Hence, decreasing on

r(1)x(t) exp[— I 20 gs] s

(t;,¢,,,]1 and

r(t;)

< b +1
X1, S (b, + DTS

x(r;)exp[- J. .p((s))d s],

for all n, we obtain

))xu) expl— jl“” p(s) ds).

=0 r j+n

By the condition (H,), we get x(f,

<]+n

) <x(t;), which is
a contraction. The proof is complete.

Theorem 2. Let (H,),(H,) and (H,) holds.
Suppose that

D 1b, |< oo, (8)
k=1

and there exists positive constant 4 and re (0,0,]
such that

limsup o ®+limsup 0, ()< A<r-2p, ©)

100 t—>o0

n

D q,(t+0,)#0,

i=1

forlarge t, (10)
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where

0= q(s+0)ds, (11)
i=1 i

0,(0=>[ " sgn(r—c,)q,(s+0,)ds, (12)
i=1

Then every oscillatory solution (1) and (2) tends to zero
as —> oo,

Proof: Let x(¢) be an oscillatory solution of (1) and (2).
We first show that x,(t) and x(¢) are bounded.

Otherwise, x (¢) is unbounded which implies that there

exists positive integer N such that

lim,_,_sup, . |x (s)|=c and

sup | x (s)]= sup |x ()], t2t,+0,,
ty+0,<s<t 1y Ss<t
and

°°|bk|<"2'21’"ﬂ. (13)
k = N
Set

YO =r(x (1) - j P(s)x (s)ds— Zj (o)X —HO = 3 B ).

Iy<t <t

where holds. For

b = max{b,,0}.
1>t +0,,

Then (7)

using Lemma 2 we have

ORI ©1-plx O] ZJ G (s+O) M ds- | HO) = Y 1hx @)

IySh<t

>(r=p)|x (t)l—(Qz(t)+Zlb D sup | x () |- H®)1.

Iy Ss<t

which implies

sp YO R—p-sup GO - bDsup |x (9)]— sup [Hs).

ty+0,<s<t IySs<t k=N IySs<t ty+0, <s<t
(14)

Hence, limsup| y(7)|=c. From (7) we notice that y'(t)

t—o0

is oscillatory, we see that there is a f >ty +20, such

that | y(& )= sup | y(s)| and y (£)=0. From (7)

IN+0,Ss<t
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and (10), we get x(f'—r) =0 by Lemma 2. We know
that x (r) is oscillatory, hence, there is a §>§'+r

such that x'(f—r)zO. Integrating both sides of (7)
from £—r to &, we obtain

IS
WE)=1E-n— E 4261,.(s—r+q)x(S—r)dg

Z_fﬁ P(S)x’(s)dHij‘Zf Gs+o)x(s)ds+HE-r— Y. bx (t)

INHr

f 2q(s r+0)X(s—r)ds

i=l

[ pow b+ HED-Y [ glromiods— 3 hi )

INSH<r

which implies that

|y(§)|<(P+Q(~f—r)+Zlb D Sup, lx () +1HE =)l
(15)

From (14) and (15), we have

“T+2p+(Q(¢- r)+ S Qz(S))+2ZIbI+( SUP H(syH HE=r)D(sup | x (s))" 20,

140, <s<E tySs<E

Let £ and noting that limsuplx'(s)lzoo, we

§o% ysssE

have

—r+2p+/l+2i b, 120,
by (9), which contradicts (13) and so x,(t) is bounded.

By Lemma 2, we know that x(¢) is bounded.
Next we will prove that ;4 =limsup|x (r)|=0. To this

t—00

end, we define

20)=rOx (1) - j pls)x (s)dv+zj q(v+6)x(s)dv+H(t)+be )
(16),
then z(¢) is bounded and for sufficiently large ¢,

lz@) 2 rlx O)l-plx ()] Q(t) gHp IX(Y)I |H @)= 1bx (1),

2t

thus, by (H,)and (8)

B=lim suplz® 2 (r-pu-plim sup 2,
=ulr-p-lim sup 2,1
e (17)

on the other hand, we have by (16) for

t#£t,t#t, +0,k=12i=12,"",
z ,(t) :—Z q,(t—r+o,)x(t—r) (18)
i=1

From this we see that z ,(t) is oscillatory. Hence there

exists a sequence {fm } such that
lim, . &, =colim, ,_|2(£,) = B.z (£,)=0.  and
X(C;;—F)ZQWZLZ--: similar to (15) we can obtain by

(16) and (18), thereisa &, > fm such that

12&)IS(P+Q &, =) sup X ()I+HHE, =D+ D b)),

¢,-20,<s<8 [

which implies by (8) and (H,) that

B<ulp+1lim sup Q,()1.

1— 0

This, together with (17), yields

M[=r+2p+limsup Q,(t) +limsup O, (#)] = 0.
I —> o0 t — oo

Therefore, by (9) we have
U(-r+2p+1)=0,

x (1) =0.
L x(t)=0. Thus, the

which implies £ =0 by (9) and so, lim,
Hence we can obtain that lim,
proof is completed.

REFERENCES

Liu X, Shen J (1999). Asymptotic behavior of solutions of impulsive
neutral differential equations, J. Appl. Math. Lett., 12 51-58.

Wen L, Chen Y (1999). Razumikhin type theorems for functional
differential equations with impulsive, Dynamics continuous Impulsive
Syst., 6: 389-400.

Zhao JY (1996). Asymptotic behavior of solutions of impulsive delay
differential equations, J. Math. Anal. Appl., 201 943-954.



