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Effective task scheduling is essential for obtaining high performance in heterogeneous distributed 
computing systems (HeDCSs). However, finding an effective task scheduling in HeDCSs should take 
into consideration the heterogeneity of processors and inter-processor communication over head, 
which results from non-trivial data movement between tasks scheduled on different processors. In this 
paper, a new high performance task scheduling algorithm called sorted nodes in leveled DAG division 
(SNLDD) is presented for HeDCSs considering a bounded number of processors. The main concept of 
the proposed algorithm is to divide the Directed Acyclic Graph DAG into levels and tasks in each level 
are sorted in descending order according to their computation size. A new attribute has been 
introduced and used to efficiently select tasks for scheduling in HeDCSs. This selection of tasks 
enables the proposed SNLDD algorithm to generate high-quality task schedule in a heterogeneous 
computing environment. To evaluate the performance of the proposed SNLDD algorithm, a comparison 
study has been done between it and the longest dynamic critical path (LDCP) algorithm which is 
considered the most efficient algorithm. According to the comparative results, it is found that the 
performance of the proposed algorithm provides better performance than the LDCP algorithm in terms 
of speedup, efficiency, complexity, and quality. 
 
Key words: Task scheduling, directed acyclic graph, heuristics, parallel processing, heterogeneous distributed 
computing systems. 

 
 
INTRODUCTION 
 
A distributed computing system, or DCS, is a group of 
processors connected via a high speed network that 
supports the execution of parallel applications (Attiya et 
al., 2006). The efficiency of executing parallel applica-
tions on the DCSs critically depends on the method used 
to schedule the tasks of the parallel application onto the 
available processors (Bansal et al., 2005). In the DCSs, 
inter-processor communication is an unavailable 
overhead of the execution of parallel programs (Bajaj and 
Agrawal, 2004). This overhead occurs when tasks allo-
cated to different processors exchange data. Therefore, 
creation of high quality task schedules becomes more 
critical when the parallel applications are executed on the 
heterogeneous distributed computing systems (Shivle et 
al., 2004). In addition to the tradeoff between  the  gained 
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speedup through parallelization and the overhead of 
inter-processor communication, scheduling algorithms for 
the HeDCSs have to consider the various execution 
times of the same task on different processors. A faulty 
scheduling decision in HeDCSs may limit the per-
formance of the system by the capabilities of the slowest 
processors (Hwang, 1993). In general, task scheduling 
algorithms for DCSs are classified into two classes; static 
and dynamic. According to static scheduling algorithms, 
all information needed for scheduling, such as the 
structure of the parallel application, the execution times of 
individual tasks and the communication costs between 
tasks must be known in advance (Hwang, 1993). There 
are several techniques to estimate such information 
(Mezmaz et al., 2007; Shivle et al., 2004). Static task 
scheduling takes place during compile time before 
running the parallel application (Bansal et al., 2005; 
Baskiyar and Dickinson, 2005). In contrast, scheduling 
decisions in dynamic scheduling algorithms are made at 
run   time   (Ilavarasan   et   al.,  2005).  The  objective  of  
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dynamic scheduling algorithms includes not only creating 
high quality task schedules, but also minimizing the run 
time scheduling overheads (Sih and Lee, 1993; Kim et 
al., 2005). The static scheduling is addressed in this 
paper. More-over, in typical scientific and engineering 
applica-tions, compile time, including the static 
scheduling time, is much lower than that the run time 
(Hwang, 1993). By increasing scheduling complexity to 
create high quality task schedules, which reduce the run 
time of the parallel applications, will improve the overall 
performance of DCSs (Kwok, 1997).  

Examples of existing task scheduling algorithms are; 
heterogeneous earliest finish time (HEFT) (Topcuoglu et 
al., 2005), critical path on a processor (CPOP) (Daoud 
and Nawwaf, 2007), critical path on a cluster (CPOC) 
(Daoud and Nawwaf, 2007), Dynamic Level Scheduling 
(DLS) (Daoud and Nawwaf, 2007), modified critical path 
(MCP) (Hwang, 1993), mapping heuristic (MH) 
(Topcuoglu et al., 2005) and dynamic critical path (DCP) 
(Shivle et al., 2004). Daoud and Nawwaf (2007) has 
presented a performance comparative study among the 
HEFT, CPOP, DLS, and MH algorithms for different 
values of DAG size. According to their study, the perfor-
mance of the HEFT algorithm outperforms the CPOP, 
DLS, and MH algorithms. Moreover, the performance of 
the DLS algorithm outperforms the MH algorithm. The 
CPOP algorithm and the DLS algorithm achieved 
comparable results. Also, the performance of the HEFT 
and heterogeneous N-predecessor decisive path (HNPD) 
algorithms is compared in Boyer and Hura (2005), where 
the latter combines both list-based scheduling and 
multiple task duplication. When the number of processors 
is equal to one-forth the number of tasks, the HEFT 
algorithm outperforms the HNPD algorithm. On the other 
hand, for unlimited number of processors the HNPD 
algorithm outperforms the HEFT algorithm. Since the 
HNPD algorithm employs multiple task duplication, the 
HNPD algorithm requires a greater number of processors 
than that the HEFT algorithm to achieve the same 
schedule length (Daoud and Nawwaf, 2007). 

Recently, a new algorithm called longest dynamic 
critical path (LDCP) has been introduced (Daoud and 
Nawwaf, 2007). According to the LDCP algorithm, a new 
attribute has been used to accurately identify the 
priorities of tasks in the HeDCSs. The performance of the 
LDCP algorithm is compared to the HEFT (Topcuoglu et 
al., 2005) and the DLS (Hwang, 1993) algorithms and 
outperformed them.  

In this paper, a new algorithm called sorted nodes in 
leveled DAG division (SNLDD) is introduced for static 
task scheduling for the HeDCSs with limited number of 
processors. The motivation behind this algorithm is to 
generate the high quality task schedule that is necessary 
to achieve high performance in the HeDCSs. The main 
concept of the proposed algorithm is to divide the 
directed acyclic graph (DAG) into levels and the tasks in 
each level are sorted according to their computation  size  

 
 
 
 
in descending order. To evaluate the performance of the 
proposed SNLLD algorithm, a comparative study has 
been done between it and the LDCP algorithm. According 
to the comparative study, the SNLDD algorithm outper-
forms the LDCP algorithm in terms of schedule length, 
speedup, efficiency,  
 
 
PROBLEM DEFINITION 
 
In static task scheduling for HeDCSs, the parallel 
application is represented by DAG. DAG is defined by the 
tuple (T, E), where T is a set of n tasks and E is a set of e 
edges. Each task ti � T represents a task in the parallel 
application, and each edge (ti, tj) � E represents a 
precedence constraint and a communication message 
between tasks ti and tj. If (ti, tj) � E, then the execution of 
tj � T cannot be started before ti � T finishes its 
execution. The source task ti of an edge (ti, tj) is a parent 
of the sink task ti , while tj is a child of ti . A task with no 
parents is called an entry task, and a task with no 
children is called an exit task. Associated with each edge 
(ti, tj), there is a value di,j that represents the amount of 
data to be transmitted from task ti to task tj (Hwang, 1993; 
Topcuoglu et al., 2005). The HeDCSs is represented by a 
set used P of m processors that have diverse capabilities. 
The n × m computation cost matrix W stores the 
execution costs of n tasks in m processors. Each element 
wi,j � W represents the estimated execution time of task ti 
on processor pj . All processors are assumed to be fully 
connected. Communications between processors occur 
via independent communication units; this allows for 
concurrent execution of computation tasks and 
communications between processors (Tian et al., 2006). 
The computation costs of tasks are assumed to be 
monotonic. In other words, if the computation cost of task 
ti on processor pj is higher than that on processor pk, then 
the computation costs of any task on pj is higher than or 
equal to that on processor pk. The communication cost 
between two processors pk and pl depends on the 
network initialization at processors pk and pj in addition to 
the communication time on the network. The time 
required to initialize the network at the sender and 
receiver processors is considered to be ignorable 
compared to the communication time on the network 
(Ilavarasan et al., 2005). The data transfer rate between 
any two processors on the network is assumed to be 
fixed and constant (Hwang, 1993). Therefore, the com-
munication cost of an edge (ti, tj) is equal to the amount of 
data transmitted from task ti to task tj, or di,j divided by the 
data transfer rate of the network. Without loss of 
generality, the data transfer rate of inter-processor 
network is assumed to be unity (Ilavarasan et al., 2005; 
Kaya et al., 2006). Hence, the communication cost of an 
edge (ti , tj ) is equal to di,j given that tasks ti and tj are 
scheduled on different processors. Since the data 
transfer rate of  the  intra-processor  bus  is  much  higher 
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Figure 1. An example of a DAG and computation cost matrix. 

 
 
 
than the data transfer rate of the inter-processor network, 
the communication cost between two tasks scheduled on 
the same processor is taken as zero. A task can start 
execution on a processor only when all data from its 
parents become available to that processor; at that time 
the task is marked as ready. Tasks must be scheduled 
and assigned to processors in a way that minimizes the 
total run time, or the “schedule length”, of the parallel 
application (Kim et al., 2005; Topcuoglu et al., 2005). An 
example of a DAG of a parallel application and a 
computation cost matrix with two processors is shown in 
Figure 1. 
 
 
THE LONGEST DYNAMIC CRITICAL PATH (LDCP) 
ALGORITHM 
 
The most recent algorithm called longest dynamic critical 
path (LDCP) algorithm has been introduced by Daoud 
and Nawwaf (2007). According to the LDCP algorithm 
(Figure 2), each scheduling step consists of three 
phases; task selection, processor selection and status 
update. 
 
 
Task selection phase 
 
A set of tasks that play an important role in determining 
the “provisional” schedule length is identified. To compute 
the LDCPs, a directed acyclic graph that corresponds to 
a processor (DAGP) is constructed for each processor in 
the system according to Definition 1. These DAGPs are 
constructed at the beginning of the scheduling process. 
 
Definition 1: Given a DAG with n tasks and e edges and 
a HeDCS with m heterogeneous processors  {p0, p1, . . . ,  

pm−1}, the Directed Acyclic Graph that corresponds to 
Processor pj, called DAGPj, is constructed using the 
structure of the DAG, with sizes of tasks set to their 
computation costs on processor pj. 
 
 
Processor selection phase 
 
In this phase, the selected task is assigned to a 
processor that minimizes its finish execution time. 
 
 
Status update phase 
 
When a task is scheduled on a processor, the status of 
the system must be updated to reflect the new changes. 
The scheduling of task ti on processor pj means that the 
computation cost of ti is no longer unknown. Hence, the 
sizes of the nodes that identify ti are set to the 
computation cost of ti on pj on all DAGPs. Moreover, a 
value of zero is assigned to all edges that extend 
between the nodes that identify ti and the nodes that 
identify its parents that are scheduled on processor pj. 
This must be done for all DAGPs to indicate the zero 
communication cost between tasks scheduled on the 
same processor. The insertion of task ti into processor pj 
will result in new execution constraints. 
 
 
The sorted nodes in leveled DAG division algorithm 
(SNLDD)  
 
According to the work in this paper, a new task 
scheduling algorithm called sorted nodes in leveled DAG 
division (SNLDD)  has  been  developed.  The  developed 
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Construct DAGPs for all processors in the system 

While there are unscheduled tasks do 

    Find the key DAGP 

    Find the key node in the key DAGP 

    If the key node has no unscheduled parents then 

        Identify the selected task using the key node  

   Else  

       Find the parent key node 

       Identify the selected task using the parent key node 

   End if 

   Compute the finish time of the selected task on every processor in the system 

   Find the selected processor that minimizes the finish time of the selected task 

  Assign the selected task to the selected processor 

  Update the size of the nodes that identify the selected task on all DAGPs 

  Update the communication costs on all DAGPs 

  Update the execution constrains on all DAGPs 

  Update the temporary zero-cost edges on the DAGP associated with the selected 

processor 

  Update the URank values of the nodes that identify the scheduled tasks on all DAGPs 

End while  
 
Figure 2. Longest dynamic critical path (LDCP) algorithm. 

 
 
 
SNLDD algorithm is based on dividing DAG into levels 
with considering the dependency priority conditions 
among tasks in the DAG. The tasks in each level will be 
sorted into a list based on their computation size. The 
tasks will be assigned to the earliest processors 
according to their priority in the list. The computation size 
of each task is calculated by the following equation: 
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Where; Sj (ni) is the computation size of the specified task 
(ni) in the j level where 1<= j <= R, R is the total number 
of levels and 1<= i <=T, T is the total number of tasks. 
The first part of the equation computes the execution time 
of task ni from j level by the fastest processor p in the 
system. While the second part determines the sum of 
communication between the task ni in j level and all of its 
parents in j-1 level individually, and the sum of 
communications of its Childs in j+1 level. Figure 3 shows 
the pseudo code of the developed SNLDD algorithm.  

According to the LDCP algorithm, the required tasks of 
DAG based on the longest path computation. These 
computations are repeated after assigning each task 
which is caused a lot of arithmetic computations of 
communication overheads (Daoud and Nawwaf, 2007). 
Therefore, our developed SNLDD algorithm is based on 
dividing the DAG into levels and tasks in each level are 
assigning to processors. So, the computations of 
communication overhead are elevated. By dividing the 
DAG into levels based on dependency conditions and the 
tasks in each level are sorted according to computation 
sizes in our developed (SNLDD) algorithm, this leads to 
simplify the method for classification of tasks according to 
the priority, which is considered more efficient than that 
the LDCP algorithm because the required time for 
choosing the returned task to be assigned will be 
computed in each step. A high quality schedule has been 
created using the proposed SNLDD algorithm without 
introducing runtime overheads which could be resulted 
from updating the extracting valuable task at every 
assigning step as in the LDCP algorithm.  

On the other hand, the computation size of tasks not 
only  allows  deciding  which  task  will   be   chosen   and 
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Generate the DAG 
Divide the DAG into levels according their communicated dependency           /*DAG division*/ 
Sort the constructed levels according to dependency ordering         /*dependency conditions*/ 
Compute the computation size of each task in each level according to the next equation   
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Sort tasks according to[ their direct communication of its next level then their computation sizes] 
in descending order 
While there are unscheduled levels do                                                /*levels assigning*/ 
   While there are unscheduled tasks do                                               /*task assigning*/ 
               If there are tasks highly communicated with tasks in direct next level 
                     Assign this parent with its Childs at the earliest processor 
                     If there are tasks in level = number of processors in system 
                      Then 
                        Assign the largest computation size of these tasks with these (parent and childs) in earliest processor 
                       Else 
                            Assign tasks from the list of tasks 
                           If  Sj(ni)=Sj(ni+1) 
                           Then 
                                    Choose the highest communication lines first  
                            Endif 
                     Endif 
                Else 
                   Compute their computation sizes and sort them in descending order according to equation  (1) 
                      Assign them with its childs at earliest processor 
                Endif 
                    Compute the finish time of selected task in all processors in the system 
                                   Select the earliest processor 
                                   If there is an idle time according to the communication of task and its parent 
                                       Assign this task to the next earliest processor which will overcome an idle time 
                                   Else  
                                        Assign this task to this processor 
                                         If  
                                               There are more than one task are equal in Sj(ni) and all their procedures conditions 
                                         Then  
                                                Assign them to processors exchanging them taking into account the 
                                                update of unscheduled levels  
                                          End if 
                                    find the selected processor that minimizes the finishing time of selected task 
                                    update the computation size of nodes of tasks in the level  
                                   End if 
              Else 
                            Assign the next task 
    End while    
                     Assign the next level  

 
Figure 3. The pseudo code of developed SNLDD algorithm. 
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Figure 4. (a) A sample DAG and(b) computation cost matrix. 

 
 
 
ordering the tasks according to their computation sizes, 
but also allows to generate complete system of 
classification tasks according to many properties such as 
its communication cost, dependency, its computation, 
and its order among the tasks in DAG, so that the choice 
of task in our developed SNLDD algorithm will reduce the 
total required time. In addition, sorting computation sizes 
of the tasks according to their computation sizes in 
descending ordering leads to get red of the heaviest 
tasks first to reduce the complicated communications 
dependency between them� If the computation sizes of 
more than one task are equal, the tie is solved by 
choosing tasks with large number of communication link. 
Generally, by dividing DAG into levels and assigning 
tasks in each level, our developed SNLDD algorithm is 
become more efficient than that the LDCP algorithm for 
the following reasons:  
 
(i) The LDCP algorithm needs to update the whole tasks, 
paths, processing time, and communication links after 
each assigning step which is not needed in our 
developed SNLDD algorithm, then the run time 
overheads is eliminated in the SNLDD algorithm. 
(ii) Assigning the tasks to processors according to 
computation size satisfy not only efficient task scheduling 
but also allows to generate complete system of 
classification of tasks according to many properties such 
as its communication cost, dependency, and its 
computation time. 
(iii) Sorting the tasks in each level according to its 
computation size leads to get red off the task with 
heaviest computation size first which reduces the 
dependency between tasks.  
(iv) The sleek time of processors is minimized because of 
dividing the DAG into levels and tasks in each level are 
assigning to processors.  
(v) On the other hand, the authors in Daoud and Nawwaf 
(2007) have proved that the LDCP algorithm is considered 

more efficient than that the HEFT and LCD algorithms. 
On the other hands, our developed SNLDD algorithm is 
considered more efficient than that the LDCP algorithm, 
then our developed SNLDD algorithm is considered more 
efficient than that LDCP, HEFT, and LCD algorithms. 
(vi) Many ideas of most existing algorithms such as 
sorted list algorithm (Boyer and Hura 2005), clustering 
algorithms (Bajaj and Agrawal, 2004) and hierarchy as 
tree algorithms (Kim et al., 2005), are verified in our 
algorithm. 
 
According to the developed SNLDD algorithm, the 
computation size for all tasks in the DAG is computed 
only once, while in the LDCP algorithm the longest path 
is computed at every assigning step, and the updating of 
the task selection, processor selection, and the 
communication status are also computed on each step. 
These will take time and calculations more than that in 
developed SNLDD algorithm. 

We can conclude that the time complexity of SNLDD 
algorithm is �(m×n^2) while the time complexity of LDCP 
algorithm is �(m×n^3), where m is the number of 
processors, and n is the number of tasks.  
 
Example 1: By considering the application DAG and the 
computation cost matrix in Figure 1. The schedule length 
according to the proposed SNLDD algorithm is 23 units; 
whenever the LCDP algorithm is 24 units.  
 
Example 2: Considering the application DAG and the 
computation cost matrix as shown in Figure 4. The 
generated schedule along with stepwise trace of the 
LCDP algorithm and SNLDD algorithm are shown in 
Figures 5 and 6 respectively. The schedule generated by 
SNLDD algorithm has length of 63, while the schedule 
length generated by LCDP algorithm is 64. So, the 
SNLDD algorithm has shorter execution length than that 
the LDCP algorithm. Also, by using the SNLDD algorithm, 
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Figure 5. The schedule generated by the LDCP algorithm for superior performance and better result. 

 
 
 

 
 
Figure 6. The schedule generated by the new algorithm. 

 
 
 
there is no idle time within processors which leads to 
good utilization of processors in the system. So, the 
SNLDD algorithm achieves high performance and quality 
than that the LDCP algorithm. 
 
 
SIMULATION RESULTS 
 
To evaluate the performance of our developed SNLDD 
algorithm, a simulator of a heterogeneous distributed 
system has been built using C# ver.5.1 and core 2 duo 
processor with 1.73 MHz.  

SNLDD algorithm schedules an unknown number of 
tasks for processing on a distributed system with a 
minimum execution time on the processors of the 
heterogeneous distributed system. The processors of the 
distributed system are heterogeneous, so, SNLDD 
algorithm is measured by standard task graph set (STG) 
which is a kind of benchmark for evaluation of 
multiprocessor scheduling algorithms. STG is proposed 
for every researcher to evaluate their algorithms under 
the same conditions covering various task-graph (TG) 
generation methods including task graphs generated 
from actual application programs 
[http://www.Kasahara.Elec.Waseda.ac.jp/schedule/.]. An 
explicit comparison with some other well-known 
scheduling algorithms for HeDCSs, such as CPOP, MH 
and LMT, is not carried out as the HEFT and DLS 
algorithms have already been tested against them, and 
have given better or at worst very similar results (Daoud 
and Nawwaf, 2007). 

To test the performance of the scheduling algorithms, 
SNLDD algorithm and LDCP a simulation environment for 
computer clusters is built and run on an acer core duo 
processor with 1.73 speedup computer. The LDCP 
algorithm as well as the SNLDD algorithm is imple-
mented. Two sets of parallel application graphs, which 
correspond to both random application DAGs and DAGs 
of parallel numerical applications, are created. The 
scheduling algorithms are run on the application graphs 
to generate output schedules. Finally, a group of per-
formance metrics is applied to the schedules generated 
by the two scheduling algorithms. A set of randomly 
generated graphs is created by varying a set of 
parameters that determines the characteristics of the 
generated DAGs. These parameters are described as 
follows: 
 
(i) DAG size; 
 n: The number of tasks in the DAG. 
(ii) Communication to computation cost ratio; CCR: The 
average communication cost divided by the average 
computation cost of the application DAG.  
(iii) With four different numbers of processors varying 
from 2, 4, 8, and16 processors. For each number of 
processors, five different DAG sizes have been used 
varying from 20 to 100 nodes with an increment of 20. 
 
To test the SNLDD algorithm the data collected for task 
graphs of 20 to 100 nodes and processor graphs of 2, 4, 
8 and 16 nodes. Figures 7, 8, 9 and 10 show schedule 
length of LDCP and SNLDD algorithms. According to  the  
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Figure 7. The schedule length generated by the SNLDD algorithm and LDCP algorithm on 2 
processors. 
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Figure 8. The schedule length generated by the SNLDD algorithm and LDCP algorithm on 
4 processors. 

 
 
 
result, the schedule length decreases, the running time of 
program decreases, so the system required memory 
decreases as a result the memory efficiency increases 
these results satisfied in just the SNLDD algorithm. So, 
the SNLDD algorithm is more efficient than the LDCP 
algorithm. 

The SNLDD algorithm formalized in Figure 3 has a time 
complexity of O(m×n^2) where m is the number of 
processors, and n is the number of tasks. In a com-
parison, the time complexity of the LDCP  algorithm  is  in  

the LDCP algorithm, each scheduling step consists of 
three phases: task selection, processor selection and 
status update O(m×n^3). 

According to the work in this paper, a comparative 
study has been done between the SNLDD and LDCP 
algorithms. We will study the scheduling of a parallel 
program that has been represented in the form of DAG. 
The performance of the two approaches will be reported 
using the performance criteria described: Speedup is a 
good   measure   for   the   execution   of   an   application 
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Figure 9. The schedule length generated by the SNLDD algorithm and LDCP algorithm on 8 processors. 
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Figure 10. The schedule length generated by the SNLDD algorithm and LDCP algorithm on 16 
processors. 

 
 
 
program on a parallel system. The speedup of a schedule 
is defined as the ratio of the schedule length obtained by 
assigning all task to the fastest processor, to the parallel 
execution time of the task schedule. 

Linear speedup means that the value of speedup 
increases as the number of processors in the parallel 
system increases. 

Assume T(1) is the time required for executing a 
program on a fastest processor and T(m) is the time 
taken for executing the same program on m processors.  

Thus the speedup can be estimated as: 
 
 S(m)=T(1)/T(m) 1�S(m) < m. 
 
In ideal case, S(m) = m but in actual case 1 S(m).  
 
The results of the comparative study according to the 
speedup parameter have been presented in Figures 11, 
12, 13, 14 and 15. 

According to  the  results,  it  is  clear  that  the  SNLDD  
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Figure 11. The speedup of two algorithms in cases of 2, 4, 8, 16 processors with DAG of 20 tasks. 
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Figure 12. The speedup of two algorithms in cases of 2, 4,8,16 processors with DAG of 40 
tasks. 

 
 
 
algorithm outperforms the LDCP algorithm by 21.3%. 

Also the efficiency of the parallel computers is an 
indication  to  what  percentage  of  a  processors  time  is  

being spent in useful computation. The efficiency of a 
parallel computer containing m processors can be 
defined as: 
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Figure 13. The speedup of two algorithms in cases of 2, 4,8,16 processors with DAG 
of 60 tasks. 
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Figure 14. The speedup of two algorithms in cases of 2, 4,8,16 processors with DAG of 80 tasks. 
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Figure 15. The speedup of two algorithms in cases of 2, 4,8,16 processors with DAG of 100 
tasks. 
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Figure 16. The efficiency curvesof two algorithms in cases of 2, 4,8,16 processors with DAG of 
20 tasks. 
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Figure 17. The efficiency curvesof two algorithms in cases of 2, 4,8,16 processors with 
DAG of 40 tasks. 

 
 
 

E(m)=S(m)/m 1/m ≤ E(m) ≤ 1. 
 
Maximum efficiency E(m) = 1 is achieved when all the 
processors are fully utilized during all time periods of the 
program execution. The lowest efficiency result, in the 
case of the program is not suitable to be executed in 
parallel computer. Quality of parallelism is directly 
proportional to the speedup and efficiency (Bajaj and 
Agrawal, 2004). The quality is always supper-bound by 
the speedup. 

The comparative study between the two scheduling 
algorithms SNLDD and LDCP has been implemented 
using different number of processors (2, 4, 8, and16). 
The comparison results are presented in Figures 16, 17, 
18, 19 and 20. 

According to the comparative results, it is found that 
our intelligent SNLDD algorithm behaves better than that 
the LDCP algorithm by 31.3%.  

According to the results in Figures 7 to 20, it is clear 
that    our    proposed    SNLDD    algorithm    is     always 
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Figure 18. The efficiency curvesof two algorithms in cases of 2, 4,8,16 processors with DAG 
of 60 tasks. 
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Figure 19. The efficiency curvesof two algorithms in cases of 2, 4,8,16 processors with 
DAG of 80 tasks. 

 
 
 
outperforms the LDCP algorithm in terms of schedule 
length conditions, speedup conditions, and efficiency 
conditions.  

From these results, it is cleared that our proposed 
SNLDD algorithm has satisfied the mean ratio of the 
performance improvement resulted by 28.6% than LDCP 
algorithm. According to the schedule length parameter, 
our proposed SNLDD algorithm achieves better perfor-
mance than LDCP algorithm in the DAGs which have 
levels less than paths  number  which  is  considered  the 

the most famous existing kinds of DAGs. 
 
 
Conclusions 
 
In this paper, a new scheduling algorithm is presented for 
heterogeneous distributed computing systems HeDCSs. 
This algorithm uses a new attribute based on dividing the 
DAG into levels according to the precedence relations, 
and packing each level in descending order, and then the  
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Figure 20. The efficiency curvesof two algorithms in cases of 2, 4,8,16 processors with DAG of 100 
tasks. 

 
 
 
task is chosen from that level according to its computa-
tion size, to accurately identify the priorities of task in 
HeDCSs.  

The performance of the SNLDD algorithm is compared 
to the LDCP algorithm, which is considered the best 
existing scheduling algorithm for HeDCSs (Daoud and 
Nawwaf, 2007).  

According to the simulation results, it is found that the 
SNLDD algorithm outperforms and superior the LDCP 
algorithm in terms of schedule length, speedup, 
efficiency, complexity and quality parameters which are 
considered the most important performance measures for 
evaluating a parallel computer system. Generally, the 
performance improvement which has been achieved by 
SNLDD algorithm outperforms the LDCP algorithm by 
28.6%. 
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