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In the study, Monte Carlo (stochastic) and deterministic forecast have been carried out. Though, as 
would be expected, there is reasonable gain in efficiency in the Monte Carlo forecast over the 
deterministic procedure. The extent of this gain depends on the relative dispersion criterion used.  
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INTRODUCTION 
 
The principal foci in econometric modeling are structural 
analysis, forecasting and policy analysis. Interests may 
be in some or all of these areas in one study. If interest is 
in forecasting, then we are required to make estimate (or 
a set of estimates) about the likelihood of occurrence of 
future events using past and current information. The 
forecast is more useful to users and researchers if the 
forecast uncertainty is kept as minimal as possible. One 
of the ways to achieve this, especially when the model is 
nonlinear is to use stochastic simulation. After obtaining 
stochastic simulations, we need to go ahead to appraise 
the gain in efficiency of the Monte Carlo procedure over 
deterministic simulation. The outcome of this appraisal is 
largely dependent on the set of measures of dispersion 
used. These set of measures will be mentioned in section 
2 of this paper and section 3 is methodology and data. 
The empirical results are mentioned in section 4. The 
performance and choice of which measure to use are 
elaborately considered in section 5. We state our 
conclusion in section 6. 
 
 
THEORETICAL FRAMEWORK AND LITERATURE 
REVIEW 
 
Solving and forecasting with an econometric model by 
stochastic simulation is not yet a common procedure. 
According  to  Kolsrud  (1993),  there  are  some  reasons  
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behind this assertion. One fact is that a standard 
deterministic simulation with only expectation values of 
the stochastic input variables is seen to be sufficient. The 
belief is that the deterministic result value approximates 
well the expectation value of the stochastic model. The 
second reason is that a stochastic simulation will be 
unnecessarily more demanding than a deterministic 
simulation, both on human and computer resources, in 
addition to being time consuming. Thirdly, Kolsrud 
observes that researchers often find it easier to relate to 
the usual “one solution point or path (trajectory)” of 
forecast than to an interval or distributional statistics. 
Much quantitative measures arising from a simulation 
experiment are perceived as not being necessary or 
relevant.  

Kolsrud (1993) makes strong points against 
deterministic simulation and forecast, following recent 
developments in economics, numerical algorithms, com-
puter hardware and software. Kolsrud advances first of all 
that, even though the majority of operational econometric 
models are linear or only weakly nonlinear, increasingly 
more nonlinearity is being built into the models. And since 
more models are given a highly dynamic specification, 
Kolsrud reasons, one cannot simply assume an insigni-
ficant deterministic bias anymore. Secondly, shunning 
stochastic simulation because of high demand on human 
and computer resources is not justified. Efficiency weighs 
far more than computational inconveniences as there are 
adequate computer hardware and software to handle 
stochastic simulation. Monte Carlo simulation of econo-
metric models is nowadays a very feasible and exciting 
task, even though it is inherently and will always  be  more  



180        Afr. J. Math. Comput. Sci. Res. 
 
 
 
costly than a deterministic simulation. Another attraction 
for stochastic simulation, according to Kolsrud is that it 
supplies relevant and interesting distributional properties 
of the response variables; that can be used to improve 
forecasts or influence policy analysis. Ignoring this kind of 
information, Kolsrud warns, may lead to sub-optimal 
results and in extreme cases of policy experiments even 
wrong conclusions. 

Some papers and books on stochastic simulation 
include Ahlstedt (1986), Fair (1984, 1986), Kolsrud (1993, 
1996) and Sowey (1973) and Essi et al. (2007). 
 
 
The anatomy of a nonlinear econometric model 
 
A modern nonlinear econometric model, like the one 
used in this study has the structural form: 
 

( ),t ty f x uθ= +                                               (1) 

 
where, 
y = response variable, consisting of n values  

( ),f x θ : nonlinear function 

θ  : structural parameters 

x : row vector of k explanatory variables 
u = column vector of random shocks. 
 
We can also write the model as: 
 

( ) ( ), , ~ 0,t t t t ty f x u u Nθ= + Σ            (2) 

 

Fitting the structural model (2) above to observations 
t

x  

and y by nonlinear least squares, returns the model to 
 

( )
^ ^ ^

ˆ ˆˆ, , ~ , , ~ 0,t t t tt
y f x u N u Nθ θ θ

   
= + Ω Σ   

   
 (3) 

 

With the estimated parameter values θ̂  and the 

estimated empirical residuals ˆ
t

u . The estimated model is 

then used to make forecast for the response variable 
conditional on the estimated parameter values and the 
historic or anticipated values of the explanatory variables. 
The common way to forecast with the estimated model is 
to perform a simple deterministic dynamic simulation 
(Equation 4) with zero expectation values 
 

 ( )ˆ,
d

y f x θ=                          (4) 

 
for the stochastic residuals; where yd gives the value of 
the deterministic forecast. We use hats to denote 
estimated or simulated values. The model (2) satisfies  all  

 
 
 
 
the classical assumptions including absence of serial 

correlation in the disturbance 
t

u , so that 

^

∑ is the 

estimated contemporaneous variance-covariance matrix. 

The quantity 
^

Ω  is the variance-covariance matrix for the 
vector of estimated parameters. We assume that if the 
nonlinear specification is correct, then the expectations of 

θ̂  equalsθ . We also assume that θ  ∈  Θ , where Θ is 

a compact subset of the Euclidean space IR
p
. 

The specification of the model (2) clearly incorporates a 

stochastic disturbance process 
t

u  that is an unexplained 

random component of the response variable y. Since any 
estimator is a function of the stochastic residuals, the 

parameter estimates θ̂  are stochastic variables too. 

Since we are using the estimated model (3) and not the 
specified model (2) whose parameters, though unknown 

are fixed in the space Θ , we need to take into account 

this source of uncertainty in our simulation and 
forecasting. Most of the times this is ignored. Also, the 
response is also stochastic since the input variables as 

shown by (3) are now 
t

x  and θ̂  with only 
t

x  being 

regarded as deterministic. The estimated model (3) is 
stochastic and should be estimated, as such as it is 
different from the model (4) with deterministic variables. 
Here we can state boldly one outstanding reason for 

stochastic simulation and that is: 
t

y  has unknown 

distribution which is not well represented by a single 
deterministic simulation. 

A nonlinear and dynamic model does not have general 
analytical solution in terms of input variables. Solving (3) 
by numerical simulation, let us envision an implicit form of 
the model in the form 
 

( )
^

ˆ ˆ, ,
t tt

y g x uθ=                          (5) 

 
The second strong reason for stochastic simulation of 
nonlinear model seems to be the fact that the expectation 

values of 
t

y  are generally not equal to the deterministic 

value ( ˆ
t

y ). This can be demonstrated mathematically 

(Kolsrud 1993) as follows: 
 

( ) ( )ˆ ˆ, ,t t tE y E g x uθ =
 

 (x is deterministic). 

 ( ) ( )ˆ ˆ, ,
t t

g x E E uθ ≠
    (g is nonlinear) 

 ( )ˆ, ,
t t

g x E uθ ≠    

 ˆ ˆ, , 0
t t

g x yθ = =    (deterministic-simulation)          (6) 



 
 
 
 
With an unbiased parameter estimator. According to 
Kolsrud (1993), the estimated deterministic bias 

[ ]ˆˆ
ty E y−  in (mildly) nonlinear operative macro 

econometric models tend to be small and without serious 
implication. Useful references are Fisher and Salmon 
(1986), Hall and Henry (1988) and Kolsrud (1993). The 
implication here is that with stochastic simulation, 

[ ]ˆˆ
t ty E y−  is reduced further by replacing ˆ

t
y with ˆ

s
y . 

If we denote the estimated deterministic bias by D, then 
 

[ ]ˆˆ
t tD y E y= −                                                          (7) 

 

Setting [ ]ˆ
tE y  to be equal to the noiseless part of

t
y , 

and denoting it by
o

y , then we can at the period, s 

consider the quantities 
 

1 s o
D y y= −                                                                (8) 

 
and 
 

2 d o
D y y= −                                                               (9) 

 

where 
s

y = mean stochastic simulation 

d
y = deterministic simulation and

d
y  is used instead of 

ŷ  for convenience and 

1

1 N

s r

r

y y
N =

= ∑  (= ŷ  for a linear model)                    (10) 

We will use the quantities 
2

1D∑  and 
2

2D∑ to measure 

the justification for stochastic simulation and gain in 
efficiency of one procedure (stochastic simulation) over 

deterministic simulation. The quantities 
1

D and 
2

D  are 

dispersions as defined in equations (8) and (9). 
Letting D3 = y- ys and D4 = y – yd, then 
 

( )
22

3 s
D y y= −∑ ∑                                               (11) 

 
and 
 

( )
22

4 d
D y y= −∑ ∑                                              (12) 

 
These are also measures of dispersions that can be used 
to appraise efficiency of simulations. 
 
 

METHODOLOGY AND DATA 
 
The modified Gauss-Newton algorithm is used in estimating the 
intrinsically non-linear model (13). The choice of model  parameters  
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( )1 2 3
, ,θ θ θ  is such that 

2 3 2 3
1, 1θ + θ < θ + θ =  and 

2 3
1θ + θ >  

but 
2 3

2θ + θ <  while the value of 
1

θ  is arbitrary and kept 

constant at 10.0θ = . We use the set of parameters 

( )V 10, 0.45, 0.50=  in our estimation and simulation. 

The input matrix is made of two variables K (capital) and L 
(Labour) and are randomly generated and normally distributed 
independent variables such that they are typical of data set on 
capital and labour as that of Zarembka (1966). The noisy Y’s are 
obtained according to the relation (13). The Monte Carlo study uses 
sample sizes of 20 with each experiment replicated 20 times. 
 
 
Forecast under additive error specification 
 
Step 1: Generate K and L, sample size 25. 
Step 2: Make the order statistics of K and L 
Step 3: Specify the model 
 

32

1
y K L u

θθθ= +                                                                    (13)  

 

and assign values 
1 2 3
, ,θ θ θ  and 

2

u
σ  for u 

 
Step 4: Generate y (n = 25); using step 2 
Step 5: Estimate the model: 
 

32

1t t t
y K L u

θθθ= +  Take note of the estimates 
1 2 3
, ,θ θ θ  and 

2

u
σ (variance of u) 

 

Step 6: Call the standard errors of 
1 2 3
, ,θ θ θ  and u; 

1 2 3
, ,e e e  and 

4
e  

Step 7: A forecast of y is given by 
 

32
ˆˆ

11 1 1 1
ˆˆ

tt t t
y K L

θθ
θ

++ + +
=  

 

After the equation has been estimated and a forecast 
1

ˆ
t

y
+

 has 

been computed, the standard error of forecast would be computed 
as follows: 
 
Step 8: Rewrite the equation as 

 

( ) ( ) ( )2 2 3 3
ˆ ˆ

1 1 1 1 1 4
ˆˆ

e e

t t t
y e K L e

θ θ
θ

+ +

+ + +
= + +  

 

where 
1 2 3 4
, , ,e e e e  are assumed to be normally distributed random 

variables with mean 0 and standard deviation equal to the 
computed standard errors from the nonlinear regression 
corresponding to the last iteration of the estimated process in step 
5. 
Step 9: Generate random numbers (from the appropriate normal 

distributions) for 
1 2 3
, ,e e e  and 

4
e  and use for the forecast of 

1
ˆ

t
y

+
 

Compute the forecast accordingly. 
Step 10: Repeat step 9 some 100 or 200 times. Use the sample 

standard deviation of the resulting distribution of values for as
1

ˆ
t

y
+

 

the standard error of forecast. This approximate standard error of 
forecast can then be used to calculate confidence intervals. 
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Table 1. Result of deterministic simulation and stochastic simulation. 
 

Year (T) K L Y Yd Ys Y0 (Yd-Y0)
2
 (Ys-Y0)

2
 

1 0.042989 37.84368 15.60766 15.02096 15.02096 14.9282 0.008604 0.008604 

2 0.056616 39.2892 18.14622 17.33493 17.33493 17.21707 0.01389 0.01389 

3 0.065594 68.01032 23.4381 24.3155 24.3155 24.20339 0.012567 0.012567 

4 0.086804 76.26497 30.2531 29.21666 29.21666 29.07404 0.020338 0.020338 

5 0.123174 90.77083 37.09047 37.31769 37.31769 37.12844 0.035813 0.035813 

6 0.218497 95.80353 49.5472 49.68976 49.72272 49.36751 0.103843 0.126174 

7 0.265526 243.744 86.09495 86.1873 86.1873 85.96371 0.049992 0.049992 

8 0.296224 534.0287 133.1104 133.5502 133.5637 133.6631 0.012739 0.009873 

9 0.377132 545.9177 150.5103 150.6192 150.6192 150.6557 0.001331 0.001331 

10 0.383181 568.3063 155.7575 154.7585 154.7585 154.8186 0.003613 0.003613 

11 0.394106 571.8151 156.3225 157.2201 157.2201 157.2728 0.002782 0.002782 

12 0.424784 686.6588 178.1312 178.0798 178.0798 178.2568 0.031344 0.031344 

13 0.448396 704.6885 184.6847 184.8544 184.8544 185.0318 0.031481 0.031481 

14 0.479156 730.4341 193.6885 193.9091 193.9091 194.0909 0.033039 0.033039 

15 0.509991 816.6073 210.5419 210.79 210.79 211.0619 0.07393 0.07393 

16 0.523374 831.8268 216.0429 215.2368 215.2368 215.5172 0.0786 0.0786 

17 0.803683 845.2429 263.0052 263.4672 263.4672 263.499 0.001008 0.001008 

18 0.805179 884.1231 269.5333 269.6276 269.6276 269.7168 0.007958 0.007958 

19 0.823236 914.2897 277.7866 276.9125 276.9125 277.0307 0.01397 0.01397 

20 0.83709 932.8829 281.4654 281.8091 281.8942 281.9428 0.01788 0.002364 

21 0.858723 943.2417 286.8319 286.648 286.648 286.7777 0.016832 0.016832 

22 0.989826 1021.829 317.5849 318.0594 318.0594 318.193 0.017838 0.017838 

23 1.546828 1098.346 403.2296 403.5101 403.5101 403.291 0.047994 0.047994 

24 1.779118 1289.088 464.8901 465.3866 465.3866 465.3004 0.007427 0.007427 

25 1.799437 1922.948 571.5314 570.2389 570.3267 571.2093 0.941732 0.778983 

      Sum= 1.586542 1.427742 
 
 
 

EMPIRICAL RESULTS 
 
Altogether we estimated 20 equations. Some of the 
numerical results obtained are summarized and 
presented in Tables 1 - 4. 
 
 
RESULTS AND DISCUSSION  
 
We would compare the results of deterministic simulation 
with that of stochastic (Monte Carlo) simulation of the 
output. In all, we have estimated at least 20 equations in 
this study. Essentially this section focuses on the 
discussion of the results of Monte Carlo simulations and 
forecast presented in Section 4. 
 
The model considered is: 
 

32

1
Y K L u

θθθ= +                                                     (14) 

 

where 
1

u  follow ( )2
0,N σ .  

In all the tables, N stands for the number of replica-
tions.   The   specification  (5.1)  is  the  model  where  an 

additive error generated data is filled with an additive 
based model. 
 
 

Deterministic simulation (yd), stochastic simulation 
(ys) and dispersion from the noiseless output (y0) 
 
We simulate with the model (14) to obtain the results 
seen in Table 1. K and L are values of capital and labour, 
y is the noisy value of the output. The symbol y0 is the 
output without the noise (stochastic disturbance) whereas 
yd and ys respectively stand for the deterministic and 
stochastic simulated values of the output. Table 1 is to 
enable us construct the measures of dispersions. 
 

( )
22

1 0sD y y= −∑ ∑                                              (15) 

 

( )
22

2 0dD y y= −∑ ∑                                              (16) 

 

Equation (15) gives the dispersion of stochastic simulated 
output ys from yo. Equation (16) gives the dispersion of 
deterministic simulation yd from the noiseless responses 
y0. The period  for  sample  estimated  is  T = 1 to  T = 20.  
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Table 2. Dispersion of y from ys and yd. 
 

Year (T) y Yd Ys (y-ys)
2
 (y-yd)

2
 

1 15.60766 15.02096 15.02096 0.344221 0.344221 

2 18.14622 17.33493 17.33493 0.658201 0.658205 

3 23.4381 24.3155 24.3155 0.769828 0.769828 

4 30.2531 29.21666 29.21666 1.074214 1.074215 

5 37.09047 37.31769 37.31769 0.051625 0.051625 

6 49.5472 49.68976 49.72272 0.030806 0.020322 

7 86.09495 86.1873 86.1873 0.008527 0.008527 

8 133.1104 133.5502 133.5637 0.20546 0.193432 

9 150.5103 150.6192 150.6192 0.011877 0.011877 

10 155.7575 154.7585 154.7585 0.998106 0.998106 

11 156.3225 157.2201 157.2201 0.805684 0.805686 

12 178.1312 178.0798 178.0798 0.002646 0.002646 

13 184.6847 184.8544 184.8544 0.028783 0.028783 

14 193.6885 193.9091 193.9091 0.048678 0.048678 

15 210.5419 210.79 210.79 0.061514 0.061514 

16 216.0429 215.2368 215.2368 0.649673 0.649672 

17 263.0052 263.4672 263.4672 0.21348 0.21348 

18 269.5333 269.6276 269.6276 0.00889 0.00889 

19 277.7866 276.9125 276.9125 0.764075 0.764075 

20 281.4654 281.8091 281.8942 0.183862 0.118152 

21 286.8319 286.648 286.648 0.033847 0.033847 

22 317.5849 318.0594 318.0594 0.225221 0.225221 

23 403.2296 403.5101 403.5101 0.078644 0.078644 

24 464.8901 465.3866 465.3866 0.246531 0.24653 

25 571.5314 570.2389 570.3267 1.451328 1.670691 

   Sum= 8.955724 9.086867 

 
 
 
Table 3. Monte Carlo and deterministic forecast of output using dispersions of y from ys and yd. 
 

Monte Carlo forecast 

T Y ys Standard deviation Standard error (y -ys)
2
 95% confidence interval 

21 286.8319 286.648 20.3 4.54 0.033847 286.65 ± 8.90 

22 317.5849 318.0594 23.29 5.21 0.225221 318.06 ±10.21 

23 403.2296 403.5101 30.19 6.75 0.078644 403.51± 10.80 

24 464.8901 465.3866 35.19 7.87 0.24653 465.39± 15.43 

25 571.5314 570.3267 43.7 9.77 1.451302 570.33 ±19.15 

RMSE = 0.64  Sum = 2.035545  

     

Deterministic forecast 

T Y yd Standard deviation Standard error (y –yd)
2
 95% confidence interval 

21 286.8319 286.648 Na na 0.033847 na 

22 317.5849 318.0594 Na na 0.225221 na 

23 403.2296 403.5101 Na na 0.078644 na 

24 464.8901 465.3866 Na na 0.24653 na 

25 571.5314 570.2389 Na na 1.670691 na 

RMSE = 0.67  Sum= 2.254933  
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Table 4. Monte Carlo and deterministic forecast of output using dispersions of yo from ys and yd. 
 

  Monte Carlo forecast  

T yo ys Standard deviation Standard error (y0 -ys)
2
 95% confidence interval 

21 286.7777 286.648 20.3 4.54 0.016832 286.65 ± 8.90 

22 318.1930 318.0594 23.29 5.21 0.017838 318.06 ±10.21 

23 403.291 403.5101 30.19 6.75 0.047994 403.51± 10.80 

24 465.3004 465.3866 35.19 7.87 0.007427 465.39± 15.43 

25 571.2093 570.3267 43.7 9.77 0.778983 570.33 ±19.15 

RMSE = 0.42  Sum = 0.869074  

     

Deterministic forecast 

T yo yd Standard deviation Standard error ( y0 –yd)
2
 95% confidence interval 

21 286.7777 286.648 Na na 0.016832 na 

22 318.1930 318.0594 Na na 0.017838 na 

23 403.291 403.5101 Na na 0.047994 na 

24 465.3004 465.3866 Na na 0.007427 na 

25 571.2093 570.2389 Na na 0.941732 na 

RMSE = 0.45  Sum = 1.031823  
 
 
 

The period T = 21 to T = 25 is the forecast period. 
The gain in efficiency (Table 1) of stochastic simulation 

over deterministic simulation is simply: 
 

2 2

2 1

1 2

1

1.586542 1.427742
100 100

1.427742

D D
Eff x x

D

− −
= =
∑ ∑
∑

 = 11%       (17) 

 
 
Dispersion of actual output y from deterministic and 
stochastic simulations 
 
Using Table 2 and letting D3 = y- ys and D4 = y – yd, then 
 

( )
22

3
8.955724

s
D y y= − =∑ ∑                            (18) 

 

( )
22

4
9.086867

d
D y y= − =∑ ∑                           (19) 

 

Gain in efficiency, 
2

Eff  is 

 

2

9.086867 8.955724
100

8.955724
Eff x

−
=  = 1.5%             (20) 

 
 
Monte Carlo and deterministic forecast of output  
 
The forecast for each period (T = 21 to T = 25) is made 
according to the algorithm stated in Section 3. With 
reference to Table 3, ys is the mean stochastic simulated 
forecast. The standard deviation and hence standard 
error of forecast is obtained from values of stochastic 
simulation over (N=20) replications. The quantity yd is the 
deterministic forecast. The results are recorded in Table 

3. The gain in efficiency of Monte Carlo forecast over 
deterministic forecast. 
 

4

2.254933 2.035545
100

2.035545
Eff x

−
=  = 11%              (21) 

 
The root-mean-squared error (RMSE) in both forecast 
are respectively 0.64 and 0.67. The result obtained from 
 
Table 4 gives the relative efficiency as 
 

 
5

1.031823 0.869074
100

0.869074
Eff x

−
=  =     18.7%       (22)  

 

 
CONCLUSION AND RECOMMENDATIONS 
 
The principal foci of the study are: 
 
(i) To carry out Monte Carlo and deterministic simulations 
and forecasts of production, and 
(ii) To compare forecast errors in (i) under alternative 
simulations. 
 
We have seriously attempted to meet these objectives in 
the study. We have performed deterministic and Monte 
Carlo simulations with the Model (14). We have found out 
that there is a gain of 11% in efficiency of Monte Carlo 
simulation over deterministic simulation. Kolrud (1993) 
demonstrated this gain in efficiency using macro-
econometric system of simultaneous equations having 
some intrinsic non linearity. Our case involves a single 
intrinsically nonlinear production model. 

We have to state that gain in efficiency using dispersion  



 
 
 
 
of ys and yd from y0 (Equation 18 and Table 1) is higher 
than using dispersion of y from ys and yd (Equation (19 
and Table 2). The first is 11% and the second is 1.5%. In 
either case, stochastic simulation is superior to 
deterministic simulation (Essi, 2010). 

We now come to dispersion criteria to be used in 
assessing forecasts. The gain in efficiency of Monte 
Carlo forecast over deterministic forecast is 11%. The 
root-mean-squared errors (RMSE) in both forecasts are 
respectively 0.64 and 0.67. The dispersion criteria used 

are 
2

( )sy y−∑  and
2

( )dy y−∑ , the summation 

starts from t = 21 to t = 25. (Table 3). If we replace 
2

( )sy y−∑ and 
2

( )dy y−∑  respectively by 

2

0( )sy y−∑ and 
2

0( )dy y−∑ , where 
0

y  is noiseless 

respond of the output y, the gain in efficiency of Monte 
Carlo forecast over deterministic forecast is 18.7% (Table 
4). 

For the forecasts, the dispersion measures 
2

( )sy y−∑ and 
2

( )dy y−∑ gives 11% efficiency than 

the measures 
2

0( )sy y−∑ and 
2

0( )dy y−∑  which 

gives 18.7% efficiency. 
We have to state that gain in efficiency using dispersion 

of ys and yd from y0 is higher than using dispersion of y 
from ys and yd , both for results in simulation and forecast.  
The question is which relative criterion should be used? 

We suggest that the criterion involving y0 be used if we 
know the data generating process, otherwise we use 
dispersion of y from ys and yd. 
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