
African Journal of Mathematics and Computer Science Research Vol. 4(6), pp. 221-234, June 2011
Available online at http://www.academicjournals.org/AJMCSR
 ISSN 2006-9731 ©2011 Academic Journals

Full Length Research Paper

A new algorithm for static task scheduling for
heterogeneous distributed computing systems

Nirmeen A. Bahnasawy1*, Magdy A. Koutb1, Mervat Mosa1 and Fatma Omara2

1Faculty of Engineering, Menoufia University, Egypt.

2Faculty of Computers and Science, Cairo University, Egypt.

Accepted 11 April, 2011

Effective task scheduling is essential for obtaining high performance in heterogeneous distributed
computing systems (HeDCSs). However, finding an effective task scheduling in HeDCSs should take
into consideration the heterogeneity of processors and inter-processor communication over head,
which results from non-trivial data movement between tasks scheduled on different processors. In this
paper, a new high performance task scheduling algorithm called sorted nodes in leveled DAG division
(SNLDD) is presented for HeDCSs considering a bounded number of processors. The main concept of
the proposed algorithm is to divide the Directed Acyclic Graph DAG into levels and tasks in each level
are sorted in descending order according to their computation size. A new attribute has been
introduced and used to efficiently select tasks for scheduling in HeDCSs. This selection of tasks
enables the proposed SNLDD algorithm to generate high-quality task schedule in a heterogeneous
computing environment. To evaluate the performance of the proposed SNLDD algorithm, a comparison
study has been done between it and the longest dynamic critical path (LDCP) algorithm which is
considered the most efficient algorithm. According to the comparative results, it is found that the
performance of the proposed algorithm provides better performance than the LDCP algorithm in terms
of speedup, efficiency, complexity, and quality.

Key words: Task scheduling, directed acyclic graph, heuristics, parallel processing, heterogeneous distributed
computing systems.

INTRODUCTION

A distributed computing system, or DCS, is a group of
processors connected via a high speed network that
supports the execution of parallel applications (Attiya et
al., 2006). The efficiency of executing parallel applica-
tions on the DCSs critically depends on the method used
to schedule the tasks of the parallel application onto the
available processors (Bansal et al., 2005). In the DCSs,
inter-processor communication is an unavailable
overhead of the execution of parallel programs (Bajaj and
Agrawal, 2004). This overhead occurs when tasks allo-
cated to different processors exchange data. Therefore,
creation of high quality task schedules becomes more
critical when the parallel applications are executed on the
heterogeneous distributed computing systems (Shivle et
al., 2004). In addition to the tradeoff between the gained

*Corresponding author. E-mail: nirmeen_a_wahab@hotmail.com

speedup through parallelization and the overhead of
inter-processor communication, scheduling algorithms for
the HeDCSs have to consider the various execution
times of the same task on different processors. A faulty
scheduling decision in HeDCSs may limit the per-
formance of the system by the capabilities of the slowest
processors (Hwang, 1993). In general, task scheduling
algorithms for DCSs are classified into two classes; static
and dynamic. According to static scheduling algorithms,
all information needed for scheduling, such as the
structure of the parallel application, the execution times of
individual tasks and the communication costs between
tasks must be known in advance (Hwang, 1993). There
are several techniques to estimate such information
(Mezmaz et al., 2007; Shivle et al., 2004). Static task
scheduling takes place during compile time before
running the parallel application (Bansal et al., 2005;
Baskiyar and Dickinson, 2005). In contrast, scheduling
decisions in dynamic scheduling algorithms are made at
run time (Ilavarasan et al., 2005). The objective of

222 Afr. J. Math. Comput. Sci. Res.

dynamic scheduling algorithms includes not only creating
high quality task schedules, but also minimizing the run
time scheduling overheads (Sih and Lee, 1993; Kim et
al., 2005). The static scheduling is addressed in this
paper. More-over, in typical scientific and engineering
applica-tions, compile time, including the static
scheduling time, is much lower than that the run time
(Hwang, 1993). By increasing scheduling complexity to
create high quality task schedules, which reduce the run
time of the parallel applications, will improve the overall
performance of DCSs (Kwok, 1997).

Examples of existing task scheduling algorithms are;
heterogeneous earliest finish time (HEFT) (Topcuoglu et
al., 2005), critical path on a processor (CPOP) (Daoud
and Nawwaf, 2007), critical path on a cluster (CPOC)
(Daoud and Nawwaf, 2007), Dynamic Level Scheduling
(DLS) (Daoud and Nawwaf, 2007), modified critical path
(MCP) (Hwang, 1993), mapping heuristic (MH)
(Topcuoglu et al., 2005) and dynamic critical path (DCP)
(Shivle et al., 2004). Daoud and Nawwaf (2007) has
presented a performance comparative study among the
HEFT, CPOP, DLS, and MH algorithms for different
values of DAG size. According to their study, the perfor-
mance of the HEFT algorithm outperforms the CPOP,
DLS, and MH algorithms. Moreover, the performance of
the DLS algorithm outperforms the MH algorithm. The
CPOP algorithm and the DLS algorithm achieved
comparable results. Also, the performance of the HEFT
and heterogeneous N-predecessor decisive path (HNPD)
algorithms is compared in Boyer and Hura (2005), where
the latter combines both list-based scheduling and
multiple task duplication. When the number of processors
is equal to one-forth the number of tasks, the HEFT
algorithm outperforms the HNPD algorithm. On the other
hand, for unlimited number of processors the HNPD
algorithm outperforms the HEFT algorithm. Since the
HNPD algorithm employs multiple task duplication, the
HNPD algorithm requires a greater number of processors
than that the HEFT algorithm to achieve the same
schedule length (Daoud and Nawwaf, 2007).

Recently, a new algorithm called longest dynamic
critical path (LDCP) has been introduced (Daoud and
Nawwaf, 2007). According to the LDCP algorithm, a new
attribute has been used to accurately identify the
priorities of tasks in the HeDCSs. The performance of the
LDCP algorithm is compared to the HEFT (Topcuoglu et
al., 2005) and the DLS (Hwang, 1993) algorithms and
outperformed them.

In this paper, a new algorithm called sorted nodes in
leveled DAG division (SNLDD) is introduced for static
task scheduling for the HeDCSs with limited number of
processors. The motivation behind this algorithm is to
generate the high quality task schedule that is necessary
to achieve high performance in the HeDCSs. The main
concept of the proposed algorithm is to divide the
directed acyclic graph (DAG) into levels and the tasks in
each level are sorted according to their computation size

in descending order. To evaluate the performance of the
proposed SNLLD algorithm, a comparative study has
been done between it and the LDCP algorithm. According
to the comparative study, the SNLDD algorithm outper-
forms the LDCP algorithm in terms of schedule length,
speedup, efficiency,

PROBLEM DEFINITION

In static task scheduling for HeDCSs, the parallel
application is represented by DAG. DAG is defined by the
tuple (T, E), where T is a set of n tasks and E is a set of e
edges. Each task ti � T represents a task in the parallel
application, and each edge (ti, tj) � E represents a
precedence constraint and a communication message
between tasks ti and tj. If (ti, tj) � E, then the execution of
tj � T cannot be started before ti � T finishes its
execution. The source task ti of an edge (ti, tj) is a parent
of the sink task ti , while tj is a child of ti . A task with no
parents is called an entry task, and a task with no
children is called an exit task. Associated with each edge
(ti, tj), there is a value di,j that represents the amount of
data to be transmitted from task ti to task tj (Hwang, 1993;
Topcuoglu et al., 2005). The HeDCSs is represented by a
set used P of m processors that have diverse capabilities.
The n × m computation cost matrix W stores the
execution costs of n tasks in m processors. Each element
wi,j � W represents the estimated execution time of task ti
on processor pj . All processors are assumed to be fully
connected. Communications between processors occur
via independent communication units; this allows for
concurrent execution of computation tasks and
communications between processors (Tian et al., 2006).
The computation costs of tasks are assumed to be
monotonic. In other words, if the computation cost of task
ti on processor pj is higher than that on processor pk, then
the computation costs of any task on pj is higher than or
equal to that on processor pk. The communication cost
between two processors pk and pl depends on the
network initialization at processors pk and pj in addition to
the communication time on the network. The time
required to initialize the network at the sender and
receiver processors is considered to be ignorable
compared to the communication time on the network
(Ilavarasan et al., 2005). The data transfer rate between
any two processors on the network is assumed to be
fixed and constant (Hwang, 1993). Therefore, the com-
munication cost of an edge (ti, tj) is equal to the amount of
data transmitted from task ti to task tj, or di,j divided by the
data transfer rate of the network. Without loss of
generality, the data transfer rate of inter-processor
network is assumed to be unity (Ilavarasan et al., 2005;
Kaya et al., 2006). Hence, the communication cost of an
edge (ti , tj) is equal to di,j given that tasks ti and tj are
scheduled on different processors. Since the data
transfer rate of the intra-processor bus is much higher

Bahnasawy et al. 223

 2

Task P0 P1

t0

t1

t2

t3

t4

5

11

4

6

1

8

15

7

7

2

b

t1 t0

t2

t4

t3

a

1

1

2
2

2

Figure 1. An example of a DAG and computation cost matrix.

than the data transfer rate of the inter-processor network,
the communication cost between two tasks scheduled on
the same processor is taken as zero. A task can start
execution on a processor only when all data from its
parents become available to that processor; at that time
the task is marked as ready. Tasks must be scheduled
and assigned to processors in a way that minimizes the
total run time, or the “schedule length”, of the parallel
application (Kim et al., 2005; Topcuoglu et al., 2005). An
example of a DAG of a parallel application and a
computation cost matrix with two processors is shown in
Figure 1.

THE LONGEST DYNAMIC CRITICAL PATH (LDCP)
ALGORITHM

The most recent algorithm called longest dynamic critical
path (LDCP) algorithm has been introduced by Daoud
and Nawwaf (2007). According to the LDCP algorithm
(Figure 2), each scheduling step consists of three
phases; task selection, processor selection and status
update.

Task selection phase

A set of tasks that play an important role in determining
the “provisional” schedule length is identified. To compute
the LDCPs, a directed acyclic graph that corresponds to
a processor (DAGP) is constructed for each processor in
the system according to Definition 1. These DAGPs are
constructed at the beginning of the scheduling process.

Definition 1: Given a DAG with n tasks and e edges and
a HeDCS with m heterogeneous processors {p0, p1, . . . ,

pm−1}, the Directed Acyclic Graph that corresponds to
Processor pj, called DAGPj, is constructed using the
structure of the DAG, with sizes of tasks set to their
computation costs on processor pj.

Processor selection phase

In this phase, the selected task is assigned to a
processor that minimizes its finish execution time.

Status update phase

When a task is scheduled on a processor, the status of
the system must be updated to reflect the new changes.
The scheduling of task ti on processor pj means that the
computation cost of ti is no longer unknown. Hence, the
sizes of the nodes that identify ti are set to the
computation cost of ti on pj on all DAGPs. Moreover, a
value of zero is assigned to all edges that extend
between the nodes that identify ti and the nodes that
identify its parents that are scheduled on processor pj.
This must be done for all DAGPs to indicate the zero
communication cost between tasks scheduled on the
same processor. The insertion of task ti into processor pj
will result in new execution constraints.

The sorted nodes in leveled DAG division algorithm
(SNLDD)

According to the work in this paper, a new task
scheduling algorithm called sorted nodes in leveled DAG
division (SNLDD) has been developed. The developed

224 Afr. J. Math. Comput. Sci. Res.

�

Construct DAGPs for all processors in the system

While there are unscheduled tasks do

 Find the key DAGP

 Find the key node in the key DAGP

 If the key node has no unscheduled parents then

 Identify the selected task using the key node

 Else

 Find the parent key node

 Identify the selected task using the parent key node

 End if

 Compute the finish time of the selected task on every processor in the system

 Find the selected processor that minimizes the finish time of the selected task

 Assign the selected task to the selected processor

 Update the size of the nodes that identify the selected task on all DAGPs

 Update the communication costs on all DAGPs

 Update the execution constrains on all DAGPs

 Update the temporary zero-cost edges on the DAGP associated with the selected

processor

 Update the URank values of the nodes that identify the scheduled tasks on all DAGPs

End while

Figure 2. Longest dynamic critical path (LDCP) algorithm.

SNLDD algorithm is based on dividing DAG into levels
with considering the dependency priority conditions
among tasks in the DAG. The tasks in each level will be
sorted into a list based on their computation size. The
tasks will be assigned to the earliest processors
according to their priority in the list. The computation size
of each task is calculated by the following equation:

]})(,)[(])(,)[({))(()(1
11

1 +
==

− �� ++= j

q

x
xjij

t

k
jkjij

f
pijij nncnncnwnS

 (1)

Where; Sj (ni) is the computation size of the specified task
(ni) in the j level where 1<= j <= R, R is the total number
of levels and 1<= i <=T, T is the total number of tasks.
The first part of the equation computes the execution time
of task ni from j level by the fastest processor p in the
system. While the second part determines the sum of
communication between the task ni in j level and all of its
parents in j-1 level individually, and the sum of
communications of its Childs in j+1 level. Figure 3 shows
the pseudo code of the developed SNLDD algorithm.

According to the LDCP algorithm, the required tasks of
DAG based on the longest path computation. These
computations are repeated after assigning each task
which is caused a lot of arithmetic computations of
communication overheads (Daoud and Nawwaf, 2007).
Therefore, our developed SNLDD algorithm is based on
dividing the DAG into levels and tasks in each level are
assigning to processors. So, the computations of
communication overhead are elevated. By dividing the
DAG into levels based on dependency conditions and the
tasks in each level are sorted according to computation
sizes in our developed (SNLDD) algorithm, this leads to
simplify the method for classification of tasks according to
the priority, which is considered more efficient than that
the LDCP algorithm because the required time for
choosing the returned task to be assigned will be
computed in each step. A high quality schedule has been
created using the proposed SNLDD algorithm without
introducing runtime overheads which could be resulted
from updating the extracting valuable task at every
assigning step as in the LDCP algorithm.

On the other hand, the computation size of tasks not
only allows deciding which task will be chosen and

Bahnasawy et al. 225

Generate the DAG
Divide the DAG into levels according their communicated dependency /*DAG division*/
Sort the constructed levels according to dependency ordering /*dependency conditions*/
Compute the computation size of each task in each level according to the next equation

]})(,)[(])(,)[({))(()(1
11

1 +
==

− �� ++= j

q

x
xjij

t

k
jkjij

f
pijij nncnncnwnS …. (1)

Sort tasks according to[their direct communication of its next level then their computation sizes]
in descending order
While there are unscheduled levels do /*levels assigning*/
 While there are unscheduled tasks do /*task assigning*/
 If there are tasks highly communicated with tasks in direct next level
 Assign this parent with its Childs at the earliest processor
 If there are tasks in level = number of processors in system
 Then
 Assign the largest computation size of these tasks with these (parent and childs) in earliest processor
 Else
 Assign tasks from the list of tasks
 If Sj(ni)=Sj(ni+1)
 Then
 Choose the highest communication lines first
 Endif
 Endif
 Else
 Compute their computation sizes and sort them in descending order according to equation (1)
 Assign them with its childs at earliest processor
 Endif
 Compute the finish time of selected task in all processors in the system
 Select the earliest processor
 If there is an idle time according to the communication of task and its parent
 Assign this task to the next earliest processor which will overcome an idle time
 Else
 Assign this task to this processor
 If
 There are more than one task are equal in Sj(ni) and all their procedures conditions
 Then
 Assign them to processors exchanging them taking into account the
 update of unscheduled levels
 End if
 find the selected processor that minimizes the finishing time of selected task
 update the computation size of nodes of tasks in the level
 End if
 Else
 Assign the next task
 End while
 Assign the next level

Figure 3. The pseudo code of developed SNLDD algorithm.

226 Afr. J. Math. Comput. Sci. Res.

Figure 4. (a) A sample DAG and(b) computation cost matrix.

ordering the tasks according to their computation sizes,
but also allows to generate complete system of
classification tasks according to many properties such as
its communication cost, dependency, its computation,
and its order among the tasks in DAG, so that the choice
of task in our developed SNLDD algorithm will reduce the
total required time. In addition, sorting computation sizes
of the tasks according to their computation sizes in
descending ordering leads to get red of the heaviest
tasks first to reduce the complicated communications
dependency between them� If the computation sizes of
more than one task are equal, the tie is solved by
choosing tasks with large number of communication link.
Generally, by dividing DAG into levels and assigning
tasks in each level, our developed SNLDD algorithm is
become more efficient than that the LDCP algorithm for
the following reasons:

(i) The LDCP algorithm needs to update the whole tasks,
paths, processing time, and communication links after
each assigning step which is not needed in our
developed SNLDD algorithm, then the run time
overheads is eliminated in the SNLDD algorithm.
(ii) Assigning the tasks to processors according to
computation size satisfy not only efficient task scheduling
but also allows to generate complete system of
classification of tasks according to many properties such
as its communication cost, dependency, and its
computation time.
(iii) Sorting the tasks in each level according to its
computation size leads to get red off the task with
heaviest computation size first which reduces the
dependency between tasks.
(iv) The sleek time of processors is minimized because of
dividing the DAG into levels and tasks in each level are
assigning to processors.
(v) On the other hand, the authors in Daoud and Nawwaf
(2007) have proved that the LDCP algorithm is considered

more efficient than that the HEFT and LCD algorithms.
On the other hands, our developed SNLDD algorithm is
considered more efficient than that the LDCP algorithm,
then our developed SNLDD algorithm is considered more
efficient than that LDCP, HEFT, and LCD algorithms.
(vi) Many ideas of most existing algorithms such as
sorted list algorithm (Boyer and Hura 2005), clustering
algorithms (Bajaj and Agrawal, 2004) and hierarchy as
tree algorithms (Kim et al., 2005), are verified in our
algorithm.

According to the developed SNLDD algorithm, the
computation size for all tasks in the DAG is computed
only once, while in the LDCP algorithm the longest path
is computed at every assigning step, and the updating of
the task selection, processor selection, and the
communication status are also computed on each step.
These will take time and calculations more than that in
developed SNLDD algorithm.

We can conclude that the time complexity of SNLDD
algorithm is �(m×n^2) while the time complexity of LDCP
algorithm is �(m×n^3), where m is the number of
processors, and n is the number of tasks.

Example 1: By considering the application DAG and the
computation cost matrix in Figure 1. The schedule length
according to the proposed SNLDD algorithm is 23 units;
whenever the LCDP algorithm is 24 units.

Example 2: Considering the application DAG and the
computation cost matrix as shown in Figure 4. The
generated schedule along with stepwise trace of the
LCDP algorithm and SNLDD algorithm are shown in
Figures 5 and 6 respectively. The schedule generated by
SNLDD algorithm has length of 63, while the schedule
length generated by LCDP algorithm is 64. So, the
SNLDD algorithm has shorter execution length than that
the LDCP algorithm. Also, by using the SNLDD algorithm,

Bahnasawy et al. 227

Figure 5. The schedule generated by the LDCP algorithm for superior performance and better result.

Figure 6. The schedule generated by the new algorithm.

there is no idle time within processors which leads to
good utilization of processors in the system. So, the
SNLDD algorithm achieves high performance and quality
than that the LDCP algorithm.

SIMULATION RESULTS

To evaluate the performance of our developed SNLDD
algorithm, a simulator of a heterogeneous distributed
system has been built using C# ver.5.1 and core 2 duo
processor with 1.73 MHz.

SNLDD algorithm schedules an unknown number of
tasks for processing on a distributed system with a
minimum execution time on the processors of the
heterogeneous distributed system. The processors of the
distributed system are heterogeneous, so, SNLDD
algorithm is measured by standard task graph set (STG)
which is a kind of benchmark for evaluation of
multiprocessor scheduling algorithms. STG is proposed
for every researcher to evaluate their algorithms under
the same conditions covering various task-graph (TG)
generation methods including task graphs generated
from actual application programs
[http://www.Kasahara.Elec.Waseda.ac.jp/schedule/.]. An
explicit comparison with some other well-known
scheduling algorithms for HeDCSs, such as CPOP, MH
and LMT, is not carried out as the HEFT and DLS
algorithms have already been tested against them, and
have given better or at worst very similar results (Daoud
and Nawwaf, 2007).

To test the performance of the scheduling algorithms,
SNLDD algorithm and LDCP a simulation environment for
computer clusters is built and run on an acer core duo
processor with 1.73 speedup computer. The LDCP
algorithm as well as the SNLDD algorithm is imple-
mented. Two sets of parallel application graphs, which
correspond to both random application DAGs and DAGs
of parallel numerical applications, are created. The
scheduling algorithms are run on the application graphs
to generate output schedules. Finally, a group of per-
formance metrics is applied to the schedules generated
by the two scheduling algorithms. A set of randomly
generated graphs is created by varying a set of
parameters that determines the characteristics of the
generated DAGs. These parameters are described as
follows:

(i) DAG size;
 n: The number of tasks in the DAG.
(ii) Communication to computation cost ratio; CCR: The
average communication cost divided by the average
computation cost of the application DAG.
(iii) With four different numbers of processors varying
from 2, 4, 8, and16 processors. For each number of
processors, five different DAG sizes have been used
varying from 20 to 100 nodes with an increment of 20.

To test the SNLDD algorithm the data collected for task
graphs of 20 to 100 nodes and processor graphs of 2, 4,
8 and 16 nodes. Figures 7, 8, 9 and 10 show schedule
length of LDCP and SNLDD algorithms. According to the

228 Afr. J. Math. Comput. Sci. Res.

S
ch

ed
ul

e
le

ng
th

Figure 7. The schedule length generated by the SNLDD algorithm and LDCP algorithm on 2
processors.

S
ch

ed
ul

e
le

ng
th

Figure 8. The schedule length generated by the SNLDD algorithm and LDCP algorithm on
4 processors.

result, the schedule length decreases, the running time of
program decreases, so the system required memory
decreases as a result the memory efficiency increases
these results satisfied in just the SNLDD algorithm. So,
the SNLDD algorithm is more efficient than the LDCP
algorithm.

The SNLDD algorithm formalized in Figure 3 has a time
complexity of O(m×n^2) where m is the number of
processors, and n is the number of tasks. In a com-
parison, the time complexity of the LDCP algorithm is in

the LDCP algorithm, each scheduling step consists of
three phases: task selection, processor selection and
status update O(m×n^3).

According to the work in this paper, a comparative
study has been done between the SNLDD and LDCP
algorithms. We will study the scheduling of a parallel
program that has been represented in the form of DAG.
The performance of the two approaches will be reported
using the performance criteria described: Speedup is a
good measure for the execution of an application

Bahnasawy et al. 229

S
ch

ed
ul

e
le

ng
th

Figure 9. The schedule length generated by the SNLDD algorithm and LDCP algorithm on 8 processors.

S
ch

ed
ul

e
le

ng
th

Figure 10. The schedule length generated by the SNLDD algorithm and LDCP algorithm on 16
processors.

program on a parallel system. The speedup of a schedule
is defined as the ratio of the schedule length obtained by
assigning all task to the fastest processor, to the parallel
execution time of the task schedule.

Linear speedup means that the value of speedup
increases as the number of processors in the parallel
system increases.

Assume T(1) is the time required for executing a
program on a fastest processor and T(m) is the time
taken for executing the same program on m processors.

Thus the speedup can be estimated as:

 S(m)=T(1)/T(m) 1�S(m) < m.

In ideal case, S(m) = m but in actual case 1 S(m).

The results of the comparative study according to the
speedup parameter have been presented in Figures 11,
12, 13, 14 and 15.

According to the results, it is clear that the SNLDD

230 Afr. J. Math. Comput. Sci. Res.

S
pe

ed
up

Figure 11. The speedup of two algorithms in cases of 2, 4, 8, 16 processors with DAG of 20 tasks.

S
pe

ed
up

�

Figure 12. The speedup of two algorithms in cases of 2, 4,8,16 processors with DAG of 40
tasks.

algorithm outperforms the LDCP algorithm by 21.3%.

Also the efficiency of the parallel computers is an
indication to what percentage of a processors time is

being spent in useful computation. The efficiency of a
parallel computer containing m processors can be
defined as:

Bahnasawy et al. 231

S
pe

ed
up

�

Figure 13. The speedup of two algorithms in cases of 2, 4,8,16 processors with DAG
of 60 tasks.

S
pe

ed
up

Figure 14. The speedup of two algorithms in cases of 2, 4,8,16 processors with DAG of 80 tasks.

S
pe

ed
up

Figure 15. The speedup of two algorithms in cases of 2, 4,8,16 processors with DAG of 100
tasks.

232 Afr. J. Math. Comput. Sci. Res.

E
ffi

ci
en

cy
 (%

)

�

Figure 16. The efficiency curvesof two algorithms in cases of 2, 4,8,16 processors with DAG of
20 tasks.

E
ffi

ci
en

cy
 (
%

)

Figure 17. The efficiency curvesof two algorithms in cases of 2, 4,8,16 processors with
DAG of 40 tasks.

E(m)=S(m)/m 1/m ≤ E(m) ≤ 1.

Maximum efficiency E(m) = 1 is achieved when all the
processors are fully utilized during all time periods of the
program execution. The lowest efficiency result, in the
case of the program is not suitable to be executed in
parallel computer. Quality of parallelism is directly
proportional to the speedup and efficiency (Bajaj and
Agrawal, 2004). The quality is always supper-bound by
the speedup.

The comparative study between the two scheduling
algorithms SNLDD and LDCP has been implemented
using different number of processors (2, 4, 8, and16).
The comparison results are presented in Figures 16, 17,
18, 19 and 20.

According to the comparative results, it is found that
our intelligent SNLDD algorithm behaves better than that
the LDCP algorithm by 31.3%.

According to the results in Figures 7 to 20, it is clear
that our proposed SNLDD algorithm is always

Bahnasawy et al. 233

E
ffi

ci
en

cy
 (

%
)

Figure 18. The efficiency curvesof two algorithms in cases of 2, 4,8,16 processors with DAG
of 60 tasks.

E
ffi

ci
en

cy
 (%

)

Figure 19. The efficiency curvesof two algorithms in cases of 2, 4,8,16 processors with
DAG of 80 tasks.

outperforms the LDCP algorithm in terms of schedule
length conditions, speedup conditions, and efficiency
conditions.

From these results, it is cleared that our proposed
SNLDD algorithm has satisfied the mean ratio of the
performance improvement resulted by 28.6% than LDCP
algorithm. According to the schedule length parameter,
our proposed SNLDD algorithm achieves better perfor-
mance than LDCP algorithm in the DAGs which have
levels less than paths number which is considered the

the most famous existing kinds of DAGs.

Conclusions

In this paper, a new scheduling algorithm is presented for
heterogeneous distributed computing systems HeDCSs.
This algorithm uses a new attribute based on dividing the
DAG into levels according to the precedence relations,
and packing each level in descending order, and then the

234 Afr. J. Math. Comput. Sci. Res.

E
ffi

ci
en

cy
 (

%
)

Figure 20. The efficiency curvesof two algorithms in cases of 2, 4,8,16 processors with DAG of 100
tasks.

task is chosen from that level according to its computa-
tion size, to accurately identify the priorities of task in
HeDCSs.

The performance of the SNLDD algorithm is compared
to the LDCP algorithm, which is considered the best
existing scheduling algorithm for HeDCSs (Daoud and
Nawwaf, 2007).

According to the simulation results, it is found that the
SNLDD algorithm outperforms and superior the LDCP
algorithm in terms of schedule length, speedup,
efficiency, complexity and quality parameters which are
considered the most important performance measures for
evaluating a parallel computer system. Generally, the
performance improvement which has been achieved by
SNLDD algorithm outperforms the LDCP algorithm by
28.6%.

REFERENCES

Bajaj R, Agrawal DP (2004). Improving Scheduling of Tasks in a

Heterogeneous Environment, IEEE Trans. Parallel Distrib. Syst., 15:
107-116.

Bansal S, Kumar P, Singh K (2005). Dealing With Heterogeneity
Through Limited Duplication For Scheduling Precedence Constrained
Task Graphs J. Parallel Distrib. Comput., 65(4): 479-491.

Baskiyar S, Dickinson C (2005). Scheduling Directed A-Cyclic Task
Graphs On A Bounded Set Of Heterogeneous Processors Using
Task Duplication. J. Parallel Distrib. Comput., 65(8): 911-921.

 Boyer WF, Hura GS (2005). Non-Evolutionary Algorithm for Scheduling
Dependent Tasks in Distributed Heterogeneous Computing
Environments. J. Parallel Distrib. Comput., 65(9): 1035–1046.

Daoud MI, Nawwaf K (2007). A High Performance Algorithm For Static
Task Scheduling In Heterogeneous Distributed Computing Systems.
IEEE Trans. Parallel Distrib. Syst., 28: 39-49.

Hwang K (1993). Advanced Computer Architecture: Parallelism,
Scalability, Programmability, New York: McGraw-Hill, Inc.

Ilavarasan E, Thambidurai P, Mahilmannan R (2005). Performance
Effective Task Scheduling Algorithm For Heterogeneous Computing
System. Proceedings of the Fourth International Symposium on
Parallel and Distributed Computing, France, pp. 28-38.

Kim J, Rho J, Lee JO, Ko MC (2005). CPOC Effective Static Task
Scheduling For Grid Computing, Proc. Int. Conf. High Perform.
Comput. Commun. Italy, 6: 477-486.

Mezmaz M, Melab N, Talbi EG (2007). An Efficient Load Balancing
Strategy for Grid-Based Branch and Bound Algorithm, "Parallel
Comput., 33: 302-313.

 Shivle S, Castain R, Siegel HJ, Maciejewski AA, Banka T, Chindam K,
Dussinger S, Pichumani P, Satyasekaan P, Saylor W, Sendek D,
Sousa J, Sridharan J, Sugavanam P, Velazco J (2004). Static
mapping of subtasks in a heterogeneous ad hoc grid environment,
Proc. of Parallel and Distributed Processing Symposium.

Sih GC, Lee EA (1993). A Compile-Time Scheduling Heuristic For
Interconnection-Constrained Heterogeneous Processor
Architectures. IEEE Trans. Parallel Distrib. Syst., 4 (2): 175-187.
http://www.Kasahara.Elec.Waseda.ac.jp/schedule/.

 Topcuoglu H, Hariri S, Wu MY (2005). Performance-Effective and Low
Complexity Task Scheduling for Heterogeneous Computing,” IEEE
Trans. Parallel Distrib. Syst., 13 (3):260-274.

